KR20050060639A - New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials - Google Patents

New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials Download PDF

Info

Publication number
KR20050060639A
KR20050060639A KR1020030092321A KR20030092321A KR20050060639A KR 20050060639 A KR20050060639 A KR 20050060639A KR 1020030092321 A KR1020030092321 A KR 1020030092321A KR 20030092321 A KR20030092321 A KR 20030092321A KR 20050060639 A KR20050060639 A KR 20050060639A
Authority
KR
South Korea
Prior art keywords
polymer
formula
tetrafluoro
refractive index
present
Prior art date
Application number
KR1020030092321A
Other languages
Korean (ko)
Other versions
KR100557473B1 (en
Inventor
김진봉
최상열
김종진
강우진
이정길
Original Assignee
주식회사 피피아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피피아이 filed Critical 주식회사 피피아이
Priority to KR1020030092321A priority Critical patent/KR100557473B1/en
Publication of KR20050060639A publication Critical patent/KR20050060639A/en
Application granted granted Critical
Publication of KR100557473B1 publication Critical patent/KR100557473B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/08Epoxidation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 광도파로 소자용 에폭시 치환기를 가지는 불소화 스티렌계 단량체와 이를 이용한 고분자 화합물에 관한 것으로서, 더욱 상세하게는 다양한 불소화 스티렌 화합물과 에폭시 화합물과의 반응성을 조절하여 다음 화학식 1로 표시되는 에폭시 치환기를 가진 불소화 스티렌 단량체를 제조하고, 이를 이용하여 합성한 새로운 지방족, 방향족 고분자 화합물에 관한 것이다. 본 발명의 단량체와 이를 이용한 이성분계/삼성분계 고분자는 우수한 열적, 기계적·전기적 성질을 가지며 근적외선 영역에서 흡수가 작아 흡수에 의한 광전송 손실을 최소화할 수 있을 뿐만 아니라, 에폭시 치환기가 열 또는 UV조사에 의해 가교결합을 진행하여 열적, 화학적 안정성을 가지게 된다. 또한, 두 가지 서로 다른 단량체의 함량을 조절하여 굴절률을 제어하게 되면 도파층(core layer) 재료와 완충층 (cladding layer)재료의 선택의 폭이 넓은 광통신용 고분자 재료로 활용할 수가 있고, 특히 실리카 굴절률 범위와 비슷하므로 실리카와 혼용하여 이종간의 장점을 이용한 복합소자 구현이 가능하다. The present invention relates to a fluorinated styrene monomer having an epoxy substituent for an optical waveguide device and a polymer compound using the same. More particularly, the epoxy substituent represented by the following Chemical Formula 1 is controlled by controlling the reactivity of various fluorinated styrene compounds and epoxy compounds. The present invention relates to a new aliphatic and aromatic polymer compound prepared by producing a fluorinated styrene monomer and synthesized using the same. The monomer of the present invention and the two-component / three-component polymer using the same have excellent thermal, mechanical, and electrical properties, and have low absorption in the near infrared region, thereby minimizing light transmission loss due to absorption. By cross-linking to have thermal and chemical stability. In addition, if the refractive index is controlled by adjusting the content of two different monomers, it can be utilized as a polymer material for optical communication with a wide selection of the core layer material and the cladding layer material, and especially the silica refractive index range. Since it is similar to, it is possible to implement a composite device using the advantages of heterogeneous by mixing with silica.

[화학식1][Formula 1]

Description

광도파로 소자용 에폭시 치환기를 가진 불소 스티렌 단량체와 이를 이용한 고분자 화합물{New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials}New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials}

본 발명은 광도파로 소자용 에폭시 치환기를 가지는 불소화 스티렌계 단량체와 이를 이용한 고분자 화합물에 관한 것으로서, 더욱 상세하게는 다양한 불소화 스티렌 화합물과 에폭시 화합물과의 반응성을 조절하여 다음 화학식 1로 표시되는 에폭시 치환기를 가진 불소화 스티렌 단량체를 합성하고, 이를 이용하여 합성한 새로운 지방족, 방향족 고분자 화합물로서, 이러한 단량체와 이를 이용한 이성분계/삼성분계 고분자는 에폭시 치환기를 가지고 있어서 우수한 열적, 기계적·전기적 성질을 가지며 근적외선 영역에서 흡수가 작아 흡수에 의한 광전송 손실을 최소화할 수 있을 뿐만 아니라, 두 가지 서로 다른 단량체의 함량을 조절하여 굴절률을 제어하게 되면 선택의 폭이 넓은 광통신용 고분자 재료로 활용할 수가 있고, 특히 실리카 굴절률 범위와 비슷하므로 실리카와 혼용하여 이종간의 장점을 이용한 복합소자 구현이 가능한 불소화 스티렌계 단량체와 그 고분자 화합물에 관한 것이다.The present invention relates to a fluorinated styrene monomer having an epoxy substituent for an optical waveguide device and a polymer compound using the same. More particularly, the epoxy substituent represented by the following Chemical Formula 1 is controlled by controlling the reactivity of various fluorinated styrene compounds and epoxy compounds. A new aliphatic and aromatic polymer compound synthesized by using a fluorinated styrene monomer and synthesized by using the same, and these monomers and the two-component / three-component polymers using the same have an epoxy substituent and have excellent thermal, mechanical and electrical properties in the near infrared region. As the absorption is small, the optical transmission loss due to absorption can be minimized, and the refractive index can be controlled by adjusting the content of two different monomers, which can be used as a polymer material for optical communication with a wide range of choice. Similar to it relates to a composite silica and mixed by the device implementation with the advantages of heterogeneous fluorinated styrene monomer and the polymeric compound.

[화학식 1][Formula 1]

이제까지 초고속 광통신 구현에 광소자 부품은 반도체 재료와 무기재료를 근간으로 발전되어 왔다. 그러나 이러한 광소자 부품들의 성능은 거의 재료의 한계 성능에 도달했으며, 생산가격도 매우 높다. 특히, 앞으로 초고속 정보통신 사회를 조속히 실현하기 위해서는 물질들의 한계를 극복하고 더욱 발전시키기 위해 신소재의 개발이 시급히 요구되고 있다. 이러한 이유로 최근에는 유기고분자 소재 연구가 미래의 광소자 재료로서 관심의 대상이 되고 있다. 유기 고분자 소재는 저속 및 고속 공간 분할 광소자, 필터 소자, 광교환 소자 등에 사용 될 수 있다. 그러나 유기고분자 재료가 현재 사용되고 있는 무기재료보다도 특성이 월등히 우수함에도 불구하고 지금까지 상용화되지 않은 이유는 유기 고분자 물질의 광학 성질이 열적 불안정성과 광통신 파장영역인 1.3㎛ 또는 1.55㎛에서 유기 고분자 재료의 근간이 되고 있는 C-H 결합 배진동 밴드의 광흡수에 의한 광전송 손실이 크기 때문이다. 이러한 이유로 유기 고분자의 개발이 매우 제한되어 왔다. 그러나 고분자 광도파로 소재는 무기재료인 실리카에 비해 열안정성과 광진행 손실을 제외한 미세 굴절률 조절성, 다층 적층성, 치수 안정성 및 유연성, 연결성, 미세 광부품과의 집적화 용이성, 경제성 등에 있어서 훨씬 많은 장점을 갖고 있다.Until now, optical device components have been developed based on semiconductor materials and inorganic materials for high speed optical communication. However, the performance of these optical device parts has almost reached the material's limit performance, and the production price is very high. In particular, the development of new materials is urgently needed to overcome the limitations of materials and further develop them in order to realize the high-speed information and communication society in the future. For this reason, research into organic polymer materials has recently been the subject of interest as future optical device materials. The organic polymer material may be used for low speed and high speed space division optical devices, filter devices, light exchange devices, and the like. However, although the organic polymer material is superior to the inorganic material currently used, the reason that it has not been commercialized until now is that the optical properties of the organic polymer material are the thermal instability and the optical communication wavelength range of 1.3 μm or 1.55 μm. This is because the optical transmission loss due to light absorption of the CH-coupled double oscillation band becomes large. For this reason, the development of organic polymers has been very limited. However, polymer optical waveguide material has many advantages over silica, inorganic material, in terms of fine refractive index control, multilayer stackability, dimensional stability and flexibility, connectivity, ease of integration with micro-optical components, and economic efficiency, excluding thermal stability and light propagation loss. Have

광도파로의 광손실은 물질 고유의 광흡수, 고유 광산란, 외부 요인 등에 의해서 기인한다. 또한, 물질 고유의 광흡수 손실은 분자내의 C-H 결합의 고차 조화 진동에 의한 흡수, 유기물의 오염, 흡습성으로 인한 O-H 분자의 흡수, 전이금속 불순물 등에 의해서 나타난다. 그러나 고분자 물질의 광산란에 의한 광손실은 Rayleigh 산란 손실에 의한 것인데, 이는 거의 무시할 만하다. 또 외부 요인에 의한 광손실은 공정상에서 야기되는 부정확성, 균열, 불순물 등에 기인하는 것인데, 이는 공정의 최소화를 통해서 극복할 수 있다.The optical loss of the optical waveguide is due to the inherent light absorption, inherent light scattering, and external factors. In addition, the intrinsic light absorption loss of the material is caused by the absorption of higher order harmonic vibration of C-H bonds in the molecule, contamination of organic matter, absorption of O-H molecules due to hygroscopicity, transition metal impurities, and the like. However, the light loss due to light scattering of the polymeric material is due to Rayleigh scattering loss, which is almost negligible. In addition, the optical loss due to external factors is due to inaccuracies, cracks, impurities, etc. caused in the process, which can be overcome by minimizing the process.

저손실 광도파로에 적합한 고분자의 합성을 위해서는 분자설계 단계에서부터 고분자 물질 고유의 흡수를 최소화할 수 있도록 해야 한다. 일반적으로 고분자 소재는 적외선 영역에서 분자구조 내의 진동에 의한 고유의 흡수영역을 가지고 있다.In order to synthesize a polymer suitable for a low loss optical waveguide, it is necessary to minimize absorption of polymer material inherent from the molecular design stage. In general, the polymer material has an inherent absorption region due to vibration in the molecular structure in the infrared region.

특히, C-H, O-H, N-H 결합에 의한 근적외선 영역의 진동 흡수 손실은 2차 및 3차의 조화 배진동에 기인하는 것이 광손실의 주된 원인이다. 이러한 광손실 문제는 C-H 결합을 중수소 C-D나 C-F, C-Cl 등으로 치환하여 환산 질량을 증가시킴으로써 조화 배진동은 장파장으로 이동하게 되고 결과적으로 광통신 파장 영역에서 흡수 최소화에 의해 해결된다. C-H 결합에 의한 흡수 손실에 비해 C-D 결합에 의한 흡수 손실은 1.3㎛에서는 현저히 흡수세기의 감소가 있으나, 1.55㎛에서는 강한 조화 배진동 흡수 피크가 있다. 그러나 불소와 염소로 치환했을 경우는 1.1~1.7㎛에 걸쳐 거의 흡수에 의한 손실이 나타나지 않는다.In particular, the vibration absorption loss in the near infrared region by C-H, O-H, and N-H coupling is caused by the second and third harmonic back vibrations. This optical loss problem is solved by substituting C-H bonds with deuterium C-D, C-F, C-Cl, etc. to increase the converted mass, and the harmonic back vibration shifts to longer wavelengths. Absorption loss due to C-D bond is significantly decreased at 1.3 mu m compared with absorption loss due to C-H bond, but strong harmonic back vibration absorption peak at 1.55 mu m. However, when substituted with fluorine and chlorine, there is almost no loss due to absorption over 1.1 to 1.7 mu m.

광도파로 소자 제작을 위해 도파층과 완충층의 굴절률 조절은 매우 중요하다. 이를 위해 고분자 소재의 굴절률은 공중합을 이용하면 쉽게 조절 가능하다. 이러한 공중합을 이용하면 굴절률의 차이를 0.0001까지 조절 할 수 있다. 더욱 중요한 것은 복굴절률이 없는 물질을 개발하는 것이다. 광소자가 편광에 의존하지 않고 작동하려면 TE 모드와 TM 모드 사이의 굴절률의 차, 즉 복굴절률이 (λTE TM)<(1/10)Δλ를 만족해야 한다. 고분자 물질의 경우에는 이를 줄이기 위해 공중합을 하거나 다른 고분자를 혼합하여 사용하면 된다.It is very important to control the refractive index of the waveguide layer and the buffer layer to fabricate the optical waveguide device. To this end, the refractive index of the polymer material can be easily adjusted using copolymerization. By using this copolymerization, the difference in refractive index can be adjusted to 0.0001. More important is the development of a material without birefringence. In order for an optical device to operate without polarization, the difference in refractive index between the TE mode and the TM mode, that is, the birefringence, must satisfy (λ TETM ) <(1/10) Δλ. In the case of a polymer material, copolymerization or other polymers may be used to reduce this.

초기의 고분자 광도파로 소재를 이용한 평면 도파로형 광소자는 주로 PMMA(PolyMethyl MethAcrylate)를 사용하여 연구되어 왔다. 일본의 NTT(일본의 상호명)에서는 이중수소화 PMMA와 이중수소 및 불소가 함께 치환된 PMMA를 사용해 광손실이 1.3㎛에서 0.08dB/cm로 아주 우수한 저손실 광소자를 구현하였다. 그러나 PMMA계는 Tg가 100℃정도로 열 안정성이 떨어진다. 이런 문제점을 해결하고자 NTT에서는 열분해 온도가 400℃이상인 중수소로 치환된 열경화성 폴리실록산을 개발하였으며. 이는 광손실이 1.55㎛에서 0.43dB/cm으로 비교적 우수하고 특히 복굴절이 아주 우수하다. 또한 내열성, 가공성이 뛰어난 다양한 종류의 불소 치환된 폴리이미드를 개발하여 발표하였다.Planar waveguide optical devices using the early polymer optical waveguide materials have been mainly studied using polymethyl methacrylate (PMMA). Japan's NTT (Japanese trade name) uses a deuterated PMMA and a PMMA substituted with dihydrogen and fluorine to realize a very low loss optical device with an optical loss of 0.08dB / cm at 1.3㎛. However, PMMA system has poor thermal stability with Tg of about 100 ° C. In order to solve this problem, NTT has developed a thermosetting polysiloxane substituted with deuterium whose pyrolysis temperature is higher than 400 ° C. It has a relatively good optical loss of 0.43 dB / cm at 1.55 mu m, especially birefringence. In addition, various types of fluorine-substituted polyimides having excellent heat resistance and processability have been developed and presented.

또한, 복굴절률이 크다는 단점을 가지고 있는 폴리머는 굴곡구조 또는 선형구조가 아닌 비선형구조의 폴리이미드와 유연기를 가지는 폴리이미드의 구조를 합성함으로써 그 단점을 개선하는 등 복굴절률이 거의 없는 폴리머를 만들려는 연구가 진행 중이다.In addition, a polymer having a disadvantage of having a large birefringence is intended to make a polymer having almost no birefringence by synthesizing a structure of a polyimide having a nonlinear structure and a polyimide having a flexible group rather than a curved structure or a linear structure. Research is ongoing.

그러나, 이러한 연구에서도 괄목할만한 성과를 기대하기는 힘들고 일부 개발된 소재들도 아직 개선의 여지를 많이 가지고 있는 것이 현실이다.However, it is difficult to expect remarkable results in these studies, and some developed materials still have a lot of room for improvement.

본 발명자들은 상기와 같은 종래의 광통신소재에서 나타나는 문제점을 해결하고 물성이 우수하면서 그 적용분야를 다양하게 넓힐 수 있는 개량된 광통신 소재를 개발하기 위해 오랜 동안 연구한 결과, 다양한 불소화 스티렌 화합물과 에폭시 화합물과의 반응성을 조절하여 화학식 1로 표시되는 에폭시 치환기를 가진 불소화 스티렌 단량체를 합성하고, 이를 이용하여 지방족, 방향족 이성분계/삼성분계 고분자를 합성하게 되면 에폭시 치환기를 가지고 있어서 우수한 열적, 기계적·전기적 성질을 가지며 근적외선 영역에서 흡수가 작아 흡수에 의한 광전송 손실을 최소화할 수 있을 뿐만 아니라, 두 가지 서로 다른 단량체의 함량을 조절하여 굴절률을 제어하게 되면 선택의 폭이 넓은 광통신용 고분자 재료로 활용할 수가 있고, 특히 실리카 굴절률 범위와 비슷하므로 실리카와 혼용하여 이종간의 장점을 이용한 복합소자 구현이 가능하다는 놀라운 사실을 알게 되어 본 발명을 완성하였다.The present inventors have long researched to solve the problems appearing in the conventional optical communication materials as described above and to develop improved optical communication materials that can broaden the application field while having excellent physical properties. As a result, various fluorinated styrene compounds and epoxy compounds Synthesis of fluorinated styrene monomers having epoxy substituents represented by the general formula (1) by controlling the reactivity with them, and the synthesis of aliphatic, aromatic binary / three-component polymers using them have epoxy substituents, resulting in excellent thermal, mechanical and electrical properties. It has a low absorption in the near-infrared region, and can minimize the optical transmission loss due to absorption. Also, by controlling the refractive index by adjusting the content of two different monomers, it can be used as a polymer material for optical communication with a wide choice. Especially silica refractive index range Since it is similar to and realized with the fact that it is possible to realize a composite device using the advantages of heterogeneous mixed with silica, the present invention was completed.

따라서, 본 발명의 목적은 에폭시 치환기를 가진 불소화 스티렌계 단량체를 제공하는데 있다.Accordingly, an object of the present invention is to provide a fluorinated styrene monomer having an epoxy substituent.

또한, 본 발명의 목적은 에폭시 치환기를 가진 불소화 스티렌계 단량체를 이용하여 합성한 이성분계/삼성분계의 고분자 화합물을 제공하는데 있다. It is also an object of the present invention to provide a two-component / three-component high molecular compound synthesized using a fluorinated styrene monomer having an epoxy substituent.

또한, 본 발명의 목적은 광통신 소재로 유용한 에폭시 치환기를 가진 불소화 스티렌계 단량체와 그 고분자 화합물을 제공하는데 있다.It is also an object of the present invention to provide a fluorinated styrene monomer having an epoxy substituent useful as an optical communication material and a polymer compound thereof.

또한, 본 발명의 목적은 광도파로 소자용으로 유용한 에폭시 치환기를 가진 불소화 스티렌계 단량체와 그 고분자 화합물을 제공하는데 있다.It is also an object of the present invention to provide a fluorinated styrene monomer having an epoxy substituent useful for an optical waveguide device and a polymer compound thereof.

또한, 본 발명의 목적은 실리카와 혼용하여 이종간의 장점을 이용한 복합소자 구현이 가능한 불소화 스티렌계 단량체와 그 고분자 화합물을 제공하는데 있다.It is also an object of the present invention to provide a fluorinated styrene-based monomer and a polymer compound thereof that can be used in combination with silica to implement a composite device by using the heterogeneous advantages.

또한, 본 발명의 목적은 에폭시 치환기를 가진 불소화 스티렌계 단량체 또는 그의 고분자 화합물로 이루어진 바람직한 물성의 광도파로 소자를 제공하는데 있다.It is also an object of the present invention to provide an optical waveguide device of preferred physical properties consisting of a fluorinated styrene-based monomer having an epoxy substituent or a high molecular compound thereof.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 고분자 재료로 유용한 다음 화학식 1로 표시되는 에폭시 치환기를 가진 불소화 스티렌계 단량체를 특징으로 한다.The present invention is characterized by a fluorinated styrene monomer having an epoxy substituent represented by the following formula (1) which is useful as a polymer material.

상기 화학식 1의 화합물은 C-H 결합에 의해 흡수에 의한 광손실을 낮추고, 에폭시 치환기를 가지는 구조로 된 불소화 스티렌 단량체로서, 이성분계, 삼성분계 또는 기타 여러 가지의 광통신 소재용의 고분자 화합물을 합성하는데 이용될 수 있다.The compound of Formula 1 is a fluorinated styrene monomer having a structure having an epoxy substituent and lowers the optical loss due to absorption by CH bonds, and is used to synthesize high molecular compounds for two-component, three-component, or various optical communication materials. Can be.

본 발명에 따르면 상기 화학식 1의 화합물을 이용하여 다음 화학식 2의 고분자 화합물을 합성할 수 있다.According to the present invention, the compound of Chemical Formula 2 may be synthesized using the compound of Chemical Formula 1.

또한, 본 발명의 상기 화학식 1의 화합물을 이용하여 다음 화학식 3의 고분자 화합물을 합성할 수 있다.In addition, by using the compound of Formula 1 of the present invention it is possible to synthesize a polymer compound of the formula (3).

상기 화학식 3에서 R1 은 -CH3, -H, -F, -Cl 를 나타내며;R 1 in Formula 3 represents -CH 3 , -H, -F, -Cl;

R2R 2 is

을 나타낸다. 여기서, P는 1 또는 2이고, n은 1~40의 정수, R은 탄소원자 1~8개를 갖는 알킬렌기, 사슬, 가지, 환형구조를 나타낸다. x, y는 굴절률에 따라 조성비를 달리할 수 있으며, 각각 서로 관계없이 10 내지 100의 정수를 의미한다.Indicates. Here, P is 1 or 2, n is an integer of 1-40, R represents the alkylene group, chain, branch, cyclic structure which has 1-8 carbon atoms. x, y may vary the composition ratio according to the refractive index, each means an integer of 10 to 100 irrespective of each other.

또한, 본 발명에 따르면 상기 화학식 1의 화합물을 이용하여 다음 화학식 4의 고분자화합물을 합성할 수 있다.In addition, according to the present invention it is possible to synthesize a polymer compound of the following formula (4) using the compound of formula (1).

상기 화학식 4에서 R1, R2, R3는 상기 화학식 3에서 정의한 바와 같으며, a, b, c는 굴절률에 따라 조성비를 달리 할 수 있는 것으로서, 각각 서로 관계없이 10 내지 100의 정수를 의미한다.In Formula 4, R 1, R 2, and R 3 are the same as defined in Formula 3, and a, b, and c may be different in composition ratio according to refractive index, and each represents an integer of 10 to 100 regardless of each other. do.

상기한 화학식 2 내지 화학식 4의 고분자 화합물과 같은 지방족, 방향족 고분자 또는 이성분계/삼성분계 고분자는 에폭시 치환기를 가지고 있어서 우수한 열적, 기계적·전기적 성질을 가지며 근적외선 영역에서 흡수가 작아 흡수에 의한 광전송 손실을 최소화할 수 있다. 또한 이들 고분자 화합물은 그 합성과정에서 두 가지 서로 다른 단량체의 함량을 조절하여 굴절률을 제어하게 되면 선택의 폭이 넓은 광통신용 고분자 재료로 활용할 수가 있다. 특히, 이러한 본 발명에 따른 고분자 화합물은 실리카 굴절률 범위와 비슷하므로 실리카와 혼용하여 이종간의 장점을 이용한 복합소자 구현이 가능한 특성을 가진다.Aliphatic, aromatic polymers or two-component / three-component polymers, such as the polymer compounds of Formulas 2 to 4, have an epoxy substituent and have excellent thermal, mechanical, and electrical properties, and have low absorption in the near infrared region, thereby preventing optical transmission loss due to absorption. It can be minimized. In addition, these polymer compounds can be utilized as polymer materials for optical communication having a wide range of choice if the refractive index is controlled by controlling the content of two different monomers in the synthesis process. In particular, since the polymer compound according to the present invention is similar to the silica refractive index range, it can be used in combination with silica to realize a composite device using advantages between heterogeneous compounds.

한편, 본 발명에 따르면, 상기한 바와 같은 에폭시 치환기를 가진 불소화 스티렌 단량체의 합성과정은 다음의 반응식 1, 2에 나타낸 바와 같다.On the other hand, according to the present invention, the synthesis process of the fluorinated styrene monomer having an epoxy substituent as described above is as shown in the following schemes 1 and 2.

상기와 같이 제조되는 본 발명에 따른 화학식 1의 단량체는 2, 3, 4, 5, 6-펜타플루오르스티렌을 소디움 메톡사이드를 이용하여 2, 3, 5, 6-테트라플루오르-4-메톡시스티렌으로 치환하고, 보론트리브로마이드를 사용하여 2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌으로 전환시킨다. 합성된 2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌을 에피클로로하이드린을 과량 첨가하여 반응시키면 본 발명의 단량체인 상기 화학식 1의 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌을 생성하게 된다.Monomer of the formula 1 according to the present invention prepared as described above is 2, 3, 4, 5, 6-pentafluorostyrene using sodium methoxide to 2, 3, 5, 6-tetrafluoro-4-methoxystyrene And convert to 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene using borontribromide. When the synthesized 2, 3, 5, 6-tetrafluoro-4-hydroxy styrene is reacted by adding an excess amount of epichlorohydrin, the monomer of the present invention, 2, 3, 5, 6-tetrafluor-4 It will produce glycidoxy styrene.

이러한 본 발명의 단량체는 통상의 방법으로 라디칼 개시제를 사용하여 고분자화 되거나, 다른 단량체들과 반응시켜서 이성분계, 삼성분계 또는 그 이외의 이와 유사한 형태의 고분자 화합물을 합성할 수 있다.Such monomers of the present invention may be polymerized using a radical initiator in a conventional manner, or may be reacted with other monomers to synthesize a bicomponent, semi-branched, or other similar type of high molecular compound.

이렇게 본 발명에 따라 제조된 단량체와 고분자 화합물을 사용하여 광통신 소재로 사용하는 경우 1.41~1.68 (632nm)범위까지 굴절률 제어가 용이하여 광도파로 소자를 구현이 가능하며, 1.43~1.48(632nm) 범위의 굴절률이 갖는 실리카 재료와 혼용하여 사용하게 되면 이종 재료의 장점을 이용한 적층형 복합소자 구현이 가능하다.Thus, when used as an optical communication material using the monomer and the polymer compound prepared according to the present invention, it is possible to implement an optical waveguide device by easily controlling the refractive index to the range 1.41 ~ 1.68 (632 nm), the range of 1.43 ~ 1.48 (632 nm) When used in combination with a silica material having a refractive index, it is possible to implement a multilayer type composite device using advantages of heterogeneous materials.

상기한 바와 같은 본 발명에 따른 에폭시 치환기를 가지는 구조로 된 불소화 스티렌 단량체와 그 고분자 화합물은 통상의 방법에 따라 스핀코팅을 이용하여 박막을 증착하고, 열적, 또는 자외선 조사를 이용하여 광도파로 소자를 제조할 수 있으며, 이 경우 종래에 비해 150℃이상의 유리전이온도를 가지는 우수한 열적 안정성과 1.55um 파장대에서 0.2dB/cm 이하의 적은 광전송손실을 가질 정도로 우수한 효과를 나타낸다.As described above, the fluorinated styrene monomer having a structure having an epoxy substituent and the polymer compound according to the present invention deposit a thin film using spin coating according to a conventional method, and use an optical waveguide device by thermal or ultraviolet irradiation. In this case, the present invention exhibits an excellent thermal stability having a glass transition temperature of 150 ° C. or higher and a light transmission loss of 0.2 dB / cm or less at a wavelength of 1.55 um in comparison with the conventional art.

이와 같이, 본 발명에 따라 제조된 폴리이미드 화합물을 광통신 소재로 사용하는 경우, 이런 고분자 재료는 열적으로 안정하고 특히 광도파로용 소자에 있어서 불소를 도입함으로서 흡수에 의한 광손실을 최소화하고 낮은 유전상수를 초래하는 효과를 나타내는 것이다. 또한 본 발명의 폴리이미드 화합물은 유연성기를 분자 구조에 도입하여 비결절성을 증가시켜줌으로써 낮은 복굴절률을 갖게 되어 바람직한 광통신용 소재로 유용한 것이다.As such, when the polyimide compound prepared according to the present invention is used as an optical communication material, such a polymer material is thermally stable, and in particular, by introducing fluorine in an optical waveguide device, it minimizes light loss due to absorption and has a low dielectric constant. It will show an effect that causes. In addition, the polyimide compound of the present invention has a low birefringence by introducing a flexible group into the molecular structure to increase the nodularity, and thus is useful as a material for optical communication.

이하, 본 발명을 실시예에 의거 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by Examples.

실시예 중에서 합성예는 2, 3, 4, 5, 6-펜타플루오르 스티렌을 에폭시 치환기로 치환한 화합물로서 하기 실시예의 반응 단량체로 사용된다.In the examples, the synthesis examples are used as reaction monomers in the following examples as compounds in which 2, 3, 4, 5, 6-pentafluoro styrene is substituted with an epoxy substituent.

[합성예 1 ]Synthesis Example 1

2, 3, 5, 6-테트라플루오르-4-메톡시스티렌 합성2, 3, 5, 6-tetrafluoro-4-methoxystyrene synthesis

냉각기를 가진 500mL 둥근바닥 플라스크에 2, 3, 4, 5, 6-펜타플루오르 스티렌 20g 이 용해되어 있는 메탄올 300mL 용액을 넣고, 0℃까지 냉각시킨다. 메탄올 90mL에 혼합되어 있는 소디움메톡사이드 20mL(30wt%)를 반응 용액에 천천히 한방울씩 첨가한다. 15분동안 0℃에서 교반을 하고 4시간 동안 환류하여 반응시킨다. 이 반응 용액을 물에 부어 디에틸에테르로 추출시켜 50도에서 디에틸에테르를 진공 증류하여 건조시킨다. 수율 : 19.0g(90%).In a 500 mL round bottom flask with a cooler, 300 mL of methanol containing 20 g of 2, 3, 4, 5, 6-pentafluorostyrene was dissolved, and cooled to 0 ° C. 20 mL (30 wt%) of sodium methoxide mixed in 90 mL of methanol is slowly added dropwise to the reaction solution. The reaction is stirred at 0 ° C. for 15 minutes and refluxed for 4 hours. The reaction solution is poured into water, extracted with diethyl ether, and diethyl ether is dried by vacuum distillation at 50 degrees. Yield: 19.0 g (90%).

[합성예 2]Synthesis Example 2

2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 합성2, 3, 5, 6-tetrafluoro-4-hydroxystyrene synthesis

500mL 둥근바닥 플라스크에 2, 3, 5, 6-테트라플루오르-4-메톡시스티렌 15g이 용해되어 있는 건조된 디클로로메탄 200mL 용액을 넣고 교반시킨다. 디클로로메탄 50mL에 용해되어 있는 보론트리브로마이드 10ml를 반응용액에 천천히 한방울씩 첨가한다. 24시간 동안 실온에서 교반시킨다. 과량의 보론트리브로마이드와 보론착화합물들을 가수분해 시키기 위해 물-얼음 혼합물에 부어, 실온에서 1시간동안 교반한다. 디에틸에테로로 추출시켜 마그네슘설페이트로 건조시켜, 증류하고 70℃에서 진공 건조시키면 하얀색의 결정성 생성물을 얻게 된다. 수율 : 9.5g(66%).A 200 mL solution of dried dichloromethane in which 15 g of 2, 3, 5, 6-tetrafluoro-4-methoxystyrene was dissolved was added to a 500 mL round bottom flask and stirred. 10 ml of boron tribromide dissolved in 50 mL of dichloromethane is slowly added dropwise to the reaction solution. Stir at room temperature for 24 hours. Excess boron tribromide and boron complexes are poured into a water-ice mixture to hydrolyze and stirred at room temperature for 1 hour. Extracted with diethyl ether, dried over magnesium sulfate, distilled, and dried in vacuo at 70 ° C. to obtain a white crystalline product. Yield: 9.5 g (66%).

[합성예 3]Synthesis Example 3

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌 합성2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene synthesis

500ml 삼구플라스크에 교반기를 장치한 후 질소분위기하에서 세슘플로라이드 1.6g이 용해되어 있는 건조된 디메틸포름아마이드 10mL 용액에 2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 10g이 용해되어 있는 디메틸포름아마이드 80mL를 실린지를 이용해 넣고, 온도를 50℃로 승온한 후 1시간동안 교반 시킨다. 에피클로로하이드린 14.45g을 실린지를 이용해 넣고 70시간동안 반응시킨 후, 물에 붓고, 에틸아세테이트로 유기층을 분리해낸 후 1N 소디움하이드록사이드 수용액에 세척하여 다시 여러번 물로 세척 한다. 분리된 유기층을 마그네슘설페이트로 건조하고 여과한다. 회전 증발기를 이용하여 증류하고, 칼럼을 이용해 생성물을 분리해 상온에서 진공 건조시킨다. 수율: 9.75g (72%).10 ml of 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene was dissolved in a 10 ml solution of dried dimethylformamide in which 1.6 g of cesium fluoride was dissolved in a 500 ml three-necked flask. 80 mL of dimethylformamide was added using a syringe, and the temperature was raised to 50 ° C and stirred for 1 hour. Epichlorohydrin 14.45g using a syringe and reacted for 70 hours, poured into water, the organic layer was separated with ethyl acetate, washed with 1N sodium hydroxide aqueous solution and washed again with water several times. The separated organic layer is dried over magnesium sulfate and filtered. Distillation is carried out using a rotary evaporator, and the product is separated using a column and vacuum dried at room temperature. Yield: 9.75 g (72%).

[합성예 4]Synthesis Example 4

폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌) 고분자 합성Poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene) polymer synthesis

질소 기류 하, 250mL 1구 플라스크에 합성한 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌 8g (30.7mmol)과 테트라하이드로푸란(THF) 40ml에 용해시켜 넣은 후 교반을 한다. 여기에 개시제인 2, 2'-아조비스(2-메틸프로판니트릴)(AIBN) 0.0024g(0.3wt%)를 넣은 후 50℃에서 24시간 중합한다. 점도가 늘었을 때, 노르말 헥산에 붓고, 침전물을 여과하여 상온 진공 건조시키면 흰색분말이 얻어진다. 수율: 6.8g (85%), 굴절률(632nm) : 1.5150.Under nitrogen stream, 8 g (30.7 mmol) of 2, 3, 5, 6-tetrafluoro-4-glycidoxy styrene synthesized in a 250 mL one-necked flask and 40 ml of tetrahydrofuran (THF) were dissolved and stirred. After adding 0.0024g (0.3wt%) of 2, 2'- azobis (2-methylpropanenitrile) (AIBN) which is an initiator, it superposes | polymerizes at 50 degreeC for 24 hours. When the viscosity increased, it was poured into normal hexane, and the precipitate was filtered and dried in vacuo at room temperature to obtain a white powder. Yield: 6.8 g (85%), refractive index (632 nm): 1.5150.

이하, 본 발명을 실시예를 들어 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2,-트리플루오르에틸 메타아크릴레이트 이성분계 고분자 합성Synthesis of 2,3,5,6-tetrafluoro-4-glycidoxystyrene / 2,2,2,2-trifluoroethyl methacrylate bicomponent polymer

질소 기류 하, 250mL 1구 플라스크에 합성한 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌 8g (30.7mmol)과 2, 2, 2-트리플루오르에틸 메타아크릴레이트 13.79g (82mmol)를 테트라하이드로푸란(THF) 100ml에 용해시켜 넣은 후 교반을 한다. 여기에 개시제인 2, 2'-아조비스(2-메틸프로판니트릴)(AIBN) 0.065g(0.3wt%)를 넣은 후 50??에서 24시간 중합한다. 점도가 늘었을 때, 노르말 헥산에 붓고, 여과하여 상온 진공 건조시킨다. 수율: 19.83g (91%), 굴절률(632nm) : 1.45808 g (30.7 mmol) of 2, 3, 5, 6-tetrafluoro-4-glycidoxy styrene and 13.79 g (82 mmol) of 2, 2, 2-trifluoroethyl methacrylate synthesized in a 250 mL one-neck flask under nitrogen stream ) Is dissolved in 100 ml of tetrahydrofuran (THF) and stirred. Here, 0.065 g (0.3 wt%) of 2, 2'-azobis (2-methylpropanenitrile) (AIBN), which is an initiator, was added thereto and then polymerized at 50 ° C. for 24 hours. When the viscosity increased, it was poured into normal hexane, filtered and dried in vacuo at room temperature. Yield: 19.83 g (91%), refractive index (632 nm): 1.4580

[실시예 2]Example 2

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2-트리플루오르에틸 아크릴레이트 이성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, 2-trifluoroethyl acrylate bicomponent polymer

위 고분자의 합성 방법은 실시예 1과 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸 아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 1. 2, 2, 2-trifluoroethyl acrylate was used instead of 2, 2, 2-trifluoroethyl methacrylate.

[실시예 3 ~ 7][Examples 3 to 7]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/메타아크릴레이트 이성분계 고분자2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / methacrylate bicomponent polymer

위 고분자의 합성 방법은 실시예 1과 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 3, 3-테트라플루오르프로필 메타아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸 메타아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필 메타아크릴레이트, 2-하이드록시 에틸 메타아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐 메타아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 1. 2, 2, 3, 3-tetrafluoropropyl methacrylate, 1H, 1H, 2H, 2H-perfluorooctyl methacrylate, 2, 2, 3, instead of 2, 2, 2-trifluoroethyl methacrylate 3, 3-pentafluoropropyl methacrylate, 2-hydroxy ethyl methacrylate, 2, 3, 4, 5, 6-pentafluorophenyl methacrylate were used.

[실시예 8 ~ 12][Examples 8 to 12]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/아크릴레이트 이성분계 고분자2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / acrylate bicomponent polymer

위 고분자의 합성 방법은 실시예 2와 동일하다. 2, 2, 2-트리플루오르에틸 아크릴레이트 대신에 2, 2, 3, 3-테트라플루오르프로필 아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸 아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필 아크릴레이트, 2-하이드록시에틸 아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐 아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 2. 2, 2, 3, 3-tetrafluoropropyl acrylate, 1H, 1H, 2H, 2H-perfluorooctyl acrylate, 2, 2, 3, 3, 3 instead of 2, 2, 2-trifluoroethyl acrylate -Pentafluoropropyl acrylate, 2-hydroxyethyl acrylate, 2, 3, 4, 5, 6-pentafluorophenyl acrylate was used.

[실시예 13 ~ 18][Examples 13 to 18]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/α-플루오르아크릴레이트 이성분계 고분자2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / α-fluoroacrylate bicomponent polymer

위 고분자의 합성 방법은 실시예 2와 동일하다. 2, 2, 2-트리플루오르에틸 아크릴레이트 대신에 2, 2, 2-트리플루오르에틸-α-플루오르아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필-α-플루오르아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸-α-플루오르아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필-α-플루오르아크릴레이트, 2-하이드록시에틸-α-플루오르아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐-α-플루오르아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 2. 2, 2, 2-trifluoroethyl-α-fluoroacrylate, 2, 2, 3, 3-tetrafluoropropyl-α-fluoroacrylate, 1H, 1H instead of 2, 2, 2-trifluoroethyl acrylate , 2H, 2H-perfluorooctyl-α-fluoroacrylate, 2, 2, 3, 3, 3-pentafluoropropyl-α-fluoroacrylate, 2-hydroxyethyl-α-fluoroacrylate, 2, 3 , 4, 5, 6-pentafluorophenyl-α-fluoroacrylate was used.

[실시예 19 ~ 24][Examples 19 to 24]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/α-클로로아크릴레이트 이성분계 고분자2, 3, 5, 6-tetrafluoro-4-glycidoxy styrene / α-chloroacrylate bicomponent polymer

위 고분자의 합성 방법은 실시예 2와 동일하다. 2, 2, 2-트리플루오르에틸 아크릴레이트 대신에 2, 2, 2-트리플루오르에틸-α-클로로아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필-α-클로로아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸-α-클로로아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필-α-클로로아크릴레이트, 2-하이드록시에틸-α-클로로아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐-α-클로로아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 2. 2, 2, 2-trifluoroethyl-α-chloroacrylate, 2, 2, 3, 3-tetrafluoropropyl-α-chloroacrylate, 1H, 1H instead of 2, 2, 2-trifluoroethyl acrylate , 2H, 2H-perfluorooctyl-α-chloroacrylate, 2, 2, 3, 3, 3-pentafluoropropyl-α-chloroacrylate, 2-hydroxyethyl-α-chloroacrylate, 2, 3 , 4, 5, 6-pentafluorophenyl-α-chloroacrylate was used.

[실시예 25]Example 25

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2-트리플루오르에틸 메타아크릴레이트/2, 3, 4, 5, 6-펜타플루오르스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, 2-trifluoroethyl methacrylate / 2, 3, 4, 5, 6-pentafluorostyrene

질소 기류 하, 250mL 1구 플라스크에 합성한 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌 5g (19.21mmol)과 , 2, 3, 4, 5, 6-펜타플루오르스티렌 6.8g (35.29mmol), 2, 2, 2-트리플루오르에틸 메타아크릴레이트 4.8 g (28.65mmol)를 테트라하이드로푸란(THF) 40ml에 용해시켜 넣은 후 교반을 한다. 여기에 개시제인 2, 2'-아조비스(2-메틸프로판니트릴)(AIBN) 0.048g(0.3wt%)를 넣은 후 50℃에서 24시간 중합한다. 점도가 늘었을 때, 노르말 헥산에 붓고, 침전물을 여과하여 상온 진공 건조시키면 흰색분말이 얻어진다. 수율: 15.2g (91%), 굴절률(632nm) : 1.4583.5 g (19.21 mmol) of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene synthesized in a 250 mL one-neck flask under nitrogen stream, and 6.8 g of 2, 3, 4, 5, 6-pentafluorostyrene (35.29 mmol), 2, 2, and 2-trifluoroethyl methacrylate 4.8 g (28.65 mmol) are dissolved in 40 ml of tetrahydrofuran (THF), followed by stirring. Here, 0.048 g (0.3 wt%) of 2, 2'-azobis (2-methylpropanenitrile) (AIBN), which is an initiator, was added thereto and then polymerized at 50 ° C for 24 hours. When the viscosity increased, it was poured into normal hexane, and the precipitate was filtered and dried in vacuo at room temperature to obtain a white powder. Yield: 15.2 g (91%), refractive index (632 nm): 1.4583.

[실시예 26]Example 26

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2-트리플루오르에틸 아크릴레이트/2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, 2-trifluoroethyl acrylate / 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene

질소 기류 하, 250mL 1구 플라스크에 합성한 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌 5g (19.21mmol)과, 2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 5.06g (24.08mmol), 2, 2, 2-트리플루오르에틸 메타아크릴레이트 10.02 g (59.60mmol)를 테트라하이드로푸란(THF) 50ml에 용해시켜 넣은 후 교반을 한다. 여기에 개시제인 2, 2'-아조비스(2-메틸프로판니트릴)(AIBN) 0.06g(0.3wt%)를 넣은 후 50??에서 24시간 중합한다. 점도가 늘었을 때, 노르말 헥산에 붓고, 침전물을 여과하여 상온 진공 건조시키면 흰색 분말이 얻어진다. 수율: 18.51g (92%), 굴절률(632nm) : 1.4650.5 g (19.21 mmol) of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene synthesized in a 250 mL 1-neck flask under nitrogen stream, and 2, 3, 5, 6-tetrafluoro-4-hydroxy 5.06 g (24.08 mmol) of styrene, 10.02 g (59.60 mmol) of 2, 2, 2-trifluoroethyl methacrylate are dissolved in 50 ml of tetrahydrofuran (THF), followed by stirring. Here, 0.06 g (0.3 wt%) of 2, 2'-azobis (2-methylpropanenitrile) (AIBN), which is an initiator, was added thereto, followed by polymerization at 50 ° C. for 24 hours. When the viscosity increased, it was poured into normal hexane, and the precipitate was filtered and dried in vacuo at room temperature to obtain a white powder. Yield: 18.51 g (92%), refractive index (632 nm): 1.4650.

[실시예 27 ~ 31][Examples 27 to 31]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/메타아크릴레이트/2, 3, 4, 5, 6-펜타플루오르스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / methacrylate / 2, 3, 4, 5, 6-pentafluorostyrene terpolymer

위 고분자의 합성 방법은 실시예 25와 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 3, 3-테트라플루오르프로필 메타아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸 메타아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필 메타아크릴레이트, 2-하이드록시 에틸 메타아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐 메타아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 25. 2, 2, 3, 3-tetrafluoropropyl methacrylate, 1H, 1H, 2H, 2H-perfluorooctyl methacrylate, 2, 2, 3, instead of 2, 2, 2-trifluoroethyl methacrylate 3, 3-pentafluoropropyl methacrylate, 2-hydroxy ethyl methacrylate, 2, 3, 4, 5, 6-pentafluorophenyl methacrylate were used.

[실시예 32 ~ 37][Examples 32 to 37]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/아크릴레이트/2, 3, 4, 5, 6-펜타플루오르스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / acrylate / 2, 3, 4, 5, 6-pentafluorostyrene terpolymer

위 고분자의 합성 방법은 실시예 25와 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸 아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필 아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸 아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필 아크릴레이트, 2-하이드록시에틸 아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐 아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 25. 2, 2, 2-trifluoroethyl acrylate, 2, 2, 3, 3-tetrafluoropropyl acrylate, 1H, 1H, 2H, 2H-perfluoro instead of 2, 2, 2-trifluoroethyl methacrylate Octyl acrylate, 2, 2, 3, 3, 3-pentafluoropropyl acrylate, 2-hydroxyethyl acrylate, 2, 3, 4, 5, 6-pentafluorophenyl acrylate were used.

[실시예 38 ~ 43][Examples 38 to 43]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/α-플루오르아크릴레이트/2, 3, 4, 5, 6-펜타플루오르스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / α-fluoroacrylate / 2, 3, 4, 5, 6-pentafluorostyrene terpolymer

위 고분자의 합성 방법은 실시예 25와 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸-α-플루오르아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필-α-플루오르아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸-α-플루오르아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필-α-플루오르아크릴레이트, 2-하이드록시에틸-α-플루오르아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐-α-플루오르아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 25. 2, 2, 2-trifluoroethyl-α-fluoroacrylate, 2, 2, 3, 3-tetrafluoropropyl-α-fluoroacrylate, 1H, instead of 2, 2, 2-trifluoroethyl methacrylate 1H, 2H, 2H-perfluorooctyl-α-fluoroacrylate, 2, 2, 3, 3, 3-pentafluoropropyl-α-fluoroacrylate, 2-hydroxyethyl-α-fluoroacrylate, 2, 3, 4, 5, 6-pentafluorophenyl-α-fluoroacrylate was used.

[실시예 43 ~ 48][Examples 43 to 48]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/α-클로로아크릴레이트/2, 3, 4, 5, 6-펜타플루오르스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / α-chloroacrylate / 2, 3, 4, 5, 6-pentafluorostyrene terpolymer

위 고분자의 합성 방법은 실시예 25와 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸-α-클로로아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필-α-클로로아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸-α-클로로아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필-α-클로로아크릴레이트, 2-하이드록시에틸-α-클로로아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐-α-클로로아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 25. 2, 2, 2-trifluoroethyl-α-chloroacrylate, 2, 2, 3, 3-tetrafluoropropyl-α-chloroacrylate, 1H, instead of 2, 2, 2-trifluoroethyl methacrylate 1H, 2H, 2H-perfluorooctyl-α-chloroacrylate, 2, 2, 3, 3, 3-pentafluoropropyl-α-chloroacrylate, 2-hydroxyethyl-α-chloroacrylate, 2, 3, 4, 5, 6-pentafluorophenyl-α-chloroacrylate was used.

[실시예 49 ~ 53][Examples 49 to 53]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/메타아크릴레이트/2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / methacrylate / 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene terpolymer

위 고분자의 합성 방법은 실시예 26과 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 3, 3-테트라플루오르프로필 메타아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸 메타아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필 메타아크릴레이트, 2-하이드록시 에틸 메타아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐 메타아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 26. 2, 2, 3, 3-tetrafluoropropyl methacrylate, 1H, 1H, 2H, 2H-perfluorooctyl methacrylate, 2, 2, 3, instead of 2, 2, 2-trifluoroethyl methacrylate 3, 3-pentafluoropropyl methacrylate, 2-hydroxy ethyl methacrylate, 2, 3, 4, 5, 6-pentafluorophenyl methacrylate were used.

[실시예 54 ~ 59][Examples 54 to 59]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/아크릴레이트/2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / acrylate / 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene tertiary polymer

위 고분자의 합성 방법은 실시예 26과 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸 아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필 아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸 아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필 아크릴레이트, 2-하이드록시에틸 아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐 아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 26. 2, 2, 2-trifluoroethyl acrylate, 2, 2, 3, 3-tetrafluoropropyl acrylate, 1H, 1H, 2H, 2H-perfluoro instead of 2, 2, 2-trifluoroethyl methacrylate Octyl acrylate, 2, 2, 3, 3, 3-pentafluoropropyl acrylate, 2-hydroxyethyl acrylate, 2, 3, 4, 5, 6-pentafluorophenyl acrylate were used.

[실시예 60 ~ 65][Examples 60-65]

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/α-플루오르아크릴레이트/2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / α-fluoroacrylate / 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene tertiary polymer

위 고분자의 합성 방법은 실시예 26과 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸-α-플루오르아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필-α-플루오르아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸-α-플루오르아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필-α-플루오르아크릴레이트, 2-하이드록시에틸-α-플루오르아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐-α-플루오르아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 26. 2, 2, 2-trifluoroethyl-α-fluoroacrylate, 2, 2, 3, 3-tetrafluoropropyl-α-fluoroacrylate, 1H, instead of 2, 2, 2-trifluoroethyl methacrylate 1H, 2H, 2H-perfluorooctyl-α-fluoroacrylate, 2, 2, 3, 3, 3-pentafluoropropyl-α-fluoroacrylate, 2-hydroxyethyl-α-fluoroacrylate, 2, 3, 4, 5, 6-pentafluorophenyl-α-fluoroacrylate was used.

[실시예 66 ~ 71]EXAMPLE 66-71

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/α-클로로아크릴레이트/2, 3, 5, 6-테트라플루오르-4-하이드록시스티렌 삼성분계 고분자 합성Synthesis of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / α-chloroacrylate / 2, 3, 5, 6-tetrafluoro-4-hydroxystyrene tertiary polymer

위 고분자의 합성 방법은 실시예 26과 동일하다. 2, 2, 2-트리플루오르에틸 메타아크릴레이트 대신에 2, 2, 2-트리플루오르에틸-α-클로로아크릴레이트, 2, 2, 3, 3-테트라플루오르프로필-α-클로로아크릴레이트, 1H, 1H, 2H, 2H-퍼플루오르옥틸-α-클로로아크릴레이트, 2, 2, 3, 3, 3-펜타플루오르프로필-α-클로로아크릴레이트, 2-하이드록시에틸-α-클로로아크릴레이트, 2, 3, 4, 5, 6-펜타플루오르페닐-α-클로로아크릴레이트를 사용하였다.Synthesis method of the above polymer is the same as in Example 26. 2, 2, 2-trifluoroethyl-α-chloroacrylate, 2, 2, 3, 3-tetrafluoropropyl-α-chloroacrylate, 1H, instead of 2, 2, 2-trifluoroethyl methacrylate 1H, 2H, 2H-perfluorooctyl-α-chloroacrylate, 2, 2, 3, 3, 3-pentafluoropropyl-α-chloroacrylate, 2-hydroxyethyl-α-chloroacrylate, 2, 3, 4, 5, 6-pentafluorophenyl-α-chloroacrylate was used.

[실시예 72]Example 72

폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌)의 열 경화Thermal curing of poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene)

합성예 4에서 합성한 폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌) 5g을 시클로헥사논에 30wt%로 용해한 후, 0.2㎛ 필터를 사용하여 녹지 않는 고형물을 제거한 후, 웨이퍼에 2000rpm에서 30초 동안 스핀 코팅하였다. 코팅된 웨이퍼를 진공 오븐에 넣고, 50℃에서 30분, 100℃에서 30분, 150도에서 1시간, 250도에서 10분 정도로 진공 건조하였다. 130∼180℃범위에서 대부분의 에폭시 치환기가 가교결합을 형성하여 열경화성의 고분자 필름을 만들게 된다. 굴절률은 1.515, 복굴절률은 0.0001, 1550nm에서 0.15dB/cm 광손실, 유리전이온도(Tg)는 관찰되지 않고, 열분해온도(Td)가 400℃이상을 나타내는 내열성이 우수한 고분자 필름을 얻었다.After dissolving 5 g of poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene) synthesized in Synthesis Example 30 at 30wt% in cyclohexanone, using a 0.2 μm filter to remove insoluble solids The wafer was spin coated at 2000 rpm for 30 seconds. The coated wafers were placed in a vacuum oven and vacuum dried for 30 minutes at 50 ° C., 30 minutes at 100 ° C., 1 hour at 150 ° C., and 10 minutes at 250 ° C. Most of the epoxy substituents in the range of 130 ~ 180 ℃ to form a crosslinking to make a thermosetting polymer film. 0.15 dB / cm optical loss and glass transition temperature (Tg) were not observed at a refractive index of 1.515 and a birefringence of 0.0001 and 1550 nm, and a polymer film having excellent thermal resistance with a thermal decomposition temperature (Td) of 400 ° C or higher was obtained.

[실시예 73]Example 73

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2,-트리플루오르에틸 메타아크릴레이트 이성분계 고분자의 열 경화Thermosetting of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, 2, 2-trifluoroethyl methacrylate bicomponent polymer

위 고분자 필름의 열경화는 실시예 72와 동일하다. 폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌) 대신에 실시예 1에서 합성한 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2,-트리플루오르에틸 메타아크릴레이트 이성분계 고분자를 사용하였다. 굴절률은 1.4580, 복굴절률은 0.0003, 1550nm에서 0.18dB/cm 광손실, 유리전이온도(Tg)는 관찰되지 않고, 열분해온도(Td)가 350℃이상을 나타내는 내열성이 우수한 고분자 필름을 얻었다.Thermal curing of the polymer film is the same as in Example 72. 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, synthesized in Example 1 instead of poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene) A 2, -trifluoroethyl methacrylate bicomponent polymer was used. At 0.8580 and birefringence at 0.0003 and 1550 nm, 0.18 dB / cm light loss and glass transition temperature (Tg) were not observed, and a polymer film having excellent thermal resistance with a thermal decomposition temperature (Td) of 350 ° C or higher was obtained.

[실시예 74]Example 74

2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2,-트리플루오르에틸 메타아크릴레이트 이성분계 고분자의 열 경화Thermosetting of 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, 2, 2-trifluoroethyl methacrylate bicomponent polymer

위 고분자 필름의 열경화는 실시예 72와 동일하다. 폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌) 대신에 실시예 25에서 합성한 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌/2, 2, 2-트리플루오르에틸 메타아크릴레이트/2, 3, 4, 5, 6-펜타플루오르스티렌 삼성분계 고분자를 사용하였다. 굴절률은 1.4583, 복굴절률은 0.0002, 1550nm에서 0.17dB/cm 광손실, 유리전이온도(Tg)는 관찰되지 않고, 열분해온도(Td)가 350??이상을 나타내는 내열성이 우수한 고분자 필름을 얻었다.Thermal curing of the polymer film is the same as in Example 72. 2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene / 2, 2, synthesized in Example 25 instead of poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene) 2-trifluoroethyl methacrylate / 2, 3, 4, 5, 6-pentafluorostyrene tertiary polymer was used. A polymer film having excellent heat resistance with a refractive index of 1.4583, a birefringence of 0.0002 and 1550 nm having a light loss of 0.17 dB / cm and no glass transition temperature (Tg) was observed and a thermal decomposition temperature (Td) of 350 ° or more was obtained.

[실시예 75]Example 75

폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌)의 자외선 경화UV curing of poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene)

합성예 4에서 합성한 폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌) 5g을 시클로헥사논에 30wt%로 용해하고 광산화 개시제인 KPS-101(금호석유화학제공) 0.05g(1wt%)을 첨가하여 용해시킨다. 0.2㎛ 필터를 사용하여 녹지 않는 고형물을 제거한 후, 웨이퍼에 2000rpm에서 30초 동안 스핀 코팅하였다. 코팅된 웨이퍼를 질소하에서 I-line 파장인 365nm 자외선을 조사하여 고분자 필름을 경화 시켰다. 굴절률은 1.514, 복굴절률은 0.0001, 1550nm에서 0.16dB/cm 광손실, 유리전이온도(Tg)는 관찰되지 않고, 열분해온도(Td)가 380??이상을 나타내는 내열성이 우수한 고분자 필름을 얻었다.5 g of poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene) synthesized in Synthesis Example 4 was dissolved in cyclohexanone at 30 wt% and KPS-101 (provided by Kumho Petrochemical) was prepared as a photooxidation initiator. g (1 wt%) is added to dissolve. After the insoluble solids were removed using a 0.2 μm filter, the wafer was spin coated at 2000 rpm for 30 seconds. The coated wafer was cured by irradiating 365 nm ultraviolet rays of I-line wavelength under nitrogen. The refractive index was 1.514, the birefringence was 0.0001, 1550nm, 0.16dB / cm optical loss and glass transition temperature (Tg) were not observed, and the polymer film excellent in heat resistance which shows the thermal decomposition temperature (Td) of 380 degrees or more was obtained.

여기서 사용된 광개시제는 다음과 같다.Photoinitiators used herein are as follows.

광산화 개시제(KPS-101)Photooxidation Initiator (KPS-101)

[실시예 76]Example 76

열 경화와 자외선 경화Heat curing and UV curing

상기 실시예에서 언급한 모든 고분자 조성물에 대해서 실시예 72~75와 동일하게 열 경화와 자외선 경화를 실시하였다.All the polymer compositions mentioned in the above examples were thermally cured and ultraviolet cured in the same manner as in Examples 72 to 75.

상술한 바와 같이, 본 발명에 따른 단량체는 에폭시 치환기를 가진 불소화 스티렌계 단량체로서 이를 이용하여 이성분계/삼성분계 고분자 화합물을 합성할 수 있으며, 이러한 단량체와 고분자 화합물을 사용하여 광통신 소재로 사용하는 경우 1.41~1.68 (632nm)범위까지 굴절률 제어가 용이하여 광도파로 소자를 구현이 가능하며, 1.43~1.48(632nm) 범위의 굴절률이 갖는 실리카 재료와 혼용하여 이종 재료의 장점을 이용한 적층형 복합소자 구현이 가능한 효과가 있다. As described above, the monomer according to the present invention is a fluorinated styrene-based monomer having an epoxy substituent, which can be used to synthesize a two-component / three-component high molecular compound, and when used as an optical communication material using such a monomer and a high molecular compound It is easy to control the refractive index from 1.41 ~ 1.68 (632nm) to realize the optical waveguide device, and it is possible to realize the laminated composite device using the advantage of heterogeneous materials by mixing with the silica material having the refractive index in the range of 1.43 ~ 1.48 (632nm). It works.

또한, 합성한 고분자 재료의 구조는 가교결합을 형성할 수 있는 에폭시 치환기를 가지고 있어 열적 안정성과 내화학성을 가지고 있고, 광통신 대역폭에서 흡수가 많은 C-H 결합을 C-F, C-Cl 결합으로 치환을 시켜 광손실을 최소화할 수 있다.In addition, the structure of the synthesized polymer material has an epoxy substituent capable of forming a crosslink, and thus has thermal stability and chemical resistance. The optically absorbed CH bonds in the optical communication bandwidth are replaced by CF and C-Cl bonds. The loss can be minimized.

그 뿐만 아니라, 분자 구조적으로 유연성기를 도입하여 비결정성을 증가시킴으로서 투과도를 향상시켜 고분자 사슬의 정렬을 최소화하고 낮은 복굴절률과 낮은 광손실을 가지는 효과가 있는 것이다.In addition, by introducing a flexible group in the molecular structure to increase the amorphousness to improve the transmittance to minimize the alignment of the polymer chain, there is an effect having a low birefringence and low light loss.

그리고, 자외선 경화나 열적 경화 공정이 모두 가능하여 소자에 맞게 공정을 조절할 수가 있는 효과도 있다.In addition, both ultraviolet curing and thermal curing processes are possible, so that the process can be adjusted according to the device.

또한, 본 발명의 고분자 화합물은 광흡수 특성 이외에도 다층박막 형성, 내약품성, 접착력이 우수하므로 광도파로 소자용으로 매우 바람직하게 이용될 수 있다.In addition, the polymer compound of the present invention can be very preferably used for the optical waveguide device because it is excellent in the formation of multilayer thin film, chemical resistance, adhesiveness in addition to the light absorption characteristics.

Claims (5)

다음 화학식 1로 표시되는 2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌 단량체.2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene monomer represented by the following formula (1). [화학식 1][Formula 1] 다음 화학식 2로 표시되는 폴리(2, 3, 5, 6-테트라플루오르-4-글리시독시스티렌)인 고분자 화합물.A polymer compound which is poly (2, 3, 5, 6-tetrafluoro-4-glycidoxystyrene) represented by the following Chemical Formula 2. [화학식 2][Formula 2] 다음 화학식 3으로 표시되는 이성분계 고분자 화합물.A bicomponent high molecular compound represented by the following formula (3). [화학식 3][Formula 3] 상기 화학식 3에서 R1 은 -CH3, -H, -F, -Cl 를 나타내며;R 1 in Formula 3 represents -CH 3 , -H, -F, -Cl; R2R 2 is 을 나타내며, 여기서 P는 1 또는 2이고, n은 1~40의 정수, R은 탄소원자 1~8개를 갖는 알킬렌기, 사슬, 가지 또는 환형구조를 나타내고; x, y는 굴절률에 따라 조성비를 달리할 수 있으며, 각각 서로 관계없이 10 내지 100의 정수를 의미한다.Wherein P is 1 or 2, n is an integer from 1 to 40, R represents an alkylene group, chain, branch or cyclic structure having 1 to 8 carbon atoms; x, y may vary the composition ratio according to the refractive index, each means an integer of 10 to 100 irrespective of each other. 다음 화학식 4로 표시되는 삼성분계 고분자 화합물.Samsung-based polymer compound represented by the following formula (4). [화학식 4][Formula 4] 상기 화학식 4에서 R1, R2, R3는 상기 화학식 3에서 정의한 바와 같으며, a, b, c는 굴절률에 따라 조성비를 달리할 수 있는 것으로서, 각각 서로 관계없이 10 내지 100의 정수를 의미한다.In Formula 4, R 1, R 2, and R 3 are the same as defined in Formula 3, and a, b, and c may vary in composition ratio according to refractive index, and each represents an integer of 10 to 100 regardless of each other. do. 상기 청구항 1 내지 청구항 5 중에서 선택된 화합물로 이루어진 것을 특징으로 하는 광도파로 소자.An optical waveguide device comprising a compound selected from claims 1 to 5.
KR1020030092321A 2003-12-17 2003-12-17 New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials KR100557473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030092321A KR100557473B1 (en) 2003-12-17 2003-12-17 New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030092321A KR100557473B1 (en) 2003-12-17 2003-12-17 New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials

Publications (2)

Publication Number Publication Date
KR20050060639A true KR20050060639A (en) 2005-06-22
KR100557473B1 KR100557473B1 (en) 2006-03-07

Family

ID=37253323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030092321A KR100557473B1 (en) 2003-12-17 2003-12-17 New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials

Country Status (1)

Country Link
KR (1) KR100557473B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338963B1 (en) * 2012-08-06 2013-12-09 주식회사 피피아이 Athermal arrayed waveguide grating
US8716403B2 (en) 2008-12-10 2014-05-06 Electronics And Telecommunications Research Institute Prepolymer prepared by a condensation reaction and a polymer sheet obtained therefrom
KR20160008482A (en) * 2014-07-14 2016-01-22 (주)켐옵틱스 Polystyrenes with high refractive index and a manufacturing method using Reactive epoxy styrene derivatives
JP2020134683A (en) * 2019-02-19 2020-08-31 日本ゼオン株式会社 Resist pattern forming method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716403B2 (en) 2008-12-10 2014-05-06 Electronics And Telecommunications Research Institute Prepolymer prepared by a condensation reaction and a polymer sheet obtained therefrom
US9201169B2 (en) 2008-12-10 2015-12-01 Electronics And Telecommunications Research Institute Compound containing crosslinkable moieties, prepolymer, blend and polymer sheet obtained therefrom, and waveguide for optical interconnection
US9864104B2 (en) 2008-12-10 2018-01-09 Electronics And Telecommunications Research Institute Blend prepared by mixing a prepolymer and a vinyl monomer and a polymer sheet obtained therefrom
KR101338963B1 (en) * 2012-08-06 2013-12-09 주식회사 피피아이 Athermal arrayed waveguide grating
KR20160008482A (en) * 2014-07-14 2016-01-22 (주)켐옵틱스 Polystyrenes with high refractive index and a manufacturing method using Reactive epoxy styrene derivatives
JP2020134683A (en) * 2019-02-19 2020-08-31 日本ゼオン株式会社 Resist pattern forming method

Also Published As

Publication number Publication date
KR100557473B1 (en) 2006-03-07

Similar Documents

Publication Publication Date Title
KR100866817B1 (en) Fluorine-containing compound
KR20050047713A (en) Siloxane monomers containing trifluorovinylether group, sol-gel hybrid polymers prepared by using the siloxane monomers
WO2007088640A1 (en) Condensation products of silicic acid derivatives and optical waveguide devices using the same
US6133472A (en) Fluorinated oxyvinyl compounds and methods of preparing and using same
JP3222476B2 (en) Novel compounds, polymers, resin compositions, non-linear optical components, non-linear optical devices and methods for their production
KR100557473B1 (en) New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials
EP1726581A1 (en) Synthesis of novel monomers containing the Trifluorovinylidene-group and the Cyanato-group and polymers thereof
KR101046835B1 (en) Trisoxetane compound, preparation method thereof, and optical waveguide using the same
Song et al. Novel photocurable multifunctional acrylate monomers containing perfluorinated aromatic units and their copolymers for photonic applications
EP1726607A2 (en) Triazine containing polymers
KR20140103447A (en) Benzylidene phthalimide monomer, method for preparing the same, polymer comprising the same, photoalignment film comprising the same and retardation film comprising the same
US20060094845A1 (en) (Meth)acrylate polymer and non-linear optical device material composition
JP4206371B2 (en) Adhesive composition containing photosensitive polymer and adhesive sheet using the same
KR100243406B1 (en) Perfluorinated poly(arylether) for optical material, its preparation method, and optical material for optical waveguide
US20070004902A1 (en) Triazine Containing Polymers
KR101409339B1 (en) Isosorbide derivative compounds, photocurable composition comprising the same and transparent composite sheet
JP4014369B2 (en) Monomer compounds used in the production of reactive polymer compounds
KR100226442B1 (en) Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same
Kwon et al. Polarizing group attached acrylates and polymers viewing high refractive index
KR100533253B1 (en) Synthesis of 1, 1-Bis(4-hydroxypheny1)-1-(3, 5-bis(trifluoromethy1)-pheny1)-ethane and poly (arylene)et-her using 1,1-Bis(4-hydroxypheny1)-1-(3,5-bis(trifluoromethy1) pyeny1)-ethane
JP4209171B2 (en) Silicon-containing curable polymer composition, optical waveguide device using the same, wiring board, and method for producing silicon-containing curable polymer composition
JP7079941B2 (en) Cross-linked polymer composition comprising an organic nonlinear optical compound
JP4562451B2 (en) Fluorine-containing compound
KR20120030678A (en) Photoactive fluorinated polymer and the coating solution
KR100509197B1 (en) Fluorinated polyarylene ether Compound, Preparing Method of the Same and Optical Waveguide Material Using the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190131

Year of fee payment: 14