KR100226442B1 - Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same - Google Patents

Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same Download PDF

Info

Publication number
KR100226442B1
KR100226442B1 KR1019970054781A KR19970054781A KR100226442B1 KR 100226442 B1 KR100226442 B1 KR 100226442B1 KR 1019970054781 A KR1019970054781 A KR 1019970054781A KR 19970054781 A KR19970054781 A KR 19970054781A KR 100226442 B1 KR100226442 B1 KR 100226442B1
Authority
KR
South Korea
Prior art keywords
polymer
fluorine
formula
polyarylene ether
ethynyl group
Prior art date
Application number
KR1019970054781A
Other languages
Korean (ko)
Other versions
KR19990033424A (en
Inventor
이명현
한선규
이형종
안주헌
원용협
Original Assignee
이계철
한국전기통신공사
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계철, 한국전기통신공사, 정선종, 한국전자통신연구원 filed Critical 이계철
Priority to KR1019970054781A priority Critical patent/KR100226442B1/en
Publication of KR19990033424A publication Critical patent/KR19990033424A/en
Application granted granted Critical
Publication of KR100226442B1 publication Critical patent/KR100226442B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/323Polymers modified by chemical after-treatment with inorganic compounds containing halogens
    • C08G65/3233Molecular halogen
    • C08G65/3236Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyethers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

본 발명은 하기 화학식(1)을 갖는 에티닐기를 갖는 불소 치환 폴리아릴렌 에테르계 고분자, 그의 제조방법 및 이를 사용하는 통상의 방법으로 광도파로형 광소자를 제조하는 방법에 관한 것이다. 본 발명에 따른 상기 고분자는 주쇄 구조에서의 높은 불소 치환으로 분자 진동에 의한 물질 고유의 광통신 영역에서의 광흡수를 배제할 수 있으므로 고분자 광소자의 가장 큰 문제점인 광진행 손실을 크게 낮출 수 있다. 또한 고분자 말단에 열경화성 에티닐기가 도입됨으로 인해 고분자 매트릭스의 열가교를 통한 내화학성이 향상되어 다층 박막 공정이 가능하며, 500℃ 이상에서도 열적으로 분해 및 승화되지 않는 열안정성이 뛰어난 우수한 광도파로형 광소자를 제조할 수 있다.The present invention relates to a fluorine-substituted polyarylene ether-based polymer having an ethynyl group having the formula (1), a method for producing the same, and a method for manufacturing an optical waveguide type optical device by a conventional method using the same. Since the polymer according to the present invention can exclude light absorption in the optical communication region inherent to the material due to molecular vibration by high fluorine substitution in the main chain structure, it is possible to greatly reduce the light traveling loss, which is the biggest problem of the polymer optical device. In addition, the thermosetting ethynyl group is introduced at the end of the polymer to improve the chemical resistance through thermal crosslinking of the polymer matrix to enable a multilayer thin film process, and an excellent optical waveguide-type photonic with excellent thermal stability that does not thermally decompose and sublimate even at temperatures above 500 ° C. The ruler can be manufactured.

(화학식 1)(Formula 1)

Figure pat00001
Figure pat00001

Description

열 경화성 에티닐기를 갖는 불소 치환 폴리아릴렌 에테르, 그의 제조방법 및 그를 이용한 광소자{Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same}Fluorinated poly (arylene ether) containing thermally curable ethynyl group, preparation method, and optical devices using the same}

본 발명은 저 광진행 손실의 열경화성 에티닐기를 갖는 불소 치환 폴리아릴렌에테르 (fluorinated poly(arylene ether): 이하, FPAE라고도 약기함), 그의 제조방법 및 그를 이용한 광소자에 관한 것이다. 본 발명에 따른 광소자용 열경화성 에티닐기를 갖는 불소 치환 폴리아릴렌 에테르는 특히 열광 변조기, 열광 스위치, 빔 분리기, 편광 및 파장 필터, 도파로 열 격자 등의 제조에 유용하게 사용된다.The present invention relates to a fluorinated poly (arylene ether) having a thermosetting ethynyl group of low light propagation loss (hereinafter abbreviated as FPAE), a manufacturing method thereof, and an optical device using the same. Fluorine-substituted polyarylene ethers having a thermosetting ethynyl group for an optical device according to the present invention are particularly useful for the production of thermoelectric modulators, thermoelectric switches, beam splitters, polarization and wavelength filters, waveguide thermal gratings and the like.

평면 도파로형 광소자 및 광 상호연결 (optical interconnection)에 사용되는 고성능 고분자 재료에는 높은 열적 및 환경 안정성, 1.3 및1.55 mm파장에서의 저 광진행 손실, 미세한 굴절율 조절성, 다양한 기판의 사용 가능성, 적층성, 치수 유연성, 미세 광부품과의 용이한 정렬, 근본적인 저가 기술이 크게 요구된다. 그 중 가장 중요한 광손실 문제를 해결하기 위한 방법으로 C-H 결합을 무거운 원소인 중수소나 불소로 치환한, 즉, C-D 혹은 C-F결합으로 치환한 고분자를 이용하여 적외 흡수 파장을 장파장으로 이동시켜 원하는 파장대에서의 흡수를 최소화하는 것을 들 수 있다. 또한, S. Imamura, R. Yoshimara, T. Izawa (Electronics Letters, 27, 1342, 1991)는 평면 도파로형 광소자 물질로 기존의 PMMA를 사용하거나 중수소화된 MMA와 중수소화된 과불화 메타크릴레이트 (deuterated perfluoro methacrylate ) 단량체를 여러 조성비로 공중합하여 굴절율이 잘 조절된 물질을 클래딩 및 코아로 이용하여 광손실이 1.3 mm에서 0.08dB/cm로 아주 우수한 저 광손실 광소자를 구현한 바 있다. 그러나 PMMA계는 Tg가 100oC 정도로 열안정성이 떨어진다. 또한 T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto (Electronics Letters, 29 (3) 269, 1993)는 내열성, 가공성이 뛰어난 다양한 종류의 과불화폴리이미드 (perfluorinated polyimides)가 개발한 바 있지만, 과불화폴리이미드의 경우, 큰 복굴절로 인해 편광 독립이 어렵고, 비교적 큰 흡습성으로 인해 광손실이 나타난다. 한편, L. ELdada, C. Xu, K.M.T.Stengel, L.W.Shakletter, J.T. Yardle, (J. Lightwave Technol., 14(7), 1704, 1996)은 UV-경화성 불화 아크릴레이트 (UV-curable fluorinated acrylate)를 이용한 광소자를 발표하였다. 이 물질은 1.3, 1.55 mm에서의 광손실이 각각 0.03, 0.05 dB/cm로 거의 실리카의 광손실에 필적할 수준에 이르렀으며 굴절율을 1.3에서 1.6까지 연속적으로 조절 가능하고, 복굴절이 0.0008정도로 편광 독립되었다. 그 외에 A.A.Goodwin, F.W.Mercer, M.T.McKenzie (Macromolecules, 30, 2767, 1997)는 반도체 절연용 저유전 물질로 개발된 불소 치환 폴리아릴렌에테르의 합성 및 물성 결과를 보고한 바 있다. 이 물질은 우수한 열적, 기계적 특성, 저흡습성 등으로 인하여 잠재적인 우수한 광소자로서의 응용 가능성을 가지고 있으나 내화학성이 아주 약하여 다층 박막에 의한 광소자 제작이 불가능하다.High performance polymer materials used for planar waveguide optical devices and optical interconnections include high thermal and environmental stability, low light propagation loss at 1.3 and 1.55 mm wavelengths, fine refractive index control, availability of various substrates, and stacking. There is a great need for sex, dimensional flexibility, easy alignment with fine optical components, and fundamental low cost technology. In order to solve the most important light loss problem, the infrared absorption wavelength is shifted to the long wavelength by using CH polymer substituted with heavy element deuterium or fluorine, that is, CD or CF bond. Minimizing the absorption of water. In addition, S. Imamura, R. Yoshimara, T. Izawa ( Electronics Letters , 27, 1342, 1991) are planar waveguide optical device materials using conventional PMMA or deuterated MMA and deuterated perfluorinated methacrylates. A copolymer with deuterated perfluoro methacrylate monomers was used in various composition ratios to realize a very low light loss optical device with excellent light loss from 1.3 mm to 0.08 dB / cm using cladding and cores. However, PMMA system is poor in thermal stability as Tg is about 100 o C. In addition, T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto ( Electronics Letters , 29 (3) 269, 1993) have been developed by various types of perfluorinated polyimides with excellent heat resistance and processability. In the case of, perfluorinated polyimide, polarization independence is difficult due to large birefringence, and light loss occurs due to relatively large hygroscopicity. On the other hand, L. ELdada, C. Xu, KMTStengel, LWShakletter, JT Yardle, ( J. Lightwave Technol. , 14 (7), 1704, 1996) describe the use of UV-curable fluorinated acrylates. Now announced. This material has a light loss of 1.3 and 1.55 mm, respectively, 0.03 and 0.05 dB / cm, which is almost comparable to that of silica, and its refractive index can be continuously adjusted from 1.3 to 1.6, and its birefringence is about 0.0008. It became. In addition, AAGoodwin, FWMercer and MTMcKenzie ( Macromolecules , 30, 2767, 1997) reported the synthesis and physical properties of fluorine-substituted polyarylene ethers developed as low dielectric materials for semiconductor insulation. This material has potential as an excellent optical device due to its excellent thermal, mechanical properties, low hygroscopicity, etc., but its chemical resistance is so weak that it is impossible to manufacture an optical device using a multilayer thin film.

일반적으로 광소자용 고분자 물질에는 저 광진행 손실, 높은 열안정성, 낮은 복굴절 및 내화학성이 요구된다. 그러나, 기존의 광소자용 고분자는 광진행 손실이 높고 열안정성과 내화학성이 낮아 이를 개선해야 할 필요가 있다. 본 발명은 물질 고유의 광흡수를 배제하고 열경화를 통하여 높은 열안정성과 내화학성을 실현함으로써 상술한 종래기술의 단점을 갖지 않으면서, 저 광진행 손실의 광소자 제작이 가능한, 광소자용 고분자 물질을 제공하는 것을 주요 목적으로 한다.In general, polymer materials for optical devices require low light propagation loss, high thermal stability, low birefringence, and chemical resistance. However, existing polymers for optical devices have a high optical progression loss, low thermal stability and chemical resistance, and thus need to be improved. The present invention eliminates the inherent light absorption of the material and realizes high thermal stability and chemical resistance through thermal curing, thereby making it possible to manufacture an optical device having a low light propagation loss without having the disadvantages of the prior art described above. The main purpose is to provide.

상기 목적을 실현하기 위해 본 발명에서는 광흡수의 근본 원인인 고분자의 C-H 결합을 C-F 결합으로 치환하여 물질 고유의 광흡수를 배제하고, 고분자 말단에 도입한 에티닐기의 열경화를 통해 고분자 매트릭스를 가교시킴으로써 높은 열안정성과 내화학성을 실현하였다. 다음에 본 발명을 보다 상세히 설명한다.In order to realize the above object, in the present invention, the CH bond of the polymer, which is the root cause of light absorption, is replaced with CF bond to exclude the inherent light absorption of the material, and crosslinks the polymer matrix through thermosetting of the ethynyl group introduced at the polymer terminal. This achieves high thermal stability and chemical resistance. Next, the present invention will be described in more detail.

본 발명에 따른 하기 화학식 (1)의 열경화성 에티닐기를 갖는 불소 치환 폴리아릴렌에테르 고분자 유도체는 먼저 데카풀루오로바이페닐과 다양한 치환기를 갖는 방향족 디올을 열축중합에 의하여 불소 치환 폴리아릴렌에테르를 합성한 후 이 고분자와 에티닐 치환 페놀 유도체를 반응시킴으로써 제조한다.The fluorine-substituted polyarylene ether polymer derivative having a thermosetting ethynyl group of the following general formula (1) according to the present invention is first subjected to fluorosubstituted polyarylene ether by thermal condensation polymerization of decapulurobiphenyl and aromatic diols having various substituents. After synthesis, the polymer is prepared by reacting an ethynyl substituted phenol derivative.

Figure pat00002
Figure pat00002

본 발명을 좀 더 구체적으로 설명하면 먼저 데카풀루오로바이페닐과 다양한 치환기를 갖는 방향족 디올을 여러가지 몰비로 조절한 후 K2CO3존재하에서100 ~ 180℃의 고온에서 열축중합 반응시킴으로써 고분자 말단에 데카풀루오로바이페닐기가 형성되도록 한다. 그 후 이 폴리머와 에티닐 페놀 유도체를 역시 K2CO3존재하에서100 ~ 180℃의 고온에서 불소 치환 반응에 의하여 고분자 말단에 에티닐기가 되도록 합성한다. 얻어진 최종 고분자를 적절한 용매에 녹여 원하는 기판에 스핀 코팅한 후 열처리하여 최종 열경화된 고분자를 얻는다.The present invention will be described in more detail. First, decapulurobibiphenyl and aromatic diols having various substituents are adjusted at various molar ratios, and then thermally polymerized at a high temperature of 100 to 180 ° C. in the presence of K 2 CO 3 . Allow decapulurobiphenyl groups to form. Thereafter, the polymer and the ethynyl phenol derivative are synthesized so as to be an ethynyl group at the terminal of the polymer by a fluorine substitution reaction at a high temperature of 100 to 180 ° C. in the presence of K 2 CO 3 . The final polymer obtained is dissolved in a suitable solvent and spin-coated on a desired substrate, followed by heat treatment to obtain a final thermoset polymer.

다음의 실시예는 본 발명을 좀더 구체적으로 설명하는 것이지만, 본 발명의 범주를 이에 한정하는 것은 아니다.The following examples further illustrate the invention, but do not limit the scope of the invention thereto.

실시예 1Example 1

열경화성 에티닐기의 합성Synthesis of Thermosetting Ethinyl Group

(가) 4-요오도페닐 아세테이트의 합성:(A) Synthesis of 4-iodophenyl acetate:

100 mL 3구 플라스크에 5 g (22.7 mmol)의 4-요오도페놀과 피리딘 2.12 g (27.3 mmol)을 넣고 완전히 녹였다. 이 반응 용액에 2.78 g (27.3 mmol)의 아세트산 무수물을 적하하였다. 반응 온도를 80℃로 올리고 4 시간 동안 교반하였다. 그 후 반응 온도를 내리고 150 mL의 물에 부었다. 반응 혼합물을 메틸렌 클로라이드로 추출한 후 유기층을 무수 MgSO4로 건조한 다음 용제를 제거하였다. 얻어진 결과물을 진공 증류하여 정제하였다. 수율 = 97 %. Bp = 72oC/0.1mmHg.1H-NMR(CDCl3) δ 2.27(s, 3H), 6.86(d, 2H), 7.68(d, 2H).5 g (22.7 mmol) of 4-iodophenol and 2.12 g (27.3 mmol) of pyridine were completely dissolved in a 100 mL three neck flask. 2.78 g (27.3 mmol) of acetic anhydride was added dropwise to the reaction solution. The reaction temperature was raised to 80 ° C. and stirred for 4 hours. The reaction temperature was then lowered and poured into 150 mL of water. After the reaction mixture was extracted with methylene chloride, the organic layer was dried over anhydrous MgSO 4 and then the solvent was removed. The resulting product was purified by vacuum distillation. Yield = 97%. Bp = 72 o C / 0.1 mmHg. 1 H-NMR (CDCl 3 ) δ 2.27 (s, 3H), 6.86 (d, 2H), 7.68 (d, 2H).

(나) 4-페닐에티닐 페놀(PEP)의 합성:(B) Synthesis of 4-phenylethynyl phenol (PEP):

50 mL 3구 플라스크에 4.05 g (15.5 mmol)의 4-요오도페닐 아세테이트와 0.066 g (0.25 mmol)의 트리페닐포스핀을 넣고 7 mL의 DMAc를 첨가하였다. 이 반응 용기에 1.89 g (18.5 mmol)의 페닐아세틸렌을 첨가한 후 0.034 g (0.048 mmol)의 PdCl2(PPh3)2와 트리에틸아민 7 mL를 넣었다. 반응 온도를 60℃로 올린 다음 0.013 g (0.068 mmol)의 CuI와 트리에틸아민 10 mL를 넣고 반응 온도를 80℃로 올린 후 24 시간 동안 교반하였다. 그 후 온도를 내리고 반응 중 생성된 고체를 여과하여 버리고 트리에틸아민을 제거하였다. 여액을 염산 용액에 침전시켜 생성된 고체를 여과하여 건조한 후 메탄올로 재결정시켰다. 얻어진 결과물을 40 mL THF와 40 mL 메탄올에 녹이고 이 반응 혼합물에 1.24 g (31 mmol)의 수산화나트륨을 20 mL 물에 녹여 첨가하였다. 그 후 온도를 900C로 올리고 12 시간 교반하였다. 다시후 반응 온도를 내리고 150 mL의 염산 용액에 부었다. 반응 혼합물을 메틸렌 클로라이드로 추출한 후 유기층을 무수 MgSO4로 건조하고 나서 용제를 제거하였다. 얻어진 결과물을 크로마토그라피 (전개액, 헥산:에틸아세테이트=3:1)를 이용하여 정제한다. 수율 = 65 %.1H-NMR(CDCl3) δ 5.18(s, 1H), 6.61(d, 2H), 7.34(m, 3H), 7.43(m, 2H), 7.52(d, 2H).13C-NMR(CDCl3) δ 88.07, 89.21 (etynyl), 115.5, 115.6, 123.5, 127.97, 128.30, 131.4, 133.26, 155.6 (phenyl).In a 50 mL three neck flask, 4.05 g (15.5 mmol) of 4-iodophenyl acetate and 0.066 g (0.25 mmol) of triphenylphosphine were added, and 7 mL of DMAc was added thereto. 1.89 g (18.5 mmol) of phenylacetylene was added to the reaction vessel, followed by addition of 0.034 g (0.048 mmol) of PdCl 2 (PPh 3 ) 2 and 7 mL of triethylamine. The reaction temperature was raised to 60 ° C., 0.013 g (0.068 mmol) of CuI and 10 mL of triethylamine were added thereto, and the reaction temperature was raised to 80 ° C. and stirred for 24 hours. The temperature was then lowered and the solid produced during the reaction was filtered off to remove triethylamine. The filtrate was precipitated in hydrochloric acid solution, and the resulting solid was filtered, dried and recrystallized from methanol. The resulting product was dissolved in 40 mL THF and 40 mL methanol, and 1.24 g (31 mmol) of sodium hydroxide was added to 20 mL of water in the reaction mixture. The temperature was then raised to 90 0 C and stirred for 12 hours. After again lowering the reaction temperature and poured into 150 mL of hydrochloric acid solution. The reaction mixture was extracted with methylene chloride and the organic layer was dried over anhydrous MgSO 4 and then the solvent was removed. The resulting product is purified using chromatography (eluent, hexane: ethyl acetate = 3: 1). Yield = 65%. 1 H-NMR (CDCl 3 ) δ 5.18 (s, 1H), 6.61 (d, 2H), 7.34 (m, 3H), 7.43 (m, 2H), 7.52 (d, 2H). 13 C-NMR (CDCl 3 ) δ 88.07, 89.21 (etynyl), 115.5, 115.6, 123.5, 127.97, 128.30, 131.4, 133.26, 155.6 (phenyl).

실시예 2Example 2

다양한 몰비로 말단에 데카풀루오로바이페닐기를 갖는 고분자의 합성Synthesis of Polymer Having Decapulurobiphenyl Group at Terminals in Various Molar Ratios

(가) FPAE 10(중합도) 중합:(A) FPAE 10 (polymerization) polymerization:

딘 스탁 트랩(Dean Stark trap)과 환류 콘덴서가 갖추어진 100 mL 3구 플라스크에 6.074 g (17.997 mmol)의 데카풀루오로바이페닐과 5.0 g (14.72 mmol)의 4,4'-(헥사풀로우로이소프로필리덴)디페놀 (6FBPA)를 넣고 112 mL의 DMAc 용매로 완전히 녹였다. 이 반응 혼합물에 11.2 mL의 벤젠을 첨가한 후 딘 스탁 트랩에도 벤젠을 채웠다. 이 반응 용기에 6.10 g의 K2CO3를 첨가한 후 반응 온도를 120℃로 올리고 4 시간 동안 교반하였다. 그 후 온도를 내리고 반응 혼합물을 500 mL NaCl이 용해된 물에 침전시켰다. 생성된 고분자를 여과하고 연속적으로 물로 씻어주었다. 얻어진 고분자를 80℃ 진공 오븐에서 건조하였다.1H-NMR(CDCl3) δ 7.05(d, 4H), 7.41(d, 4H).In a 100 mL three-necked flask equipped with Dean Stark trap and reflux condenser, 6.074 g (17.997 mmol) of decapulurobibiphenyl and 5.0 g (14.72 mmol) of 4,4 '-(hexafullow) Loisopropylidene) diphenol (6FBPA) was added and completely dissolved in 112 mL of DMAc solvent. 11.2 mL of benzene was added to the reaction mixture, followed by filling the Dean Stock Trap with benzene. 6.10 g of K 2 CO 3 was added to the reaction vessel, and the reaction temperature was raised to 120 ° C. and stirred for 4 hours. The temperature was then lowered and the reaction mixture precipitated in 500 mL of NaCl dissolved water. The resulting polymer was filtered and washed successively with water. The obtained polymer was dried in an 80 ° C. vacuum oven. 1 H-NMR (CDCl 3 ) δ 7.05 (d, 4H), 7.41 (d, 4H).

(나) FPAE20 중합:(B) FPAE20 polymerization:

5.492 g (16.27 mmol)의 데카풀루오로바이페닐과 5.0 g (14.72 mmol)의 6FBPA, 그리고 6.10 g의 K2CO3를 사용한 것 외에는 실시예2의 (가)와 동일한 조건으로 반응시켰다.The reaction was carried out under the same conditions as in (a) of Example 2 except that 5.492 g (16.27 mmol) of decapulurobiphenyl, 5.0 g (14.72 mmol) of 6FBPA, and 6.10 g of K 2 CO 3 were used.

(다) FPAE40 중합:(C) FPAE40 polymerization:

5.0 g (14.97 mmol)의 데카풀루오로바이페닐과 4.786 g (14.234 mmol)의 6FBPA, 그리고 5.90 g의 K2CO3를 사용한 것 외에는 실시예2의 (가)와 동일한 조건으로 반응시켰다.The reaction was carried out under the same conditions as in Example 2 (a) except that 5.0 g (14.97 mmol) of decapulurobiphenyl, 4.786 g (14.234 mmol) of 6FBPA, and 5.90 g of K 2 CO 3 were used.

실시예 3Example 3

실시예 2에서 합성한 고분자에 실시예 1에서 합성한 PEP를 말단기로 도입하는 예Example of introducing the end group with the PEP synthesized in Example 1 to the polymer synthesized in Example 2

(가) FPAE10-PEP의 합성:(A) Synthesis of FPAE10-PEP:

딘 스탁 트랩과 환류 콘덴서가 갖추어진 50 mL 3구 플라스크에 1 g (0.287 mmol)의 FPAE10과 0.167 g (0.861 mmol)의 PEP를 넣고 9.8 mL의 DMAc 용매로 완전히 녹였다. 이 반응 혼합물에 1.0 mL의 벤젠을 첨가한 후 딘 스탁 트랩에도 벤젠을 채웠다. 이 반응 용기에 0.178 g (1.29 mmol)의 K2CO3를 첨가한 후 반응 온도를 120℃로 올리고 4 시간 동안 교반하였다. 그 후 온도를 내리고 반응 혼합물을 200 mL NaCl이 용해된 물에 침전시켰다. 생성된 고분자를 여과하고 연속적으로 물로 씻어주었다. 얻어진 고분자를 80℃ 진공 오븐에서 건조하였다. 수율 95%,1 g (0.287 mmol) of FPAE10 and 0.167 g (0.861 mmol) of PEP were added to a 50 mL three necked flask equipped with a Dean Stark trap and a reflux condenser and completely dissolved in 9.8 mL of DMAc solvent. After adding 1.0 mL of benzene to the reaction mixture, benzene was also charged to the Dean stock trap. 0.178 g (1.29 mmol) of K 2 CO 3 was added to the reaction vessel, and the reaction temperature was raised to 120 ° C. and stirred for 4 hours. The temperature was then lowered and the reaction mixture precipitated in 200 mL NaCl dissolved water. The resulting polymer was filtered and washed successively with water. The obtained polymer was dried in an 80 ° C. vacuum oven. Yield 95%,

1H-NMR(CDCl3) δ 6.79(d, 2H), d 6.89(d, 2H), 7.05(d, 10H), 7.4(m, 40H). 열분해 온도 520℃. 1 H-NMR (CDCl 3 ) δ 6.79 (d, 2H), d 6.89 (d, 2H), 7.05 (d, 10H), 7.4 (m, 40H). Pyrolysis temperature of 520 ° C.

(나) FPAE20-PEP의 합성:(B) Synthesis of FPAE20-PEP:

2.0 g (0.3 mmol)의 FPAE20과 0.36 g (1.8 mmol)의 PEP, 그리고 0.376 g의 K2CO3를 사용한 것 외에는 실시예3의 (가)와 동일한 조건으로 반응시켰다. 수율 92%.1H-NMR(CDCl3) δ 6.80(d, 2H), 6.92(d, 2H), 7.05(d, 20H), 7.50(m, 60H). 열분해 온도 516℃.The reaction was carried out under the same conditions as in (a) of Example 3, except that 2.0 g (0.3 mmol) of FPAE20, 0.36 g (1.8 mmol) of PEP, and 0.376 g of K 2 CO 3 were used. Yield 92%. 1 H-NMR (CDCl 3 ) δ 6.80 (d, 2H), 6.92 (d, 2H), 7.05 (d, 20H), 7.50 (m, 60H). Pyrolysis temperature 516 ° C.

(다) FPAE40-PEP의 합성:(C) Synthesis of FPAE40-PEP:

2.0 g (0.155 mmol)의 FPAE40과 0.18 g (0.9276 mmol)의 PEP, 그리고 0.192 g의 K2CO3를 사용한 것 외에는 실시예3의 (가)와 동일한 조건으로 반응시켰다. 수율 96%.1H-NMR(CDCl3) δ 6.79(d, 2H), 6.91(d, 2H), 7.05(d, 40H), 7.40(m, 80H). 열분해 온도 510℃.The reaction was carried out under the same conditions as in (a) of Example 3, except that 2.0 g (0.155 mmol) of FPAE40, 0.18 g (0.9276 mmol) of PEP, and 0.192 g of K 2 CO 3 were used. Yield 96%. 1 H-NMR (CDCl 3 ) δ 6.79 (d, 2H), 6.91 (d, 2H), 7.05 (d, 40H), 7.40 (m, 80H). Pyrolysis temperature 510 ° C.

실시예 4Example 4

본 발명의 고분자를 이용한 광소자 제작Fabrication of optical device using polymer of the present invention

(가) FPAE10-PEP를 이용한 광소자 제작:(A) Optical device fabrication using FPAE10-PEP:

고분자 소자 제작을 위한 기판으로 일반적으로 Si 을 이용할 수 있다. 본 실시예에서는 준비된 Si 기판 위에 광도파로의 하부 클래딩으로서 SiO2층을 형성하거나 또는 코아층 고분자 보다 굴절률이 낮은 고분자를 코팅하였다. 하부 클래딩층 위에 광진행 손실이 낮은 본 발명의 고분자인 광도파로 코아 물질 FPAE10-PEP를 코팅하고 300℃에서 1시간 동안 열경화한 후 광도파로의 형성을 위해서 광도파로 마스크를 정렬하고 포토리쏘그라피를 이용하여 광도파로 형상을 만들었다. 다음으로 반응 이온 식각 (Reactive ion etching: RIE) 공정을 이용하여 광도파로 중앙 부분을 제외한 지역을 식각하였다. 마지막으로 상부 클래딩을 위한 폴리머를 코팅하여 소자 제작을 완료하였다. 광파의 입출력을 위한 단면 형성은 Si 절단면을 이용한 단면 절개법 (cleaving) 이나 단면 연마 방법 (polishing) 을 이용하여 수행하였다.In general, Si may be used as a substrate for manufacturing a polymer device. In this embodiment, a SiO 2 layer was formed as a lower cladding of the optical waveguide on the prepared Si substrate, or a polymer having a lower refractive index than the core layer polymer was coated. After coating the optical waveguide core material FPAE10-PEP, which is a polymer of the present invention, having low light propagation loss on the lower cladding layer, and thermal curing at 300 ° C. for 1 hour, aligning the optical waveguide mask and forming photolithography for formation of the optical waveguide. Shape of the optical waveguide. Next, the region except for the central portion of the optical waveguide was etched by using reactive ion etching (RIE). Finally, the polymer was coated for the upper cladding to complete the device fabrication. The cross section formation for the input and output of light waves was performed by using a cross section cleaving method or a single side polishing method using a Si cut surface.

(나) FPAE20-PEP를 이용한 광소자 제작:(B) Optical device fabrication using FPAE20-PEP:

광도파로 코아 물질로 FPAE20-PEP를 사용한 것 외에는 실시예 4의 (가)와 동일하게 실시하였다.Except for using FPAE20-PEP as the optical waveguide core material, it was carried out in the same manner as in Example (A).

(다) FPAE40-PEP를 이용한 광소자 제작:(C) Optical device fabrication using FPAE40-PEP:

광도파로 코아 물질로 FPAE40-PEP를 사용한 것 외에는 실시예 4의 (가)와 동일하게 실시하였다.Except for using FPAE40-PEP as the optical waveguide core material, it was carried out in the same manner as in Example (A).

상술한 방법으로 제조되는 본 발명의 광도파로 코아 고분자는 높은 불소 치환으로 인하여 광통신 영역에서 광진행 손실이 0.5dB/cm이하로 매우 낮다. 또한 말단기에 에티닐기의 도입을 통한 열경화 공정에 의해 소자 제작에 필수적인 다층 박막 형성을 위한 내화학성이 뛰어나고 열적 안정성이 우수하여 신뢰도가 우수한 광소자를 제작할 수 있다. 즉, 용해도 실험 결과 열경화전에는 대부분의 유기용매에 녹았으나 열경화 후에는 전혀 녹지 않았다. 그리고 열적 안정성은 TGA 온도 기록도 결과 500℃ 이상에서도 전혀 열분해가 일어나지 않는 아주 우수한 특성을 보인다.The optical waveguide core polymer of the present invention manufactured by the above-described method has very low optical progression loss of 0.5 dB / cm or less in the optical communication region due to high fluorine substitution. In addition, an optical device having excellent chemical resistance and excellent thermal stability for forming a multilayer thin film essential for device fabrication may be manufactured by a thermosetting process through the introduction of an ethynyl group in the terminal group. That is, as a result of the solubility test, it was dissolved in most organic solvents before thermosetting, but not at all after thermosetting. And thermal stability shows very excellent characteristics that no pyrolysis occurs even above 500 ℃ as a result of TGA temperature record.

Claims (5)

하기 화학식 (1)로 표시되는 에티닐기를 갖는 불소 치환 폴리아릴렌에테르:Fluorine-substituted polyarylene ether having an ethynyl group represented by the following general formula (1): (화학식 1)(Formula 1)
Figure pat00003
Figure pat00003
제 1 항에 있어서,The method of claim 1, 불소 치환 폴리아릴렌 에테르10-페닐에티닐 페놀(FPAE10-PEP), 불소 치환 폴리아릴렌 에테르20-페닐에티닐 페놀(FPAE20-PEP), 또는 불소 치환 폴리아릴렌 에테르40-페닐에티닐 페놀(FPAE40-PEP)인, 에티닐기를 갖는 불소 치환 폴리아릴렌에테르.Fluorine substituted polyarylene ether 10-phenylethynyl phenol (FPAE10-PEP), fluorine substituted polyarylene ether 20-phenylethynyl phenol (FPAE20-PEP), or fluorine substituted polyarylene ether 40-phenylethynyl phenol ( Fluorine-substituted polyarylene ether having an ethynyl group, which is FPAE40-PEP). 데카풀루오로바이페닐 화합물과 방향족 디올 유도체를 열축중합시켜 말단에 풀루오로페닐기가 위치한 폴리아릴렌 에테르를 제조하는 단계와, 상기한 폴리머에 에티닐 페놀 유도체를 고분자 말단에 치환하는 단계를 포함하는 하기 화학식 (1)로 표시되는 에티닐기를 갖는 불소 치환 폴리아릴렌에테르의 제조방법:Thermocondensing a decapulurobiphenyl compound and an aromatic diol derivative to produce a polyarylene ether having a pullulophenyl group at the terminal, and replacing the ethynyl phenol derivative at the polymer terminal with the polymer. Method for producing a fluorine-substituted polyarylene ether having an ethynyl group represented by the formula (1) (화학식 1)(Formula 1)
Figure pat00004
Figure pat00004
데카풀루오로벤조페논 화합물과 방향족 디올 유도체를 열축중합시켜 말단에 풀루오로페닐기가 위치한 폴리아릴렌 에테르를 제조하는 단계와, 상기한 폴리머에 에티닐 페놀 유도체를 고분자 말단에 치환하는 단계를 포함하는 하기 화학식 (1)로 표시되는 에티닐기를 갖는 불소 치환 폴리아릴렌에테르의 제조방법:Thermally polymerizing a decapulurobenzophenone compound and an aromatic diol derivative to prepare a polyarylene ether having a pullulophenyl group at the terminal; and replacing the ethynyl phenol derivative at the polymer terminal with the polymer. Method for producing a fluorine-substituted polyarylene ether having an ethynyl group represented by the formula (1) (화학식 1)(Formula 1)
Figure pat00005
Figure pat00005
실리콘 기판 상에 형성된 하부 클래딩층과, 상기한 하부 클래딩 상에 형성된 코어층과, 상기한 코어층 상에 형성된 상부 클래딩층을 포함하는 광도파로형 광소자에 있어서, 상기한 코어층이 하기 화학식 (1)로 표시되는 에티닐기를 갖는 불소 치환 폴리아릴렌 에테르인 것이 특징인 광도파로형 광소자:In the optical waveguide type optical device including a lower cladding layer formed on a silicon substrate, a core layer formed on the lower cladding, and an upper cladding layer formed on the core layer, the core layer is represented by the following formula ( An optical waveguide type optical device characterized by being a fluorine-substituted polyarylene ether having an ethynyl group represented by 1): (화학식 1)(Formula 1)
Figure pat00006
Figure pat00006
KR1019970054781A 1997-10-24 1997-10-24 Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same KR100226442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970054781A KR100226442B1 (en) 1997-10-24 1997-10-24 Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970054781A KR100226442B1 (en) 1997-10-24 1997-10-24 Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same

Publications (2)

Publication Number Publication Date
KR19990033424A KR19990033424A (en) 1999-05-15
KR100226442B1 true KR100226442B1 (en) 1999-10-15

Family

ID=19523329

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970054781A KR100226442B1 (en) 1997-10-24 1997-10-24 Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same

Country Status (1)

Country Link
KR (1) KR100226442B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946534B2 (en) 2000-09-28 2005-09-20 Mi-Hwa Kim Fluorinated polyethers having perfluorinated aliphatic group and optical waveguide using the same
US7202324B2 (en) 2002-07-12 2007-04-10 Chemoptics Inc. Perfluorostyrene compound, and coating solution and optical waveguide device using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008933A (en) * 2002-07-19 2004-01-31 주식회사 효성 Optical Waveguide Material
TWI740485B (en) * 2020-05-04 2021-09-21 台灣中油股份有限公司 Oligomer (2,6-dimethylphenyl ether), preparation method thereof and cured product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946534B2 (en) 2000-09-28 2005-09-20 Mi-Hwa Kim Fluorinated polyethers having perfluorinated aliphatic group and optical waveguide using the same
US7202324B2 (en) 2002-07-12 2007-04-10 Chemoptics Inc. Perfluorostyrene compound, and coating solution and optical waveguide device using the same

Also Published As

Publication number Publication date
KR19990033424A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
US7202324B2 (en) Perfluorostyrene compound, and coating solution and optical waveguide device using the same
Lee et al. Crosslinkable fluorinated poly (arylene ethers) bearing phenyl ethynyl moiety for low‐loss polymer optical waveguide devices
US6743943B2 (en) Polymerizable halogenated vinyl ethers
US20080075413A1 (en) Thermally reversibly crosslinkable polymer as cladding material for electro-optic devices
KR100226442B1 (en) Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same
KR100243406B1 (en) Perfluorinated poly(arylether) for optical material, its preparation method, and optical material for optical waveguide
Cai et al. Novel fluorinated polycarbonate negative-type photoresists for thermo-optic waveguide gate switch arrays
KR20070100162A (en) Trisoxetane compound, process for producing the same, and optical waveguide using the same
KR101298770B1 (en) Photoactive fluorinated polymer and the coating solution
US20080286580A1 (en) Polymeric Optical Waveguide
KR100509197B1 (en) Fluorinated polyarylene ether Compound, Preparing Method of the Same and Optical Waveguide Material Using the Same
KR100644237B1 (en) Novel Fluorinated Polyarylene Ether Phosphine Oxide and its Preparation Method
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
KR100536439B1 (en) Perfluorophenylacetylene compounds, Coating solution and Optical waveguide device using the same
Cai et al. Optically transparent fluorine-containing polycarbonates with high refractive indices for thermo-optic switches
KR100292800B1 (en) Fluorine-substituted polyarylene ether copolymer and polymer optical device using the same
KR100557473B1 (en) New fluoro styrene monomer with epoxy group and polymers using it for waveguide materials
JP4209171B2 (en) Silicon-containing curable polymer composition, optical waveguide device using the same, wiring board, and method for producing silicon-containing curable polymer composition
KR100533253B1 (en) Synthesis of 1, 1-Bis(4-hydroxypheny1)-1-(3, 5-bis(trifluoromethy1)-pheny1)-ethane and poly (arylene)et-her using 1,1-Bis(4-hydroxypheny1)-1-(3,5-bis(trifluoromethy1) pyeny1)-ethane
JPH09274117A (en) Dendrimer optical waveguide
KR100226443B1 (en) Fluorinated poly(arylene ether) containing NLO chromophores, preparation methods thereof, and optical devices using the same
KR101005811B1 (en) Perfluorinated multi-acrylates with phosphate and the photo-curable components containing them
KR100508706B1 (en) Fluorinated Aromatic Diamines and Their Synthetic Methods
KR20040025332A (en) Fluorinated polyarylene ether sulfide Compound, Preparing Method of the Same and Optical Waveguide Material Using the Same
KR20040102543A (en) Poly(arylene ether) sulfide having fluorine substituted aliphaic group and optical waveguide device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee