KR100812182B1 - Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography - Google Patents

Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography Download PDF

Info

Publication number
KR100812182B1
KR100812182B1 KR1020060104837A KR20060104837A KR100812182B1 KR 100812182 B1 KR100812182 B1 KR 100812182B1 KR 1020060104837 A KR1020060104837 A KR 1020060104837A KR 20060104837 A KR20060104837 A KR 20060104837A KR 100812182 B1 KR100812182 B1 KR 100812182B1
Authority
KR
South Korea
Prior art keywords
self
nanoimprint
vapor deposition
stamp
substrate
Prior art date
Application number
KR1020060104837A
Other languages
Korean (ko)
Inventor
임현의
최대근
정준호
이응숙
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020060104837A priority Critical patent/KR100812182B1/en
Application granted granted Critical
Publication of KR100812182B1 publication Critical patent/KR100812182B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

A vapor deposition method is provided to improve functionalities of the nanoimprint stamps and substrates by forming a functional ultra-thin film on various matrices such as semiconductor, metal, polymer and glass surface using self-assembled monolayers in nanoimprint lithography, thereby controlling surface energy of nanoimprint stamps and substrates such as SiO2, Si, Ge, Au, Ag, Pt, GaAs, InP, InSb, Ni, PMMA, PET, TiO2 and Al2O3. A vapor deposition method of self-assembled monolayers for functionalization of surface in nanoimprint lithography comprises the steps of: cleaning a nanoimprint stamp or a substrate on which a self-assembled monolayer is to be formed; activating the surface of the stamp or substrate by performing a plasma treatment on a surface of the stamp or substrate that has passed through the cleaning step; injecting the surface of the stamp or substrate that has passed through the plasma treatment step into a chamber to deposit the self-assembled monolayer on the surface of the stamp or substrate using a silane compound or a thiol compound; and stabilizing the surface of the stamp or substrate having the self-assembled monolayer deposited thereon in the chamber, wherein one solvent of toluene(C7H8) and isopropanol((CH3)2CHOH) is mixed with the compound used in the deposition step to form a mixed solution having a concentration of 0.1 to 1M.

Description

나노임프린트에서 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법{Vapor deposition of Self-Assembled monolayers for functionalization of surface in Nanoimprint Lithography}Vapor deposition of self-assembled monolayers for functionalization of surface in Nanoimprint Lithography

도 1은 본 발명에 따른 일실시예로 Si 나노임프린트 스탬프위에 TMS 가 증착된 후 얻은 Atomic Force Microscopy image로 표면거칠기를 나타낸 도면,1 is a view showing a surface roughness with an Atomic Force Microscopy image obtained after TMS is deposited on a Si nanoimprint stamp in one embodiment according to the present invention;

도 2는 본 발명에 따른 일실시예로 Si 나노임프린트 스탬프위에 TMS가 증착된 후 얻은 X-ray Photoelectron Spectrum으로 TMS가 증착되어 있음을 나타낸 그래프,2 is a graph showing that TMS is deposited by X-ray Photoelectron Spectrum obtained after TMS is deposited on a Si nanoimprint stamp according to an embodiment of the present invention.

도 3은 본 발명에 따른 일실시예로 Si 나노임프린트 스탬프위에 TMS가 증착된 후 임프린트한 스탬프와 기판의 Scanning Electron Microscopy images로 패턴이 전사됨을 나타낸 도면.Figure 3 is a view showing that the pattern is transferred to the Scanning Electron Microscopy images of the imprinted stamp and the substrate after the TMS is deposited on the Si nanoimprint stamp in one embodiment according to the present invention.

본 발명은 나노임프린트공정에 있어서 자기조립 단분자막(SAMs : Self- Assembled monolayers)을 이용하여 다양한 기질: 반도체, 금속, 폴리머, 유리표면위에 기능성 초박막을 형성시킴으로써 나노임프린트 스탬프(Mask)와 기판(Wafer)의 기능성을 향상시키는 방법에 관한 것이다.In the nanoimprint process, self-assembled monolayers (SAMs) are used to form a functional ultra-thin film on various substrates: semiconductor, metal, polymer, and glass surface, thereby forming nanoimprint stamps and substrates. It relates to a method of improving the functionality of the.

일반적으로 나노임프린트는 리소그래피의 한 방법으로 나노구조물이 각인된 스탬프를 레지스트(폴리머수지)가 스핀코팅이나 디스펜싱된 기판표면에 눌러 나노구조물을 전사하는 기술로, 나노스탬프를 이용한 나노패턴 성형 공정시, 스탬프 표면과 폴리머수지간의 부피에 대한 표면적의 증가로 인한 점착으로 성형품위가 저하되는 문제가 발생한다.In general, nanoimprint is a technique of lithography, in which a stamp in which a nanostructure is imprinted is transferred onto a surface of a substrate coated with a resist (polymer resin) by spin coating or dispensed. In addition, there is a problem in that the molded article is degraded due to the adhesion due to the increase in the surface area of the stamp surface and the polymer resin.

또한, 레지스트의 종류에 따라 스탬프와 기판표면의 표면에너지를 조절해야 할 필요가 생기는데, 이때 자기조립 단분자막이 사용될 수 있다.In addition, there is a need to adjust the surface energy of the stamp and the substrate surface according to the type of the resist, a self-assembled monolayer may be used.

통상적으로 자기조립 단분자막은 마이크로머신(MEMS : Micro- Electro- Mechanical System)이나 전자·바이오소자 또는 그를 제작하는 공정 중에 표면이나 계면의 기능을 활성화할 때 사용되는 유기물질로서, 적절한 기판에 대한 흡착에 의해서 자발적(self)으로 형성되어 모이는(assembly) 분자들을 의미한다.Typically, self-assembled monolayers are organic materials used to activate the functions of surfaces or interfaces during micro-electromechanical systems (MEMS), electronic and bio-devices, or during their fabrication processes. It means molecules that are formed and assembled spontaneously by themselves.

기판과는 유기물질의 head group이 강한 인력으로 화학적 결합을 통해 화학흡착을 하고, alkyl chain들은 van der waals interaction에 의해 잘 정렬되게 기판위에 증착되기 때문에, 표면은 말단기의 화학적 특성에 따라 그 기능을 가지게 된다.Because the head group of organic materials and the substrate attract chemical chemisorption through chemical bonding with strong attraction, and the alkyl chains are deposited on the substrate so that they are well aligned by van der waals interaction, the surface depends on the chemical properties of the end groups. Will have

이와 같이 자기조립 단분자막을 표면이나 계면에 증착하는 방법에는 액상증 착법과 기상증착법이 사용되고 있다.As such, a liquid phase deposition method and a vapor phase deposition method are used for depositing a self-assembled monolayer on a surface or an interface.

주로 사용되는 액상증착법은 기판을 세정한 후, 필요에 따라서는 산처리를 거친 후, 자기조립단분자 화합물을 일정 농도로 녹인 용액에 전처리한 기판을 일정시간 담그어 자기조립 단분자막을 형성하는 방법이다. 하지만, 자기조립단분자의 종류에 따라 불활성의 분위기가 필요하고 많은 용매가 사용된다.The liquid vapor deposition method, which is mainly used, is a method of cleaning a substrate, and then subjecting it to acid treatment if necessary, and then immersing the pretreated substrate in a solution in which the self-assembled monomolecular compound is dissolved at a constant concentration for a predetermined time to form a self-assembled monomolecular film. However, depending on the type of self-assembled molecule, an inert atmosphere is required and many solvents are used.

특히, 실란계의 화합물을 사용할 경우에는 공기중이나 용매의 수분에 민감하게 반응하여 표면에 자기조립 단분자막뿐만 아니라 이들 화합물 등이 중합 반응한 작은 알갱이들이 표면에 많이 생성되기도 한다. 기상증착법은 용매없이 기판을 자기조립단분자 화합물의 증기에 노출시키는 방법으로 기판은 세정 후 산처리나 플라즈마를 이용하여 전처리를 할 수 있다. 기상증착법은 용매를 절약할 수 있으며, 특히 알갱이가 존재하지 않는 작은 거칠기의 깨끗한 표면을 얻을 수 있다. In particular, when a silane compound is used, it reacts sensitively to air or solvent moisture to generate a large number of small particles on the surface as well as a self-assembled monomolecular film. Vapor deposition is a method in which a substrate is exposed to vapor of a self-assembled monomolecular compound without a solvent. The substrate may be cleaned and then pretreated by acid treatment or plasma. Vapor deposition can save solvent, and in particular achieve a clean surface of small roughness free of granules.

이와 같이, 나노구조물을 주로 다루는 나노임프린트에서 기판의 표면을 활성화 즉, 점착력을 줄이거나 조절하기 위하여 자기조립 단분자막을 나노임프린트 기판위에 증착할 때, 위에서 상기한 방법 중 액상증착법은 많은 중합반응된 알갱이들이 표면의 거칠기를 증가시키고 패턴전사에 오염물질로 작용됨은 물론, 나노패턴사이로 액체인 화합물이 스며드는데 한계를 가지게 되는 문제점이 있다.As such, when depositing a self-assembled monomolecular film on a nanoimprint substrate in order to activate the surface of the substrate, that is, to reduce or control the adhesion in the nanoimprint mainly dealing with nanostructures, the liquid phase deposition method of the above-described method is a large number of polymerized particles This increases the surface roughness and acts as a contaminant in the pattern transfer, as well as a problem that the liquid compound penetrates between the nano-pattern has a limit.

따라서, 나노임프린트에서는 기상증착법이 적합한데 지금까지는 주로 다이싱된 작은 조각기판을 수동으로 처리하고 있었다. 최근 자기조립 단분자막을 기상증착하는 장비들이 발표되긴 했으나, 이 장비들은 마이크로머신의 표면에 자기조립 단분자막을 증착하는데 주로 사용되도록 개발되어 대면적으로 나노구조물을 다루는 나노임프린트공정에 사용되기에는 미진한 문제점이 있다.Therefore, the vapor deposition method is suitable for nanoimprint, which until now has been mainly dealt with dicing small dice substrates manually. Recently, devices for vapor deposition of self-assembled monolayers have been announced, but these devices have been developed to be mainly used for depositing self-assembled monolayers on the surface of micromachines. have.

상기와 같은 문제점을 해결하기 위한 본 발명은, 나노임프린트 공정에 있어서 자기조립 단분자막(SAMs : Self-Assembled monolayers)을 이용하여 다양한 기질: 반도체, 금속, 폴리머, 유리표면위에 기능성 초박막을 형성하여 SiO2, Si, Ge, Au, Ag, Pt, Pd, GaAs, InP, InSb, Ni, PMMA, PET, TiO2, Al2O3 와 같은 나노임프린트 스탬프와 기판의 표면에너지를 조절함으로써 그 기능성을 향상시키기 위한 기상증착방법을 제공하고자 하는데 그 목적이 있다.The present invention for solving the above problems, in the nanoimprint process using a self-assembled monolayers (SAMs: Self-Assembled monolayers) using a variety of substrates: semiconductor, metal, polymer, glass surface to form a functional ultra-thin film SiO 2 , Nanoimprint stamps such as Si, Ge, Au, Ag, Pt, Pd, GaAs, InP, InSb, Ni, PMMA, PET, TiO 2 , Al 2 O 3 and substrate energy to improve their functionality The purpose is to provide a vapor deposition method.

상기와 같은 목적을 달성하기 위하여 본 발명은, 자기조립 단분자막을 형성하고자 하는 나노임프린트 스탬프와 기판 중 어느 하나를 세정하는 단계, 상기 세정단계를 거친 상기 스탬프와 기판 중 어느 하나의 표면을 활성화시키기 위한 플라즈마 처리단계, 상기 플라즈마 처리단계를 거친 표면을 챔버에 투입시켜 표면에 실란화합물이나 티올화합물로 자기조립 단분자막을 증착시키는 증착단계 및 자기조립 단분자막이 증착된 표면을 상기 챔버에서 안정화시키는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention is to clean any one of the nanoimprint stamp and the substrate to form a self-assembled monomolecular film, for activating the surface of any one of the stamp and the substrate subjected to the cleaning step Plasma treatment step, the deposition step of depositing a self-assembled monomolecular film with a silane compound or a thiol compound on the surface by putting the surface subjected to the plasma treatment step in the chamber and stabilizing the surface on which the self-assembled monomolecular film is deposited in the chamber; It is characterized by.

본 발명에 따른 바람직한 한 특징으로는, 상기 나노임프린트 스탬프와 기판 의 재질은, SiO2, Si, Ge, Au, Ag, Pt, Pd, GaAs, InP, InSb, Ni, PMMA, PET, TiO2, Al2O3 중 어느 하나인 것을 특징으로 한다.In one preferred feature according to the invention, the material of the nanoimprint stamp and the substrate, SiO 2 , Si, Ge, Au, Ag, Pt, Pd, GaAs, InP, InSb, Ni, PMMA, PET, TiO 2 , Al 2 O 3 It is characterized in that any one.

본 발명에 따른 바람직한 다른 특징으로는, 상기 증착단계에 사용되는 화합물은, TMS, DDMS, FOTS, APDMS, ODT를 사용하여 증착되는 것을 특징으로 한다.In another preferred feature according to the invention, the compound used in the deposition step is characterized in that deposited using TMS, DDMS, FOTS, APDMS, ODT.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 증착단계에 사용되는 화합물에, 톨루엔(C7H8)과 이소프로판올((CH3)2CHOH) 중 어느 하나의 용매를 혼합하고, 그 농도가 0.1 내지 1M인 것을 특징으로 한다.According to another preferred feature of the present invention, toluene (C 7 H 8 ) and isopropanol ((CH 3 ) 2 CHOH) mixed with a compound used in the deposition step, the concentration is 0.1 To 1M.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 증착단계는, 사용되는 화합물을 혼합하여 사용하는 것을 특징으로 한다.According to another preferred feature of the present invention, the deposition step is characterized in that for use by mixing the compound used.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 실란화합물을 사용하여 증착단계를 거친 후에는, 상기 챔버내에서 불활성기체를 사용하여 열처리,상기 챔버를 진공상태에서 50 ~ 300℃의 온도로 열처리 중 어느 하나를 사용하여 열처리 하는 단계를 더 포함시키는 것을 특징으로 한다.In another preferred embodiment of the present invention, after the deposition step using the silane compound, heat treatment using an inert gas in the chamber, during the heat treatment of the chamber at a temperature of 50 ~ 300 ℃ in a vacuum state It characterized in that it further comprises the step of heat treatment using any one.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 세정단계는, 초음파 세척기를 사용하여 아세톤으로 세정한 후 메탄올로 세정하는 것을 특징으로 한다.According to another preferred feature of the present invention, the washing step is characterized in that the washing with acetone using an ultrasonic cleaner and then with methanol.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 세정단계 후에는, 염화플로오르(HF)를 사용하여 상기 세정단계를 마친 표면을 식각하는 단계를 더 포함하는 것을 특징으로 한다.According to another preferred feature of the present invention, after the cleaning step, it is characterized in that it further comprises the step of etching the surface of the cleaning step using the fluoro chloride (HF).

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 증착단계시에는, 화합물 을 저장하고 있는 저장고와 챔버내에 화합물을 주입시켜주는 관을 50 내지 300℃로 가열하여 챔버내로 주입시키는 것을 특징으로 한다.In another preferred embodiment of the present invention, in the deposition step, a reservoir storing the compound and a tube for injecting the compound into the chamber are heated to 50 to 300 ° C. and injected into the chamber.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 증착단계시에는, 불활성기체를 사용하여 화합물을 챔버내로 주입시키는 것을 특징으로 한다.In another preferred embodiment of the present invention, in the deposition step, an inert gas is used to inject the compound into the chamber.

본 발명에 따른 바람직한 또 다른 특징으로는, 상기 플라즈마 처리단계는, 산소플라즈마, 아르곤플라즈마, 물플라즈마 중 어느 하나 내지 둘 이상 선택적으로 사용하는 것을 특징으로 한다.According to another preferred feature of the present invention, the plasma treatment step is characterized in that any one or two or more of the oxygen plasma, argon plasma, water plasma selectively used.

이하, 본 발명에 따른 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법에 대한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, an embodiment of the vapor deposition method of the self-assembled monolayer for improving the functionality of the surface of the nanoimprint according to the present invention will be described in detail.

도 1은 본 발명에 따른 일실시예로 Si 나노임프린트 스탬프위에 TMS 가 증착된 후 얻은 Atomic Force Microscopy image로 표면거칠기를 나타낸 도면, 도 2는 본 발명에 따른 일실시예로 Si 나노임프린트 스탬프위에 TMS가 증착된 후 얻은 X-ray Photoelectron Spectrum으로 TMS가 증착되어 있음을 나타낸 그래프, 도 3은 본 발명에 따른 일실시예로 Si 나노임프린트 스탬프위에 TMS가 증착된 후 임프린트한 스탬프와 기판의 Scanning Electron Microscopy images로 패턴이 전사됨을 나타낸 도면이다.1 is a view showing the surface roughness in the atomic force microscopy image obtained after the TMS is deposited on the Si nanoimprint stamp in one embodiment according to the present invention, Figure 2 is a TMS on a Si nanoimprint stamp in one embodiment according to the present invention TMS is deposited on the X-ray Photoelectron Spectrum obtained after the deposition, Figure 3 is an embodiment according to the invention scanning electron electron microscopy of the imprinted stamp and substrate after the TMS deposited on the Si nanoimprint stamp The figure shows that the pattern is transferred to images.

우선, 실리카(SiO2)인 hydroxylated surfaces(스탬프)위에 실란화합물(organic silicon)을 증착하는 방법에 대해 상세하게 설명하면 다음과 같다.First, a method of depositing a silane compound (organic silicon) on hydroxylated surfaces (stamp), which is silica (SiO 2 ), will be described in detail.

나노구조물이 각인된 나노임프린트 유리스탬프 표면을 초음파 세척기를 이용하여 아세톤으로 세척한 다음 메탄올로 깨끗이 세정하고, 1:1(v/v)의 염화플로오르(HF)를 이용하여 상기 나노임프린트 유리스탬프 표면을 10분간 식각한다.The nanoimprinted glass stamped surface of the nanostructure was washed with acetone using an ultrasonic cleaner and then cleaned with methanol, and the nanoimprinted glass stamp using 1: 1 (v / v) fluorochloride (HF). Etch the surface for 10 minutes.

식각된 상기 나노임프린트 유리스탬프를 챔버(Chamber)안에 넣고 산소플라즈마로 처리하여 표면에 수산화기를 만들어 실란화합물과 결합할 수 있도록 활성화시키는데, 이 때 처리조건은 산소압력은 100 내지 500 m Torr로 하고, 플라즈마 세기는 100 내지 500 W하며, 처리시간은 1 내지 10분으로 한다.The etched nanoimprinted glass stamp is placed in a chamber and treated with oxygen plasma to make a hydroxyl group on the surface to be combined with the silane compound. At this time, the oxygen pressure is 100 to 500 m Torr, The plasma intensity is 100 to 500 W, and the treatment time is 1 to 10 minutes.

상기 플라즈마 처리단계에서 물플라즈마로 처리하는 공정을 더 수행하게 되면 더욱 활성화된 표면을 얻을 수 있는데, 이때 처리조건은 수증기압력을 500 내지 1000 m Torr로 하고, 플라즈마 세기는 100 내지 500 W, 처리시간은 10초 내지 1분으로 하여 물플라즈마 처리함에 따라 더욱 활성화된 표면을 얻을 수 있다.If the plasma treatment step is further performed with a water plasma treatment, a more activated surface can be obtained. In this case, the treatment conditions are water vapor pressure of 500 to 1000 m Torr, plasma intensity of 100 to 500 W, and treatment time. Silver is 10 seconds to 1 minute to obtain a more activated surface by water plasma treatment.

상기 활성화된 나노임프린트 유리스탬프는 동일 챔버안에서 적절한 실란화합물의 증기에 노출되어 실란화합물이 기판표면과 화학반응을 일으켜 공유결합을 이루며 증착되는데, 이때 증착조건은 챔버압력은 1 내지 5 Torr, 처리시간은 10 내지 60분으로 하며, 경우에 따라서는 실란화합물에 증착되기 전 1 내지 5 Torr의 수증기에 30초 내지 5분 동안 담그어 놓으면 더욱 잘 정렬된 증착막을 얻을 수 있다.The activated nanoimprinted glass stamp is deposited in the same chamber by exposure to the appropriate vapor of the silane compound to form a chemical reaction with the surface of the substrate to form a covalent bond, wherein the deposition condition is a chamber pressure of 1 to 5 Torr, processing time It is 10 to 60 minutes, and in some cases, a better aligned deposition film can be obtained by soaking in 1 to 5 Torr of water vapor for 30 seconds to 5 minutes before being deposited on the silane compound.

상기 증착단계에서 사용되는 실란화합물은 DDMS(Dimethyl Dichlorosilane), TMS(Trimethyl Chlorosilane), FOTS(Perfluoro Octyl Chlorosilane), APMDS(3-Acryloxypropyl Methyl Dichlorosilane)이 사용된다. 상기 증착단계에서는 상기 실란화합물을 혼합하여 증착시키거나 개별적으로 사용하여 순차적으로 증착시킬 수도 있다.As the silane compound used in the deposition step, Dimethyl Dichlorosilane (DDMS), Trimethyl Chlorosilane (TMS), Perfluoro Octyl Chlorosilane (FOTS), and 3-Acryloxypropyl Methyl Dichlorosilane (APMDS) are used. In the deposition step, the silane compound may be mixed and deposited, or may be deposited sequentially using individual.

이때, 상기 실란화합물을 저장하고 있는 저장고와, 이를 챔버내로 주입시켜주기 위한 관을 50 내지 300ㅀC로 가열시킨 후 상기 실란화합물을 챔범내로 주입시킨다. 또한, 다른 방법으로 불활성기체를 사용하여 챔버내로 주입시킬 수도 있다.At this time, a reservoir for storing the silane compound and a tube for injecting the silane compound into the chamber are heated to 50 to 300 ° C., and then the silane compound is injected into the chamber. Alternatively, the inert gas may be used to inject into the chamber.

상기 증착단계에서 사용되는 실란화합물은 그 자체를 그대로 사용하여 증착시키거나, 톨루엔(C7H8) 또는 이소프로판올(isopropyl alcohol) 용매에 0.1 내지 1M의 농도가 되도록 녹여서 사용할 수도 있다.The silane compound used in the deposition step may be deposited as it is, or dissolved in toluene (C 7 H 8 ) or isopropanol (isopropyl alcohol) solvent so as to have a concentration of 0.1 to 1 M.

이와 같이 나노임프린트 유리스탬프표면에 증착된 실란계 자기조립 단분자막이 증착된 후 안정화처리를 하게 된다. 여기서 안정화 처리를 수행하기 전에 자기조립 단분자막이 잘 정렬되기 위하여 동일 챔버내에서 열처리 단계를 더 수행할 수 있다. 상기 열처리 단계는 실란계 자기조립 단분자막이 증착된 기판을 불활성기체나 진공분위기에서 자기조립 단분자막의 종류에 따라 온도를 50 내지 300℃로 조절한 뒤 10 내지 60분간 행하는 것으로 이루어지는 것이 바람직하다.As such, the silane-based self-assembled monolayer deposited on the surface of the nanoimprint glass stamp is deposited and then stabilized. Here, before performing the stabilization treatment, the heat treatment step may be further performed in the same chamber in order to align the self-assembled monolayer. The heat treatment may be performed for 10 to 60 minutes after adjusting the temperature of the substrate on which the silane-based self-assembled monolayer is deposited according to the type of self-assembled monolayer in an inert gas or vacuum atmosphere.

또한, 기판인 웨이퍼에 실란화합물을 증착하는 방법도 상기와 같이 동일한 방법을 진행하면 된다.In addition, the method of depositing a silane compound on a wafer as a substrate may be performed in the same manner as described above.

다음으로 Au나 Cu와 같은 금속의 나노임프린트 스탬프 위에 티올(thiol)화합물을 사용하여 증착하는 방법을 좀 더 상세하게 살펴보면 하기와 같다.Next, a method of depositing a thiol compound on a nanoimprint stamp of a metal such as Au or Cu will be described in more detail.

나노구조물이 각인된 나노임프린트 금속스탬프 표면을 상술한 바와 같이 동 일하게 초음파 세척기를 사용하여 아세톤으로 먼저 세정한 다음 메탄올로 다시 깨끗하게 세정한다. 여기서도 상기 실란화합물을 사용하여 증착하는 과정에서 동일하게 1:1(v/v)의 염화플로오르(HF)를 이용하여 상기 나노임프린트 유리기판 표면을 10분간 식각한다.The nanoimprinted metal stamp surface with the nanostructures imprinted thereon is first cleaned with acetone using an ultrasonic cleaner and then cleaned again with methanol. Here, the surface of the nanoimprint glass substrate is etched for 10 minutes by using 1: 1 (v / v) fluorochloride (HF) during the deposition process using the silane compound.

상기 세정단계를 거친 나노임프린트 금속스탬프를 챔버안에 넣고 아르곤플라즈마나 산소플라즈마로 처리하여 표면을 세정하는데, 이 때 처리조건은 기체압력을 100 내지 500 m Torr로 하고 플라즈마 세기는 100-500 W로 하여 처리시간 30초 내지 1분으로 하는 것이 바람직하다.After the nanoimprint metal stamp, which has undergone the cleaning step, is placed in the chamber, the surface is cleaned by argon plasma or oxygen plasma, and the treatment conditions are gas pressure of 100 to 500 m Torr and plasma intensity of 100-500 W. It is preferable to set it as processing time 30 second-1 minute.

상기 세정된 나노임프린트 금속스탬프는 동일 챔버안에서 적절한 티올(thiol)화합물과, 이를 녹인 용매의 증기에 노출되어 티올화합물이 기판표면과 화학반응을 일으켜 공유결합을 이루며 증착되는데, 이때 증착조건은 챔버압력은 5-10 Torr, 처리시간은 10-60분으로 한다.The cleaned nano-imprint metal stamp is deposited in the same chamber with an appropriate thiol compound and a vapor of a solvent in which the thiol compound is chemically reacted with the surface of the substrate to form a covalent bond. Is 5-10 Torr, and the treatment time is 10-60 minutes.

상술한 증착단계에서 사용되는 티올화합물은 그 자체로 사용하여 증착시키거나 톨루엔(toluene ; C7H8) 또는 이소프로판올(isopropyl alcohol) 용매에 0.1 내지 1 M의 농도가 되도록 녹여 증착시킬 수도 있다.The thiol compound used in the above-described deposition step may be deposited by itself or dissolved by dissolving in toluene (C 7 H 8 ) or isopropanol (isopropyl alcohol) solvent to a concentration of 0.1 to 1 M.

상술한 바와 같이 티올화합물을 사용하여 기판인 Au, Ag, Pt, Pd, GaAs, InP, InSb, Ge 웨이퍼에 증착하는 방법 또한 상기 과정과 동일하게 진행한다.As described above, a method of depositing on a substrate Au, Ag, Pt, Pd, GaAs, InP, InSb, or Ge wafer using a thiol compound is also performed in the same manner as the above process.

이하, 실시예에 의하여 본 발명을 더욱 자세하게 설명하기는 하나. 하기의 실시예는 본 발명의 예시일 뿐, 본 발명이 하기의 실시예에 의해 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are merely illustrative of the present invention, and the present invention is not limited by the following examples.

<실시예 1><Example 1>

나노구조물이 각인된 SiO2인 hydroxylated surfaces(스탬프) 표면을 아세톤과 메탄올으로 세정하고, 1:1(v/v)의 염화플로오르(HF)를 이용하여 표면을 10분간 식각한다.The surface of the hydroxylated surfaces (stamped), the SiO 2 engraved nanostructures, was cleaned with acetone and methanol, and the surfaces were etched for 10 minutes using 1: 1 (v / v) chloride (HF).

식각된 상기 나노임프린트 스탬프를 챔버안에 넣고 압력은 100 m Torr, 플라즈마 세기는 100 W인 산소플라즈마로 3분간 처리한 다음, 압력은 500 m Torr, 플라즈마 세기는 200 W인 물 플라즈마로 30초간 처리하고, 1 Torr의 수증기에 30초간 담그어 놓았다가, DDMS(Dimethyl Dichlorosilane)를 3 Torr에 15분간 노출시켜 증착한 후, 80℃에서 1시간 열처리하여 잘 정렬된 증착막을 얻었다.The etched nanoimprint stamp was placed in a chamber and treated with oxygen plasma having a pressure of 100 m Torr and a plasma intensity of 100 W for 3 minutes, and then treated with a water plasma of 500 m Torr and 200 W of plasma for 30 seconds. After soaking in 1 Torr of water vapor for 30 seconds, DDMS (Dimethyl Dichlorosilane) was exposed to 3 Torr for 15 minutes to be deposited, and then heat-treated at 80 ° C. for 1 hour to obtain a well-ordered deposition film.

<실시예 2><Example 2>

실시예 1과 동일한 방법으로 제조하되, 상기 실란화합물을 TMS(Trimethyl Chlorosilane)로 사용하여 증착시킨다.Prepared in the same manner as in Example 1, the silane compound is deposited using TMS (Trimethyl Chlorosilane).

<실시예 3><Example 3>

실시예 1과 동일한 방법으로 제조하되, 상기 실란화합물을 FOTS(Perfluoro Octyl Chlorosilane)로 사용하여 증착시킨다.Prepared in the same manner as in Example 1, the silane compound is deposited using Perfluoro Octyl Chlorosilane (FOTS).

<실시예 4><Example 4>

실시예 1과 동일한 방법으로 제조하되, 상기 실란화합물을 APMDS(3- Acryloxypropyl Methyl Dichlorosilane)로 사용하여 증착시킨다.Prepared in the same manner as in Example 1, the silane compound is deposited using APMDS (3- Acryloxypropyl Methyl Dichlorosilane).

<실시예 5><Example 5>

나노구조물이 각인된 Au스탬프 표면을 아세톤과 메탄올으로 세정하는 단계를 거친 후, 상기 기판을 챔버안에 넣고 압력은 100 m Torr, 플라즈마 세기는 100 W인 산소플라즈마로 1분간 처리한 다음, 이소프로판올(isopropyl alcohol ; (CH3)2CHOH) 용매에 1M의 농도가 되도록 ODT(Octadecanethiol)를 녹인 용액의 증기로 10 Torr압력을 만들어, 이에 15분간 노출시켜 증착막을 얻었다. After washing the Au-stamp surface with nanostructures imprinted with acetone and methanol, the substrate was placed in a chamber and treated with oxygen plasma having a pressure of 100 m Torr and a plasma intensity of 100 W for 1 minute, followed by isopropanol (isopropyl). 10 Torr pressure was made by vapor of a solution of ODT (Octadecanethiol) dissolved in an alcohol; (CH 3 ) 2 CHOH) solvent to give a deposition film for 15 minutes.

상술한 바와 같은 본 발명은 나노임프린트 공정에서 스탬프(Mask)나 기판(Wafer) 표면에 자기조립 단분자막을 형성시킴에 있어서, 대면적에 용이하게 실시할 수 있으며, 또한, 불순물을 최소화시켜 결과적으로 나노패턴을 전사하는데 높은 효율성을 제고시킬 수 있는 이점이 있다.As described above, the present invention can be easily implemented in a large area in forming a self-assembled monomolecular film on a surface of a stamp or a substrate in a nanoimprint process, and also minimizes impurities and consequently nano There is an advantage that can improve the high efficiency in transferring the pattern.

이상, 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. While the invention has been described and illustrated in connection with a preferred embodiment for illustrating the principles of the invention, the invention is not limited to the construction and operation as shown and described.

오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.Rather, it will be apparent to those skilled in the art that many changes and modifications to the present invention are possible without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

상술한 바와 같이 구성되는 본 발명은 나노임프린트 공정에서 스탬프나 기판 표면에 자기조립 단분자막의 증착방법으로 실란화합물 또는 티올화합물을 사용하여 비교적 간단하게 대면적에 전체적으로 빈틈없고 불순물 없는 자기조립 단분자막을 증착하여, 나노임프린트 공정 시 나노패턴이 효과적으로 전사시킬 수 있는 이점이 있다.The present invention constructed as described above is a method of depositing a self-assembled monomolecular film on a surface of a stamp or a substrate in a nanoimprint process by using a silane compound or a thiol compound, and relatively simply depositing a self-assembled monomolecular film with no gaps and large impurities in a large area. In the nanoimprint process, there is an advantage that the nanopattern can be effectively transferred.

Claims (11)

자기조립 단분자막을 형성하고자 하는 나노임프린트 스탬프와 기판 중 어느 하나를 세정하는 단계;Cleaning any one of a nanoimprint stamp and a substrate to form a self-assembled monolayer; 상기 세정단계를 거친 상기 스탬프와 기판 중 어느 하나의 표면을 활성화시키기 위한 플라즈마 처리단계;A plasma processing step of activating a surface of any one of the stamp and the substrate which has undergone the cleaning step; 상기 플라즈마 처리단계를 거친 표면을 챔버에 투입시켜 표면에 실란화합물이나 티올화합물로 자기조립 단분자막을 증착시키는 증착단계; 및Depositing a self-assembled monomolecular film with a silane compound or a thiol compound on the surface by injecting the surface subjected to the plasma treatment step into a chamber; And 자기조립 단분자막이 증착된 표면을 상기 챔버에서 안정화시키는 단계를 포함하며,Stabilizing the surface on which the self-assembled monolayer is deposited, in the chamber, 상기 증착단계에 사용되는 화합물에,In the compound used in the deposition step, 톨루엔(C7H8)과 이소프로판올((CH3)2CHOH) 중 어느 하나의 용매를 혼합하고, 그 농도가 0.1 내지 1M인 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.Toluene (C 7 H 8 ) and isopropanol ((CH 3 ) 2 CHOH) is mixed with a solvent, the concentration is 0.1 to 1M characterized in that the vapor phase of the self-assembled monolayer for improving the functionality of the nanoimprint surface Vapor deposition method. 제 1항에 있어서, 상기 나노임프린트 스탬프와 기판의 재질은,The method of claim 1, wherein the nanoimprint stamp and the material of the substrate, SiO2, Si, Ge, Au, Ag, Pt, Pd, GaAs, InP, InSb, Ni, PMMA, PET, TiO2, Al2O3 중 어느 하나인 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.SiO 2 , Si, Ge, Au, Ag, Pt, Pd, GaAs, InP, InSb, Ni, PMMA, PET, TiO 2 , Al 2 O 3 Self-assembled monolayer for improving the functionality of the nanoimprint surface Vapor deposition method. 제 1항에 있어서, 상기 증착단계에 사용되는 화합물은,The method of claim 1, wherein the compound used in the deposition step, TMS, DDMS, FOTS, APDMS, ODT 중 하나 또는 둘 이상을 사용하여 증착되는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.Vapor deposition method of a self-assembled monolayer for improving the functionality of the surface of the nanoimprint, characterized in that deposited using one or more of TMS, DDMS, FOTS, APDMS, ODT. 삭제delete 제 3항에 있어서, 상기 증착단계는,The method of claim 3, wherein the depositing step, 사용되는 화합물을 혼합하여 사용하는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.A vapor deposition method of a self-assembled monomolecular film for improving the functionality of the surface of the nanoimprint, characterized by using a mixture of the compounds used. 제 1항에 있어서, 상기 실란화합물을 사용하여 증착단계를 거친 후에는,According to claim 1, After the deposition step using the silane compound, 상기 챔버내에서 불활성기체를 사용하여 열처리,Heat treatment using an inert gas in the chamber, 상기 챔버를 진공상태에서 50 ~ 300℃의 온도로 열처리 중 어느 하나를 사용하여 열처리 하는 단계를 더 포함시키는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.The vapor deposition method of the self-assembled monomolecular film for improving the functionality of the nanoimprint surface, characterized in that further comprising the step of heat-treating the chamber using any one of heat treatment at a temperature of 50 ~ 300 ℃ in a vacuum state. 제 1항에 있어서, 상기 세정단계는,The method of claim 1, wherein the cleaning step, 초음파 세척기를 사용하여 아세톤으로 세정한 후 메탄올로 세정하는 것을 특 징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.A vapor deposition method of a self-assembled monomolecular film for improving the functionality of the surface of the nanoimprint, characterized by washing with acetone using an ultrasonic cleaner and then washing with methanol. 제 1항 또는 7항에 있어서, 상기 세정단계 후에는,The method of claim 1 or 7, wherein after the cleaning step, 염화플로오르(HF)를 사용하여 상기 세정단계를 마친 표면을 식각하는 단계를 더 포함하는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.The vapor deposition method of the self-assembled monolayer for improving the functionality of the nanoimprint surface, characterized in that it further comprises the step of etching the surface after the cleaning step using a fluoro chloride (HF). 제 1항에 있어서, 상기 증착단계시에는,According to claim 1, During the deposition step, 화합물을 저장하고 있는 저장고와 챔버내에 화합물을 주입시켜주는 관을 50 내지 300℃로 가열하여 챔버내로 주입시키는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.A vapor deposition method of a self-assembled monolayer for improving the functionality of the surface of a nanoimprint, characterized in that the storage chamber and the tube injecting the compound into the chamber containing the compound is heated to 50 to 300 ℃. 제 1항에 있어서, 상기 증착단계시에는, According to claim 1, During the deposition step, 불활성기체를 사용하여 화합물을 챔버내로 주입시키는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자기조립 단분자막의 기상증착방법.A vapor deposition method of a self-assembled monolayer for improving the functionality of the surface of the nanoimprint, characterized in that the compound is injected into the chamber using an inert gas. 제 1항에 있어서, 상기 플라즈마 처리단계는,The method of claim 1, wherein the plasma processing step, 산소플라즈마, 아르곤플라즈마, 물플라즈마 중 어느 하나 내지 둘 이상 선택적으로 사용하는 것을 특징으로 하는 나노임프린트 표면의 기능성 향상을 위한 자 기조립 단분자막의 기상증착방법.Vapor deposition method of the self-assembled monolayer for improving the functionality of the surface of the nanoimprint, characterized in that any one or two or more of oxygen plasma, argon plasma, water plasma selectively used.
KR1020060104837A 2006-10-27 2006-10-27 Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography KR100812182B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060104837A KR100812182B1 (en) 2006-10-27 2006-10-27 Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060104837A KR100812182B1 (en) 2006-10-27 2006-10-27 Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography

Publications (1)

Publication Number Publication Date
KR100812182B1 true KR100812182B1 (en) 2008-03-12

Family

ID=39398321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060104837A KR100812182B1 (en) 2006-10-27 2006-10-27 Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography

Country Status (1)

Country Link
KR (1) KR100812182B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148284A2 (en) * 2008-06-05 2009-12-10 주식회사 소로나 Gaseous self-assembled monolayer coating apparatus
KR101321104B1 (en) * 2010-12-22 2013-10-23 한국기계연구원 Method of producing stamp for nano-imprint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656398B2 (en) 2001-06-19 2003-12-02 Corning Incorporated Process of making a pattern in a film
JP2005220064A (en) * 2004-02-05 2005-08-18 Nissan Chem Ind Ltd Carboxyphenylphosphonic ester compound and method for producing the same
US20060012079A1 (en) 2004-07-16 2006-01-19 Gun-Young Jung Formation of a self-assembled release monolayer in the vapor phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656398B2 (en) 2001-06-19 2003-12-02 Corning Incorporated Process of making a pattern in a film
JP2005220064A (en) * 2004-02-05 2005-08-18 Nissan Chem Ind Ltd Carboxyphenylphosphonic ester compound and method for producing the same
US20060012079A1 (en) 2004-07-16 2006-01-19 Gun-Young Jung Formation of a self-assembled release monolayer in the vapor phase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
고분자과학과 기술 제17권 2호(2006.4)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148284A2 (en) * 2008-06-05 2009-12-10 주식회사 소로나 Gaseous self-assembled monolayer coating apparatus
WO2009148284A3 (en) * 2008-06-05 2010-03-04 주식회사 소로나 Gaseous self-assembled monolayer coating apparatus
KR101321104B1 (en) * 2010-12-22 2013-10-23 한국기계연구원 Method of producing stamp for nano-imprint

Similar Documents

Publication Publication Date Title
US6830950B2 (en) Integrated method for release and passivation of MEMS structures
JP3600546B2 (en) Method for forming patterned indium zinc oxide film and indium tin oxide film by microcontact printing
US9725805B2 (en) Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
US20100078846A1 (en) Particle Mitigation for Imprint Lithography
US7045170B1 (en) Anti-stiction coating for microelectromechanical devices
US20050109277A1 (en) Method for controlled application of reactive vapors to produce thin films and coatings
US20100330278A1 (en) Method for treating high hydrophobic surface of substrate
US8641941B2 (en) Photocatalytic reactions in nano-imprint lithography processes
JPWO2007102487A1 (en) Processed substrate having hydrophilic region and water-repellent region and method for producing the same
US9323143B2 (en) Controlling template surface composition in nano-imprint lithography
US10026887B2 (en) Methods of tailoring the deposition of metals using self-assembled monolayers
US20060012079A1 (en) Formation of a self-assembled release monolayer in the vapor phase
Takei Ultraviolet nano imprint lithography using fluorinated silicon-based resist materials
KR100812182B1 (en) Vapor deposition of self-assembled monolayers for functionalization of surface in nanoimprint lithography
KR20210009284A (en) Surface treatment agent, surface treatment method, and area selective deposition method
US8658462B2 (en) Method of forming TiO2 array using ZnO template
KR100968809B1 (en) METHOD OF FORMING ZnO NANO PATTERN
JP7164777B2 (en) Systems and methods for suppressing defects, metal particle contamination and film growth on wafers
KR100815081B1 (en) Method for release treatment of stamper
KR20140108394A (en) Patterning method using mold treated by self assembled monolayer
KR100697505B1 (en) Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
US11332588B2 (en) Process for modification of a solid surface
JP3952455B2 (en) Nano-patterning method using organic monomolecular film as resist
CN102073212A (en) Nano grade thickness masking film for deep-UV lithography and preparation method thereof
KR20070064106A (en) Method for patterning poly(dimethylsiloxane) stamp using uv

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140207

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee