KR20050057806A - Method for fabricating self-assembled monolayers in the gas phase - Google Patents

Method for fabricating self-assembled monolayers in the gas phase Download PDF

Info

Publication number
KR20050057806A
KR20050057806A KR1020030089997A KR20030089997A KR20050057806A KR 20050057806 A KR20050057806 A KR 20050057806A KR 1020030089997 A KR1020030089997 A KR 1020030089997A KR 20030089997 A KR20030089997 A KR 20030089997A KR 20050057806 A KR20050057806 A KR 20050057806A
Authority
KR
South Korea
Prior art keywords
substrate
self
titanium dioxide
thin film
gas phase
Prior art date
Application number
KR1020030089997A
Other languages
Korean (ko)
Inventor
성명모
서형미
Original Assignee
성명모
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성명모 filed Critical 성명모
Priority to KR1020030089997A priority Critical patent/KR20050057806A/en
Publication of KR20050057806A publication Critical patent/KR20050057806A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Abstract

본 발명은 기상에서 자기조립 단분자막을 제조하는 방법에 관한 것으로, 보다 상세하게는 기판 표면을 이산화티탄 박막으로 코팅하여 표면을 개질한 후 기상에서 기판 위에 자기조립 단분자막을 형성하는 방법에 관한 것이다. 이상과 같은 본 발명에 의하여 다양한 종류의 기판 위에 기상에서 빠른 속도로 균일하게 원하는 자기조립 단분자막을 형성할 수 있어 자기조립 단분자막 제조 공정의 시간과 비용 절감의 효과를 가져올 수 있다. The present invention relates to a method for producing a self-assembled monomolecular film in a gas phase, and more particularly, to a method for forming a self-assembled monomolecular film on a substrate in a vapor phase after modifying the surface by coating the substrate surface with a titanium dioxide thin film. According to the present invention as described above it is possible to form a desired self-assembled monomolecular film uniformly at high speed in the gas phase on a variety of substrates can bring the effect of time and cost savings in the self-assembled monomolecular film manufacturing process.

Description

기상에서 자기조립 단분자막 제조 방법 {Method for fabricating self-assembled monolayers in the gas phase} Method for fabricating self-assembled monolayers in the gas phase

본 발명은 기상에서 자기조립 단분자막 제조 방법에 관한 것으로서, 특히 기판 표면을 이산화티탄 박막으로 코팅하여 표면을 개질함으로써 기상에서 빠른 속도로 기판에 자기조립 단분자막을 제조하는 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a self-assembled monomolecular film in the gas phase, and more particularly, to a method for producing a self-assembled monomolecular film on a substrate at a high speed in the gas phase by coating the surface of the substrate with a thin film of titanium dioxide.

일반적으로, 자기조립 단분자막(SAMs: Self-Assembled Monolayers)은 비교적 긴 알킬기와 그 말단에 기판(substrate) 표면과 상호 작용하여 공유결합 할 수 있는 작용기(functional group)를 갖는 분자들이 적당한 기판 표면에서 분자들끼리 2차원적으로 정렬하는 자기조립(self-assembly) 현상을 이용하여 기질의 표면에 일정하게 정렬된 단분자막(monolayer)이다. In general, self-assembled monolayers (SAMs) are molecules that have relatively long alkyl groups and functional groups that can covalently bond by interacting with the substrate surface at their ends. It is a monolayer that is uniformly aligned on the surface of the substrate using a self-assembly phenomenon in which two of them are aligned in two dimensions.

이러한 자기조립 단분자막을 형성하는 분자들은 작용기를 통하여 기판 표면에 흡착·결합하게 되고 알킬기들은 서로 소수성 인력(hydrophobic interaction)에 의해 2차원적으로 정렬하여 자기조립 단분자막을 형성한다. 이러한 현상을 일으키는 물질들로는 지방산 등의 계면 활성제 분자, 알킬트리할로실란류, 알킬알콕사이드류 등의 유기규소 분자, 알킬티올류 등의 유기황 분자, 알킬포스페이트 등의 유기 인산 분자 등을 들 수 있다. 이 방법으로 단분자막을 제조하는 경우 막 형성 과정을 분자 수준에서 조절할 수 있으며, 자기조립 단분자막을 형성하는 분자의 작용기를 선택적으로 다양하게 변화시킬 수 있고 또한 그 조절도 가능하며, 기판 표면과의 결합도 강하여 막의 안정성도 뛰어나며 원하는 경우 쉽게 제거할 수도 있다. The molecules forming the self-assembled monolayer are adsorbed and bonded to the surface of the substrate through a functional group, and the alkyl groups are aligned in two dimensions by hydrophobic interaction with each other to form a self-assembled monolayer. Substances causing such a phenomenon include surfactant molecules such as fatty acids, organosilicon molecules such as alkyltrihalosilanes and alkyl alkoxides, organosulfur molecules such as alkylthiols, and organic phosphate molecules such as alkyl phosphates. . In this way, when the monomolecular film is prepared, the film formation process can be controlled at the molecular level, and the functional groups of the molecules forming the self-assembled monomolecular film can be selectively changed in various ways, and the degree of bonding to the substrate surface can be controlled. It is strong, so the membrane is very stable and can be easily removed if desired.

상기한 특성을 갖는 자기조립 단분자막은 반도체나 전자소자 제조를 위한 나노패터닝 (nanopatterning), 화학적 센서 (chemical sensor) 및 생체센서 (biosensor), 나노트라이볼로지(nanotribology), 표면 개질 (surface modification), 나노 전자 기계 시스템 (NEMS: NanoElectroMechanical System), 마이크로전자기계 시스템 (MEMS: MicroElectroMechanical System) 등 다양한 분야에 응용 가능성을 보이고 있다.The self-assembled monolayer having the above characteristics can be used for nanopatterning, chemical sensor and biosensor, nanotribology, surface modification, Nanoelectro-mechanical systems (NEMS) and microelectro-mechanical systems (MEMS) have been shown to be applicable in various fields.

현재, 자기조립 단분자막 제조는 주로 액상에서 기판 표면 위에 형성하는 방법이 사용되고 있다. 그런데, 현재 반도체 소자 등의 제조 공정은 대부분 기상 공정으로 수행되고 있어 기존 액상에서의 자기조립 단분자막 제조 방법을 반도체 제조 공정 등에 적용하는 데 많은 문제점이 있다. Currently, self-assembled monomolecular film production is mainly used to form on the surface of the substrate in the liquid phase. However, at present, manufacturing processes such as semiconductor devices are mostly performed by a gas phase process, and thus there are many problems in applying a method of manufacturing a self-assembled monolayer in an existing liquid phase to a semiconductor manufacturing process or the like.

따라서, 본 발명은 상기한 기존 액상에서의 자기조립 단분자막 형성 방법의 문제점을 해결하기 위한 것으로서, 기판 표면을 이산화티탄 박막으로 코팅하여 표면을 개질함으로써 기상에서 빠른 속도로 기판에 자기조립 단분자막을 제조하는 방법을 제공하는 것을 목적으로 한다. Accordingly, the present invention is to solve the problem of the conventional method for forming a self-assembled monolayer in a liquid phase, by coating the surface of the substrate with a titanium dioxide thin film to modify the surface to produce a self-assembled monolayer on the substrate at high speed in the gas phase It is an object to provide a method.

상기 기술적 과제를 달성하기 위하여, 본 발명의 기상에서의 자기조립 단분자막 제조 방법은 세정된 기판을 챔버에 로딩하고, 상기 기판 표면에 이산화티탄 박막을 형성하여 기판 표면을 개질한 후, 이어서 기상에서 상기 기판에 자기조립 단분자막을 제조하는 것을 특징으로 한다. In order to achieve the above technical problem, in the self-assembled monomolecular film production method of the present invention, the cleaned substrate is loaded into a chamber, a titanium dioxide thin film is formed on the substrate surface to modify the substrate surface, and then the A self-assembled monomolecular film is prepared on a substrate.

이 때, 상기 기판은 금속, 금속산화물, 반도체, 유리, 고분자 중 어느 하나를 사용할 수 있다. In this case, the substrate may be any one of a metal, a metal oxide, a semiconductor, glass, and a polymer.

또한, 상기 반도체 기판은 실리콘웨이퍼를 사용할 수 있다.In addition, the semiconductor substrate may use a silicon wafer.

상기한 기판 표면 개질 단계에서 형성된 이산화티탄 박막의 두께는 10~100 ㎚으로 할 수 있다.The thickness of the titanium dioxide thin film formed in the substrate surface modification step may be 10 to 100 nm.

또한, 상기한 이산화티탄 박막은 원자층 증착법(Atomic Layer Deposition; ALD) 또는 화학기상 증착법(Chemical Vapor Deposition; CVD)에 의하여 형성될 수 있다. In addition, the titanium dioxide thin film may be formed by atomic layer deposition (ALD) or chemical vapor deposition (CVD).

상기한 ALD 공정은 가스 공급 장치, 증착 챔버(chamber), 진공 장치, 자동 제어 시스템으로 구성된다. 산소 공급원으로 H2O를 사용하여 증착 챔버 내에서 이산화티탄 박막을 증착한다. 운반가스(carrier gas)와 퍼지가스(purge gas)로 순도 99.999%의 Ar을 사용한다. ALD에 사용된 이산화티탄 전구체는 증기압이 높은 티타늄 화합물을 사용하며, 구체적으로 TiCl4, TiP(Titanium IsoPropoxide)와 같은 티타늄 화합물이 적당하다.The ALD process is composed of a gas supply device, a deposition chamber, a vacuum device, and an automatic control system. A thin film of titanium dioxide is deposited in the deposition chamber using H 2 O as the oxygen source. Purity 99.999% Ar is used as carrier gas and purge gas. The titanium dioxide precursor used in the ALD uses a titanium compound having a high vapor pressure, and specifically, a titanium compound such as TiCl 4 and TiP (Titanium IsoPropoxide) is suitable.

상기한 이산화티탄 박막으로 표면 개질된 기판에 자기조립 단분자막을 형성하는 공정의 챔버 내 온도는 100~300℃, 압력은 0.1mTorr~50Torr로 일정하게 유지한다. The temperature in the chamber of the process of forming a self-assembled monomolecular film on the surface-modified substrate with the titanium dioxide thin film is kept constant at 100 ~ 300 ℃, pressure is 0.1mTorr ~ 50Torr.

상기한 본 발명에 의해 형성되는 자기조립 단분자막은 계면 활성제, 알킬트리할로실란류, 알킬실록산류, 알킬티올류, 알킬포스페이트류 중 어느 하나로 부터 형성될 수 있다. The self-assembled monomolecular film formed by the present invention described above may be formed from any one of a surfactant, alkyltrihalosilanes, alkylsiloxanes, alkylthiols, and alkyl phosphates.

상기한 바와 같이 기판 표면을 이산화티탄 박막으로 코팅하여 표면을 개질 하면 기상에서 빠른 속도로 자기조립 단분자막이 형성된다. 이와 같은 방법으로 표면 개질된 기판은 그 표면에 Ti에 결합된 OH기가 도입되어, 표면 개질되지 않은 기판 표면의 OH기에 비해 자기조립 단분자막을 형성하는 분자들과의 화학 반응성이 훨씬 증가하게 된다. 예를 들면, 순수한 실리콘 이나 석영 기판의 경우 표면 OH가 Si에 결합되어 있는데, 이들 표면 OH기의 반응성은 Ti에 결합된 OH기 보다 반응성이 떨어진다. 그 이유는 Ti이 Si보다 전기음성도가 작아 Ti에 결합된 OH기가 더 루이스 염기성(Lewis basicity)을 나타내어 자기조립 단분자막을 형성하는 분자들과의 화학 반응성이 훨씬 증가하기 때문이다. 결과적으로, 이산화티탄 박막으로 코팅된 기판 표면에서는 기상에서 빠른 속도로 자기조립 단분자막이 형성된다.  As described above, when the surface of the substrate is coated with a titanium dioxide thin film to modify the surface, a self-assembled monomolecular film is formed at a high speed in the gas phase. In this way, the surface-modified substrate is introduced with OH groups bonded to Ti on the surface thereof, and the chemical reactivity with molecules forming the self-assembled monolayer is much increased compared to the OH groups on the surface of the unmodified substrate surface. For example, in the case of pure silicon or quartz substrates, the surface OH is bonded to Si, and the reactivity of these surface OH groups is less responsive than the OH groups bonded to Ti. This is because Ti has a lower electronegativity than Si, and thus the OH group bonded to Ti exhibits Lewis basicity, thereby increasing the chemical reactivity with molecules forming a self-assembled monolayer. As a result, a self-assembled monomolecular film is formed on the substrate surface coated with the titanium dioxide thin film at high speed in the gas phase.

이하, 실시예에 의해 본 발명을 보다 상세히 설명한다. 이러한 실시예는 본 발명을 예시하기 위한 것으로 이에 의하여 본 발명의 범위가 제한되지 아니한다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention is not intended to limit the scope of the invention thereby.

[실시예]EXAMPLE

실리콘웨이퍼 기판을 증류수, N2 가스 퍼징(2-3회), 피라나(Piranha) 용액 [H2SO4/H2O2(4:1) 혼합물], N2 가스 퍼징(2-3회)의 순서로 처리하여 기판 표면의 오염 물질을 제거한다. 그 후, 세정 건조된 기판을 즉시 증착 챔버에 로딩하고 진공 장치를 작동하여 압력을 1.0 x 10-3Torr로 낮추었고 온도는 100℃로 하였다.Silicon wafer substrates were distilled water, N 2 gas purging (2-3 times), Piranha solution [H 2 SO 4 / H 2 O 2 (4: 1) mixture], N 2 gas purging (2-3 times) In order to remove contaminants from the surface of the substrate. Thereafter, the clean dried substrate was immediately loaded into the deposition chamber and the vacuum apparatus was operated to lower the pressure to 1.0 x 10 -3 Torr and the temperature to 100 ° C.

원자층 증착법(Atomic Layer Deposition, ALD)으로 이산화티탄 박막을 증착하기 위해 TIP 가스를 펄스 형태(펄스 시간: 2 초)로 유입하여 기판 위에 증착시키고, Ar 퍼징가스(펄스 시간: 5초)를 유입하여 미반응 TIP 및 증착 부산물을 제거한 후 H2O 증기를 펄스 형태(펄스 시간: 2 초)로 유입하여 증착된 TIP와 반응하여 이산화티탄 박막이 형성된 후 다시 Ar 퍼징가스(펄스 시간: 5 초)를 유입하여 미반응 H2O 및 반응 부산물들을 제거한다. 이러한 4 단계의 이산화티탄 증착 과정을 ALD의 기본 1 사이클로 정의하며 ALD 사이클을 50회 반복하여 10nm 두께의 이산화티탄 박막을 형성하였다.In order to deposit the titanium dioxide thin film by atomic layer deposition (ALD), TIP gas was introduced into a pulse form (pulse time: 2 seconds) and deposited on the substrate, and Ar purging gas (pulse time: 5 seconds) was introduced. After removing unreacted TIP and deposition by-products, H 2 O vapor was introduced into a pulse form (pulse time: 2 seconds) to react with the deposited TIP to form a titanium dioxide thin film, and then Ar purging gas (pulse time: 5 seconds). To remove unreacted H 2 O and reaction by-products. This four-step titanium dioxide deposition process was defined as the basic 1 cycle of ALD, and the ALD cycle was repeated 50 times to form a 10 nm thick titanium dioxide thin film.

이어서, 기상에서 자기조립 단분자막을 형성하기 위하여 상기 표면 개질된 기판이 로딩되어 있는 챔버 내로 옥타데실트리클로로실란 (OctadecylTrichloroSilane; OTS) 기체를 공급하였다. OTS 자기조립 단분자막의 형성 정도를 확인하기 위해 형성된 막 시료의 물접촉각(water contact angle)을 측정하였다. 상기 기판 표면 전체에 완전한 OTS 단분자막이 형성되는 데 25초가 걸렸다. An octadecylTrichloroSilane (OTS) gas was then fed into the chamber loaded with the surface modified substrate to form a self-assembled monolayer in the gas phase. The water contact angle of the formed membrane sample was measured to confirm the degree of formation of the OTS self-assembled monolayer. It took 25 seconds to form a complete OTS monolayer on the entire surface of the substrate.

이에 비하여 기판을 이산화티탄 박막으로 표면을 개질하지 않은 기판을 사용하여 액상에서 OTS 자기조립 단분자막을 형성한 경우 그 형성 속도가 훨씬 느렸다. 즉, 세정된 실리콘웨이퍼 기판을 2.5mmole OTS 용액(용매는 4:1 핵산-클로로포름) 에 담가 OTS 단분자막을 형성한 경우 완전한 단분자막 형성에 80초가 소요되었다. On the other hand, when the OTS self-assembled monomolecular film was formed in the liquid phase by using a substrate whose surface was not modified with a titanium dioxide thin film, the formation speed was much slower. That is, when the cleaned silicon wafer substrate was immersed in a 2.5mmole OTS solution (solvent is 4: 1 nucleic acid-chloroform) to form an OTS monolayer, it took 80 seconds to form a complete monolayer.

결과적으로, 기판을 이산화티탄 박막으로 코팅하여 그 표면을 개질하면 이산화티탄으로 표면 개질되지 않은 기판에 비해 기상에서 자기조립 단분자막을 훨씬 빠르게 형성시킬 수 있다. As a result, coating the substrate with a thin film of titanium dioxide and modifying its surface can form a self-assembled monomolecular film much faster in the gas phase than a substrate that is not surface-modified with titanium dioxide.

이상에서 살펴본 바와 같이, 본 발명에 따라 기판 표면을 이산화티탄 박막으로 코팅하여 표면을 개질함으로써 기상에서 빠른 속도로 기판에 자기조립 단분자막을 제조할 수 있다.As described above, according to the present invention, the surface of the substrate may be coated with a thin film of titanium dioxide, thereby modifying the surface, thereby manufacturing a self-assembled monolayer on the substrate at a high speed in the gas phase.

Claims (7)

(가) 기판 세정 및 챔버 내로 로딩하는 단계;(A) substrate cleaning and loading into the chamber; (나) 상기 기판을 이산화티탄 박막으로 코팅하여 기판 표면을 개질하는 단계; 및(B) coating the substrate with a thin film of titanium dioxide to modify the surface of the substrate; And (다) 챔버 내에서 상기 이산화티탄 박막으로 코팅된 기판 표면에 자기조립 단분자막을 형성하는 단계를 포함하는 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법.(C) forming a self-assembled monomolecular film on the surface of the substrate coated with the titanium dioxide thin film in a chamber. 제1항에 있어서, 상기 기판은 금속, 금속산화물, 반도체, 유리, 고분자 중 어느 하나인 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법.The method of claim 1, wherein the substrate is any one of a metal, a metal oxide, a semiconductor, a glass, and a polymer. 제2항에 있어서, 상기 반도체 기판은 실리콘웨이퍼인 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법.The method of claim 2, wherein the semiconductor substrate is a silicon wafer. 제1항에 있어서, 상기 이산화티탄 박막의 두께는 10~100㎚인 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법.The method of claim 1, wherein the titanium dioxide thin film has a thickness of 10 to 100 nm. 제1항에 있어서, 상기 이산화티탄 박막을 원자층 증착법(Atomic Layer Deposition, ALD)에 의하여 형성하는 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법.The method of claim 1, wherein the titanium dioxide thin film is formed by atomic layer deposition (ALD). 제1항에 있어서, 상기 자기조립 단분자막은 계면 활성제, 알킬트리할로실란류, 알킬실록산류, 알킬티올류, 알킬포스페이트류 중 어느 하나로 부터 형성되는 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법.The method of claim 1, wherein the self-assembled monolayer is formed from any one of a surfactant, alkyltrihalosilanes, alkylsiloxanes, alkylthiols, and alkyl phosphates. 제1항에 있어서, 상기 챔버 내에서 자기조립 단분자막 형성 공정의 온도는 80~300℃ 이고, 압력은 0.1mTorr~50Torr로 일정하게 유지하여 공정을 진행하는 것을 특징으로 하는 기상에서 자기조립 단분자막 제조 방법. The method of claim 1, wherein the temperature of the self-assembled monomolecular film forming process in the chamber is 80 ° C. to 300 ° C., and the pressure is kept constant at 0.1 mTorr to 50 Torr. .
KR1020030089997A 2003-12-11 2003-12-11 Method for fabricating self-assembled monolayers in the gas phase KR20050057806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030089997A KR20050057806A (en) 2003-12-11 2003-12-11 Method for fabricating self-assembled monolayers in the gas phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030089997A KR20050057806A (en) 2003-12-11 2003-12-11 Method for fabricating self-assembled monolayers in the gas phase

Publications (1)

Publication Number Publication Date
KR20050057806A true KR20050057806A (en) 2005-06-16

Family

ID=37251519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030089997A KR20050057806A (en) 2003-12-11 2003-12-11 Method for fabricating self-assembled monolayers in the gas phase

Country Status (1)

Country Link
KR (1) KR20050057806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026747A1 (en) * 2006-08-28 2008-03-06 Toyota Jidosha Kabushiki Kaisha Electrochemically active organic thin film, method for producing the same, and device using the same
KR100971553B1 (en) * 2008-02-27 2010-07-21 한양대학교 산학협력단 Organic-inorganic hybrid superlattice film and fabrication method thereof
KR101063755B1 (en) * 2008-02-15 2011-09-14 한양대학교 산학협력단 Apparatus for self assembled monolayer coating of metal nano paticles and coating method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026747A1 (en) * 2006-08-28 2008-03-06 Toyota Jidosha Kabushiki Kaisha Electrochemically active organic thin film, method for producing the same, and device using the same
KR101063755B1 (en) * 2008-02-15 2011-09-14 한양대학교 산학협력단 Apparatus for self assembled monolayer coating of metal nano paticles and coating method using the same
KR100971553B1 (en) * 2008-02-27 2010-07-21 한양대학교 산학협력단 Organic-inorganic hybrid superlattice film and fabrication method thereof

Similar Documents

Publication Publication Date Title
US10900123B2 (en) Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
KR20070084683A (en) Molecular layer deposition
JP4422684B2 (en) Apparatus and method for controlling reactive vapors to produce thin films and coatings
US6576489B2 (en) Methods of forming microstructure devices
JP6265496B2 (en) Improved deposition method for depositing a coating on a device
US9972583B2 (en) Durable, heat-resistant multi-layer coatings and coated articles
JP2014531508A5 (en)
AU2011264922B2 (en) Low-temperature synthesis of silica
JP2007100191A (en) Apparatus and method for forming monolayer
KR20050057806A (en) Method for fabricating self-assembled monolayers in the gas phase
JP3331957B2 (en) Surface treatment method for structure to be treated
KR102027776B1 (en) Method for manufacturing pattern using infinite area-selective atomic layer deposition
KR100697505B1 (en) Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
KR100812182B1 (en) Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography
Kobrin et al. Durable Anti-Stiction Coatings by Molecular Vapor Deposition (MVD)
KR100941109B1 (en) Method of fabricating self-assembly multi-molecular layer
KR100904719B1 (en) Thin Film Coating Apparatus and method
KR101184924B1 (en) Method for forming metal layer
JP2007081136A (en) Method of forming organic functional thin film
Takakuwa et al. Micropatterning of indium tin oxide thin films by selective deposition and improvement in selectivity by combination with substrate vibration
by Scanning et al. VI-F Synchrotron Radiation Stimulated Surface Reaction and Nanoscience

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination