JP2007100191A - Apparatus and method for forming monolayer - Google Patents

Apparatus and method for forming monolayer Download PDF

Info

Publication number
JP2007100191A
JP2007100191A JP2005294037A JP2005294037A JP2007100191A JP 2007100191 A JP2007100191 A JP 2007100191A JP 2005294037 A JP2005294037 A JP 2005294037A JP 2005294037 A JP2005294037 A JP 2005294037A JP 2007100191 A JP2007100191 A JP 2007100191A
Authority
JP
Japan
Prior art keywords
substrate
self
film forming
chamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005294037A
Other languages
Japanese (ja)
Inventor
Koji Tominaga
浩二 富永
Yutaka Yamagishi
豊 山岸
Koichi Matsumoto
浩一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2005294037A priority Critical patent/JP2007100191A/en
Publication of JP2007100191A publication Critical patent/JP2007100191A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for forming a monolayer capable of depositing a uniformly and densely filled SAM (self-assembled monolayer) on a substrate of a large area. <P>SOLUTION: The apparatus deposits a self-assembled monolayer on a substrate by vaporizing a liquid raw material containing self-assembled molecules, and comprises a film deposition chamber for holding the substrate inside thereof, and an injection valve for directly injecting the liquid raw material into the film deposition chamber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、基板上に自己組織化単分子膜を形成する装置及び方法に関するものである。   The present invention relates to an apparatus and method for forming a self-assembled monolayer on a substrate.

原子、分子、微粒子等の微小要素は、自発的に集合し規則的な配列を形作ることがあるが、このような自己組織化現象は、微小要素を集積化して材料・デバイスを構築するボトムアップ・ナノテクノロジーにおいて重要な役割を果たすと考えられる。自己組織化を利用した材料プロセスのひとつに、有機分子の単層膜/多層膜形成がある。ある種の有機分子が固体表面への特異な吸着現象を示すことは古くから知られていたが、近年の研究によって、吸着の過程で吸着分子同士の相互作用によって、自発的に集合体を形成し、吸着分子が緻密に集合しかつ配向が揃った分子膜が形成される場合があることが明らかになってきた。   Microelements such as atoms, molecules, and fine particles may spontaneously assemble to form a regular array, but this self-organization phenomenon is a bottom-up that builds materials and devices by integrating microelements.・ It is considered to play an important role in nanotechnology. One of the material processes using self-organization is the formation of single-layer / multi-layer films of organic molecules. It has long been known that certain organic molecules exhibit a unique adsorption phenomenon on the surface of solids, but recent research has led to spontaneous formation of aggregates through the interaction of adsorbed molecules during the adsorption process. However, it has been clarified that a molecular film in which adsorbed molecules are densely gathered and aligned is sometimes formed.

特定の物質に対して親和性を有する有機分子の溶液に、その物質からなる基板を浸漬すると、有機分子が材料表面に化学吸着し有機薄膜が形成されるが、この吸着分子層が一層の場合、すなわち単分子膜が形成される場合には、当該有機薄膜は自己組織化単分子膜(Self-Assembled Monolayer, SAM)と呼ばれる。近時SAMに関する研究が大きく進展し、基礎・応用の両面から注目されるようになっている。   When a substrate made of a substance is immersed in a solution of an organic molecule that has affinity for a specific substance, the organic molecule is chemically adsorbed on the material surface to form an organic thin film. That is, when a monomolecular film is formed, the organic thin film is called a self-assembled monolayer (SAM). Recently, research on SAM has made great progress and has attracted attention from both basic and applied aspects.

例えば、表面に酸化膜が形成されたシリコン基板に、気相法により有機シラン分子のSAMを形成するには、従来、図4に示すように、密閉系システムによる方法が用いられている。この方法においては、オーブン12中に、有機シランを入れた容器6とシリコン基板2を入れた密閉容器13を置き、オーブン12を有機シランの沸点まで加熱する。すると、有機シランは気化し、シリコン基板2表面のOH基と有機シランが反応し、SAMが形成される。   For example, in order to form a SAM of an organosilane molecule on a silicon substrate having an oxide film formed on the surface by a vapor phase method, a method using a closed system is conventionally used as shown in FIG. In this method, a container 6 containing an organosilane and a sealed container 13 containing a silicon substrate 2 are placed in an oven 12, and the oven 12 is heated to the boiling point of the organosilane. Then, the organic silane is vaporized, and the OH group on the surface of the silicon substrate 2 reacts with the organic silane to form SAM.

特開平5−195222号公報JP-A-5-195222

しかしながら、このような方法では、密閉容器13内の有機シラン濃度が必要以上に高くなり、過剰な有機シランがシリコン基板2上に付着して、有機シランが次々に重合を起こすことがあり、シリコン基板2に結合した有機シラン分子の長さが不均一となり、歩留まりが悪かった。また、このような方法では大面積の基板にSAMを形成することは難しい。   However, in such a method, the concentration of the organic silane in the sealed container 13 becomes higher than necessary, and excessive organic silane may adhere to the silicon substrate 2, and the organic silane may cause polymerization one after another. The length of the organosilane molecules bonded to the substrate 2 was nonuniform, and the yield was poor. Moreover, it is difficult to form a SAM on a large-area substrate by such a method.

そこで本発明は、均一かつ細密に充填したSAMを大面積の基板に形成することを可能とする装置及び方法を提供すべく図ったものである。   Accordingly, the present invention is intended to provide an apparatus and a method capable of forming a uniformly and finely packed SAM on a large-area substrate.

すなわち本発明に係る単分子膜形成装置は、自己組織化分子を含有する液体原料を気化し、基板上に自己組織化単分子膜を形成する装置であって、前記基板を内部に保持する成膜室と、前記液体原料を前記成膜室内に直接噴射する噴射弁を備えていることを特徴とする。   That is, the monomolecular film forming apparatus according to the present invention is an apparatus for vaporizing a liquid raw material containing self-assembled molecules to form a self-assembled monomolecular film on the substrate, and for holding the substrate inside. A film chamber and an injection valve for directly injecting the liquid material into the film formation chamber are provided.

このような構成を有する本発明によれば、自己組織化分子を含有する液体原料を噴射弁から前記成膜室内に直接噴射することにより、噴射弁の開口時間等を制御することにより、成膜室内の自己組織化分子濃度を調節することができる。このため、過剰な自己組織化分子が基板上に付着し、自己組織化分子同士が反応し重合して不均一に長鎖化するのを防ぐことができる。また、噴射弁で噴霧した液体原料を気化させ、均一かつ緻密に基板上に充填し、たとえ基板に段差がある場合でも確実に段差被覆を行うことができる。   According to the present invention having such a configuration, the liquid raw material containing self-assembled molecules is directly injected from the injection valve into the film formation chamber, thereby controlling the opening time of the injection valve, etc. The self-assembled molecular concentration in the room can be adjusted. For this reason, it is possible to prevent excessive self-assembled molecules from adhering to the substrate, and the self-assembled molecules to react with each other and be polymerized to form a non-uniform long chain. In addition, the liquid raw material sprayed by the injection valve is vaporized and filled on the substrate uniformly and densely, so that even if the substrate has a step, it is possible to reliably cover the step.

本発明に係る単分子膜形成装置は、更に前記基板を加熱するためのヒータと、前記成膜室内を減圧するためのポンプを備えていることが好ましい。基板上に自己組織化分子が単分子層を形成するように付着した後、前記ヒータで加熱して基板の温度を自己組織化分子の沸点より高くすることにより、自己組織化分子が過剰に基板に付着することを防止でき、自己組織化分子の重合が進行するのを防ぐことができる。また、ポンプにより成膜室内を減圧することにより自己組織化分子の沸点が下がるので、自己組織化分子の過剰な付着を防ぐためのヒータによる基板の加熱温度を下げることができ、基板上に形成されたSAMの熱分解が防止される。また、減圧した成膜室内に液体原料を噴霧するので、液体原料を減圧沸騰させ気化させることができる。従って、本発明によれば、液体原料を入れた容器を加熱してキャリアガスによりバブリングして液体原料を気化させるような従来の気化方法の問題、即ち液体原料の加熱によりその分解が生じることを可及的に防止することができる。   The monomolecular film forming apparatus according to the present invention preferably further includes a heater for heating the substrate and a pump for depressurizing the film forming chamber. After the self-assembled molecules are deposited on the substrate so as to form a monomolecular layer, the substrate is heated by the heater so that the temperature of the substrate is higher than the boiling point of the self-assembled molecules. Can be prevented, and the polymerization of self-assembled molecules can be prevented from proceeding. In addition, since the boiling point of the self-assembled molecules is lowered by reducing the pressure in the film formation chamber with a pump, the heating temperature of the substrate with a heater to prevent excessive adhesion of the self-assembled molecules can be lowered and formed on the substrate. The thermal decomposition of the formed SAM is prevented. Further, since the liquid raw material is sprayed into the reduced pressure film formation chamber, the liquid raw material can be boiled under reduced pressure and vaporized. Therefore, according to the present invention, there is a problem of the conventional vaporization method in which a liquid raw material is heated and bubbled with a carrier gas to vaporize the liquid raw material, that is, the decomposition of the liquid raw material is caused by heating. It can be prevented as much as possible.

このような単分子膜形成装置を用いて基板上に自己組織化単分子膜を形成するには、前記成膜室内を減圧し、前記成膜室内に前記液体原料を噴射して、前記成膜室内を所定濃度の前記液体原料雰囲気で満たした後、前記成膜室内にパージ用ガスを導入し前記液体原料雰囲気を除去する方法によることができる。   In order to form a self-assembled monomolecular film on a substrate using such a monomolecular film forming apparatus, the film formation chamber is decompressed, the liquid material is injected into the film formation chamber, and the film formation is performed. After the chamber is filled with the liquid source atmosphere having a predetermined concentration, a purge gas is introduced into the film forming chamber to remove the liquid source atmosphere.

又は、前記成膜室内に前記液体原料を噴射して、前記成膜室内を所定濃度の前記液体原料雰囲気で満たした後、前記成膜室内を前記ポンプで吸引して前記液体原料雰囲気を除去する方法によって、基板上に自己組織化単分子膜を形成してもよい。   Alternatively, after the liquid source is injected into the film formation chamber and the film formation chamber is filled with the liquid source atmosphere having a predetermined concentration, the liquid source atmosphere is removed by sucking the film formation chamber with the pump. A self-assembled monolayer may be formed on the substrate by a method.

このように本発明によれば、均一かつ細密に充填した自己組織化単分子膜を大面積の基板上に形成することができる。これにより単分子膜を利用した各種デバイスやセンサを安価に作成することが可能となる。また、基板上を単分子膜で修飾することにより、基板表面(界面)を改質することも可能となる。   As described above, according to the present invention, a self-assembled monolayer filled uniformly and finely can be formed on a large-area substrate. This makes it possible to produce various devices and sensors using monomolecular films at low cost. In addition, the substrate surface (interface) can be modified by modifying the substrate with a monomolecular film.

以下に本発明の一実施形態について図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る単分子膜形成装置1は、図1に示すように、加工対象である基板2上にSAMを形成する装置であり、自己組織化分子を含有する液体原料を気化し、基板2上に自己組織化分子を付着させ単分子膜を形成するものである。具体的な主構成は、基板2を内部に保持する成膜室3と、前記液体原料を前記成膜室3内に直接噴射する噴射弁4と、噴射弁4に液体原料を供給する原料供給管5とからなる。   As shown in FIG. 1, a monomolecular film forming apparatus 1 according to the present embodiment is an apparatus for forming a SAM on a substrate 2 to be processed, and vaporizes a liquid raw material containing self-assembled molecules. A self-assembled molecule is attached on 2 to form a monomolecular film. Specifically, the main structure is a film forming chamber 3 that holds the substrate 2 therein, an injection valve 4 that directly injects the liquid material into the film forming chamber 3, and a material supply that supplies the liquid material to the injection valve 4. It consists of a tube 5.

本実施形態においては、液体原料は、例えばステンレス製の容器6に保存されている。そして、液体原料は当該容器6に圧入された加圧Nガス(又はArガス等の液体原料に対して不活性なガス)により原料供給管5を通り、後述する噴射弁4を介して成膜室3内部に霧状に供給される。更に、液体原料は、噴射弁4から成膜室3内に噴霧されると同時に、気化されて成膜室3内に充満される。 In this embodiment, the liquid raw material is stored in, for example, a stainless steel container 6. The liquid raw material passes through the raw material supply pipe 5 by a pressurized N 2 gas (or a gas inert to the liquid raw material such as Ar gas) press-fitted into the container 6 and is formed through an injection valve 4 described later. The mist is supplied into the membrane chamber 3. Further, the liquid material is sprayed from the injection valve 4 into the film forming chamber 3, and at the same time, it is vaporized and filled into the film forming chamber 3.

成膜室3は、保持機構により内部に加工対象となる基板2を保持するものであり、更に基板2を加熱するための基板ヒータ7を有している。そして、成膜室3は、真空ポンプ8によって減圧可能に構成されている。また、成膜室3内に充填した気化した液体原料を成膜室3から除去するためのパージ用Nガスを供給するパージ用ガス供給管9も配設されている。このパージ用ガス供給管9は、マスフローコントローラ(MFC)10によりパージ用Nガスの供給流量を制御されている。なお、基板保持機構は、ごく一般的なものであるため、詳細な説明及び図示は省略する。 The film forming chamber 3 holds the substrate 2 to be processed inside by a holding mechanism, and further has a substrate heater 7 for heating the substrate 2. The film forming chamber 3 is configured to be depressurized by a vacuum pump 8. Further, a purge gas supply pipe 9 for supplying a purge N 2 gas for removing the vaporized liquid material filled in the film formation chamber 3 from the film formation chamber 3 is also provided. In the purge gas supply pipe 9, the supply flow rate of the purge N 2 gas is controlled by a mass flow controller (MFC) 10. Since the substrate holding mechanism is very general, detailed description and illustration are omitted.

噴射弁4は、液体原料を成膜室3内に直接噴射するものであり、成膜室3の上部に、基板2の面と対向するように設けられている。そして、噴射弁3の開閉を制御するための噴射弁コントローラ11により、開閉を制御される。   The injection valve 4 directly injects the liquid material into the film forming chamber 3 and is provided on the upper portion of the film forming chamber 3 so as to face the surface of the substrate 2. The opening / closing is controlled by an injection valve controller 11 for controlling the opening / closing of the injection valve 3.

次にこのように構成した単分子膜形成装置1を用いた単分子膜形成方法を説明する。   Next, a monomolecular film forming method using the monomolecular film forming apparatus 1 configured as described above will be described.

液体原料の蒸気圧が大気圧より小さい場合は、まず、成膜室3内を真空ポンプ8によって減圧し、成膜室3に噴射された液体原料が気化するように、即ち成膜室3内の圧力が液体原料の蒸気圧より小さくなるように圧力調節する。次いで、噴射弁コントローラ11を操作して噴射弁4を開き、成膜室3内に液体原料を直接噴射して、成膜室3内を所定濃度の液体原料雰囲気で満たす。ここで、成膜室3内の液体原料の濃度は、基板2上に自己組織化分子の単分子層が形成されるよう噴射弁4の開口時間を制御して調整する。次いで、パージ用ガス供給管9のバルブを開けて成膜室3内にパージ用Nガスを導入し、成膜室3内から液体原料雰囲気を除去し、基板2上への過剰な自己組織化分子の付着を防ぎ、自己組織化分子の重合反応が進行しないようにする。この際、パージ用Nガスの導入と合わせて真空ポンプ8で成膜室3内を吸引する。 When the vapor pressure of the liquid raw material is lower than the atmospheric pressure, first, the inside of the film forming chamber 3 is depressurized by the vacuum pump 8 so that the liquid raw material injected into the film forming chamber 3 is vaporized, that is, inside the film forming chamber 3. The pressure is adjusted so that the pressure of the liquid becomes smaller than the vapor pressure of the liquid raw material. Next, the injection valve controller 11 is operated to open the injection valve 4, and the liquid material is directly injected into the film formation chamber 3 to fill the film formation chamber 3 with a liquid material atmosphere of a predetermined concentration. Here, the concentration of the liquid raw material in the film forming chamber 3 is adjusted by controlling the opening time of the injection valve 4 so that a monomolecular layer of self-assembled molecules is formed on the substrate 2. Next, the purge gas supply pipe 9 is opened to introduce purge N 2 gas into the film forming chamber 3, the liquid source atmosphere is removed from the film forming chamber 3, and excessive self-organization on the substrate 2 is performed. To prevent the adhesion of chemical molecules and prevent the polymerization reaction of self-assembled molecules from proceeding. At this time, the inside of the film forming chamber 3 is sucked by the vacuum pump 8 together with the introduction of the purge N 2 gas.

液体原料の蒸気圧が大気圧より大きい場合は、噴射弁コントローラ11を操作して噴射弁4を開き、成膜室3内に液体原料を直接噴射して、成膜室3内を所定濃度の液体原料雰囲気で満たす。ここで、成膜室3内の液体原料の濃度は、基板2上に自己組織化分子の単分子層が形成されるよう噴射弁4の開口時間を制御して調整する。次いで、成膜室3内を真空ポンプ8によって吸引して、成膜室3内から液体原料雰囲気を除去し、基板2上への過剰な自己組織化分子の付着を防ぎ、自己組織化分子の重合反応が進行しないようにする。この際、パージ用ガス供給管9のバルブは開けておく。なお、この場合も予め成膜室3内を減圧雰囲気に圧力調節し、気化を促進させるようにしてもよい。   When the vapor pressure of the liquid raw material is larger than the atmospheric pressure, the injection valve controller 11 is operated to open the injection valve 4, and the liquid raw material is directly injected into the film forming chamber 3 so that the inside of the film forming chamber 3 has a predetermined concentration. Fill with liquid source atmosphere. Here, the concentration of the liquid raw material in the film forming chamber 3 is adjusted by controlling the opening time of the injection valve 4 so that a monomolecular layer of self-assembled molecules is formed on the substrate 2. Next, the inside of the film forming chamber 3 is sucked by the vacuum pump 8 to remove the liquid source atmosphere from the inside of the film forming chamber 3, thereby preventing excessive self-assembled molecules from adhering to the substrate 2. Prevent the polymerization reaction from proceeding. At this time, the valve of the purge gas supply pipe 9 is kept open. In this case as well, the pressure inside the film forming chamber 3 may be adjusted to a reduced pressure atmosphere in advance to promote vaporization.

いずれの場合も、基板2上にSAMが形成されたあとは、基板2を基板ヒータ7により加熱して、基板2の温度をその際の成膜室3内の圧力下における自己組織化分子の沸点より高い温度にする。これにより基板2への過剰な自己組織化分子の付着及び自己組織化分子の重合反応を防ぐことができる。   In any case, after the SAM is formed on the substrate 2, the substrate 2 is heated by the substrate heater 7, and the temperature of the substrate 2 is adjusted under the pressure in the film formation chamber 3 at that time. The temperature is higher than the boiling point. Thereby, it is possible to prevent excessive self-assembled molecules from attaching to the substrate 2 and polymerization reaction of the self-assembled molecules.

本実施形態に適用可能な基板2と液体原料に含有される自己組織化分子は特に限定されないが、以下の表1に記載された組み合わせによることで、基板2上にSAMを形成することができる。   The substrate 2 applicable to the present embodiment and the self-assembled molecules contained in the liquid raw material are not particularly limited, but a SAM can be formed on the substrate 2 by the combination described in Table 1 below. .

表1に記載の組み合わせ以外であっても、基板にリンカーとして機能する第1のSAMを形成した後、目的の化合物を固定化したり、目的の化合物の末端を修飾することによりSAMを形成することができる。例えば、Dithiobis(succinimidyl
undecanoate)を用いて金(Au)基板上にSAMを形成し、これをリンカーとしてタンパク質やペプチドを固定化することができる。また、DNAの末端をチオール化することにより金(Au)基板上にDNA単分子膜を形成することができる。
Even if other than the combinations shown in Table 1, after forming the first SAM that functions as a linker on the substrate, the SAM is formed by immobilizing the target compound or modifying the end of the target compound Can do. For example, Dithiobis (succinimidyl
SAM can be formed on a gold (Au) substrate using undecanoate, and proteins and peptides can be immobilized using this as a linker. In addition, a DNA monomolecular film can be formed on a gold (Au) substrate by thiolation of DNA ends.

前記液体原料は有機溶媒中に自己組織化分子が溶解しているものであってもよく、このような有機溶媒としては、同じ温度において自己組織化分子よりも蒸気圧が大きい有機化合物が好ましい。自己組織化分子とそれよりも蒸気圧が大きい有機化合物を混合して液体原料とすることにより、液体原料の蒸気圧が上がり、液体原料が気化しやすくなる。   The liquid raw material may be one in which self-assembled molecules are dissolved in an organic solvent, and such an organic solvent is preferably an organic compound having a vapor pressure higher than that of the self-assembled molecules at the same temperature. By mixing a self-assembled molecule and an organic compound having a higher vapor pressure to obtain a liquid material, the vapor pressure of the liquid material is increased, and the liquid material is easily vaporized.

このような本実施形態によれば、成膜室3に自己組織化分子を含有する液体原料を直接噴射することにより、成膜室3内の自己組織化分子の濃度の調整が容易となる。また、基板2上にSAMが形成された後、速やかに成膜室3内の残留自己組織化分子を除去すること、及び、基板2を自己組織化分子の沸点以上の温度に加熱することにより、基板2に過剰な自己組織化分子が付着し、自己組織化分子の重合反応が進行することを防ぐことができる。よって、歩留まりよく、基板2上に均一な単分子膜を形成することができる。   According to the present embodiment, the concentration of the self-assembled molecules in the film forming chamber 3 can be easily adjusted by directly injecting the liquid raw material containing the self-assembled molecules into the film forming chamber 3. Further, after the SAM is formed on the substrate 2, the residual self-assembled molecules in the film forming chamber 3 are quickly removed, and the substrate 2 is heated to a temperature equal to or higher than the boiling point of the self-assembled molecules. Further, it is possible to prevent excessive self-assembled molecules from adhering to the substrate 2 and the polymerization reaction of the self-assembled molecules to proceed. Therefore, a uniform monomolecular film can be formed on the substrate 2 with a high yield.

なお、本発明は前記実施形態に限られるものではない。例えば、単分子膜形成装置1には、基板2に酸化膜を形成したり、基板2上にリンカーとなる第1のSAMを形成したり、基板2を洗浄したりするための前処理室が備わっていてもよい。   The present invention is not limited to the above embodiment. For example, the monomolecular film forming apparatus 1 has a pretreatment chamber for forming an oxide film on the substrate 2, forming a first SAM as a linker on the substrate 2, and cleaning the substrate 2. It may be provided.

また、図2に示すように、成膜室3内への液体原料の噴射と、パージ用Nガスの供給を交互に繰り返し、複数の基板2へのSAM形成処理を連続して行ってもよい。この場合に用いる単分子膜形成装置1は、図3に示すように、成膜室3とポンプ8との間のライン14に制御バルブ(閉止バルブ)12を配設し、噴射弁4から原料噴射後一定時間(例えば、自己組織化分子の付着に必要な時間)は閉止バルブ12を閉じ(バルブ13も閉)、成膜室3内を密閉系に保つよう構成する。この構成により少量の液体原料で単分子膜を形成し、更に、そのバルブ12をバイパスし、ライン14より細い(断面積の小さい)ライン15を更に設け、そのライン15にもバルブ13を介装することで、バルブ12及びバルブ13の切換えでポンプ8に連通させるラインを切換え可能に構成してもよい。 In addition, as shown in FIG. 2, the SAM formation process on the plurality of substrates 2 may be continuously performed by alternately repeating the injection of the liquid material into the film forming chamber 3 and the supply of the purge N 2 gas. Good. In the monomolecular film forming apparatus 1 used in this case, as shown in FIG. 3, a control valve (closing valve) 12 is disposed in a line 14 between the film forming chamber 3 and the pump 8, and the raw material is supplied from the injection valve 4. The fixed valve 12 is closed (the valve 13 is also closed) for a certain time after the injection (for example, the time required for the adhesion of self-assembled molecules), and the film formation chamber 3 is kept in a closed system. With this configuration, a monomolecular film is formed with a small amount of liquid raw material, the valve 12 is further bypassed, and a line 15 that is thinner (smaller in cross-sectional area) than the line 14 is further provided. By doing so, the line communicating with the pump 8 by switching between the valve 12 and the valve 13 may be configured to be switchable.

このように構成することで、ポンプ8により成膜室3から吸引排気する流量を変更可能にすることができる。例えば、液体原料を気化充満させた後の所定時間はライン15を連通させた小流量で吸引を行うとともに、その時間経過後には、ライン14を連通させ大流量で排気し、残留原料ガス雰囲気を迅速に除去するようにしてもよい。   With this configuration, it is possible to change the flow rate of suction and exhaust from the film forming chamber 3 by the pump 8. For example, for a predetermined time after the liquid material is vaporized and filled, suction is performed at a small flow rate through which the line 15 is communicated, and after that time, the line 14 is communicated and exhausted at a large flow rate, and the residual material gas atmosphere is reduced. You may make it remove rapidly.

その他、本発明は、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。   In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

本発明によって、例えば、電界効果型トランジスタ(FET)等のゲート部分に単分子膜を形成し、ある特定のイオン種に感度を有する又は不感応なイオン感応性電界効果型トランジスタ(ISFET)に応用することが可能である。また大面積の基板上にSAMを形成することも可能となる。   According to the present invention, for example, a monomolecular film is formed on a gate portion of a field effect transistor (FET) or the like, and the application to an ion sensitive field effect transistor (ISFET) having sensitivity to a specific ion species or insensitive. Is possible. It is also possible to form a SAM on a large area substrate.

本発明の実施形態に係る単分子膜形成装置の概略構成図。1 is a schematic configuration diagram of a monomolecular film forming apparatus according to an embodiment of the present invention. 本発明の他の実施形態に係る単分子膜形成装置の制御方法を示す図。The figure which shows the control method of the monomolecular film formation apparatus which concerns on other embodiment of this invention. 同実施形態に係る単分子膜形成装置の概略構成図。FIG. 2 is a schematic configuration diagram of a monomolecular film forming apparatus according to the embodiment. 従来の気相法により基板上にSAMを形成する密閉系システムを示す概略構成図。The schematic block diagram which shows the closed system system which forms SAM on a board | substrate by the conventional gaseous-phase method.

符号の説明Explanation of symbols

1・・・単分子膜形成装置
2・・・基板
3・・・成膜室
4・・・噴射弁
DESCRIPTION OF SYMBOLS 1 ... Monomolecular film formation apparatus 2 ... Substrate 3 ... Deposition chamber 4 ... Injection valve

Claims (4)

自己組織化分子を含有する液体原料を気化し、基板上に自己組織化単分子膜を形成する装置であって、
前記基板を内部に保持する成膜室と、前記液体原料を前記成膜室内に直接噴射する噴射弁を備えていることを特徴とする単分子膜形成装置。
An apparatus for vaporizing a liquid material containing self-assembled molecules and forming a self-assembled monolayer on a substrate,
A monomolecular film forming apparatus, comprising: a film forming chamber for holding the substrate therein; and an injection valve for directly injecting the liquid material into the film forming chamber.
前記基板を加熱するためのヒータと、前記成膜室内を減圧するためのポンプを備えている請求項1記載の単分子膜形成装置。   The monomolecular film forming apparatus according to claim 1, further comprising a heater for heating the substrate and a pump for depressurizing the film forming chamber. 請求項1又は2記載の単分子膜形成装置を用いて、基板上に自己組織化単分子膜を形成する方法であって、
前記成膜室内を減圧し、前記成膜室内に前記液体原料を噴射して、前記成膜室内を所定濃度の前記液体原料雰囲気で満たした後、前記成膜室内にパージ用ガスを導入し前記液体原料雰囲気を除去することを特徴とする単分子膜形成方法。
A method for forming a self-assembled monolayer on a substrate using the monolayer forming apparatus according to claim 1,
The film formation chamber is depressurized, the liquid source is injected into the film formation chamber, and the film formation chamber is filled with the liquid source atmosphere having a predetermined concentration, and then a purge gas is introduced into the film formation chamber, A method for forming a monomolecular film, comprising removing a liquid source atmosphere.
請求項2記載の単分子膜形成装置を用いて、基板上に自己組織化単分子膜を形成する方法であって、
前記成膜室内に前記液体原料を噴射して、前記成膜室内を所定濃度の前記液体原料雰囲気で満たした後、前記成膜室内を前記ポンプで吸引して前記液体原料雰囲気を除去することを特徴とする単分子膜形成方法。


A method for forming a self-assembled monolayer on a substrate using the monolayer forming apparatus according to claim 2,
Injecting the liquid source into the film forming chamber and filling the film forming chamber with the liquid source atmosphere having a predetermined concentration, and then sucking the film forming chamber with the pump to remove the liquid source atmosphere. A method for forming a monomolecular film.


JP2005294037A 2005-10-06 2005-10-06 Apparatus and method for forming monolayer Pending JP2007100191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294037A JP2007100191A (en) 2005-10-06 2005-10-06 Apparatus and method for forming monolayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294037A JP2007100191A (en) 2005-10-06 2005-10-06 Apparatus and method for forming monolayer

Publications (1)

Publication Number Publication Date
JP2007100191A true JP2007100191A (en) 2007-04-19

Family

ID=38027411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294037A Pending JP2007100191A (en) 2005-10-06 2005-10-06 Apparatus and method for forming monolayer

Country Status (1)

Country Link
JP (1) JP2007100191A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198069A1 (en) * 2007-09-13 2010-06-23 Ramot at Tel-Aviv University Ltd. Vapor deposition of biomolecules
JP2011072922A (en) * 2009-09-30 2011-04-14 National Institute Of Advanced Industrial Science & Technology Self-assembled film producing method
JP2011521431A (en) * 2008-05-19 2011-07-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Apparatus and method for vapor phase coating in electronic devices
JP2016513885A (en) * 2013-03-15 2016-05-16 東京エレクトロン株式会社 Solvent annealing treatment for guided self-assembly applications
WO2017069221A1 (en) * 2015-10-22 2017-04-27 東京エレクトロン株式会社 Film formation apparatus and film formation method
US9715172B2 (en) 2013-10-20 2017-07-25 Tokyo Electron Limited Use of topography to direct assembly of block copolymers in grapho-epitaxial applications
US9793137B2 (en) 2013-10-20 2017-10-17 Tokyo Electron Limited Use of grapho-epitaxial directed self-assembly applications to precisely cut logic lines
US9947597B2 (en) 2016-03-31 2018-04-17 Tokyo Electron Limited Defectivity metrology during DSA patterning
US10490402B2 (en) 2013-09-04 2019-11-26 Tokyo Electron Limited UV-assisted stripping of hardened photoresist to create chemical templates for directed self-assembly
WO2021132163A1 (en) * 2019-12-27 2021-07-01 東京エレクトロン株式会社 Film formation method and film formation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282240A (en) * 1999-03-31 2000-10-10 Seiko Epson Corp Formation of organic monomolecular film and method for patterning the same
JP2003502878A (en) * 1999-06-24 2003-01-21 ナーハ ガジル、プラサード Atomic layer chemical vapor deposition system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282240A (en) * 1999-03-31 2000-10-10 Seiko Epson Corp Formation of organic monomolecular film and method for patterning the same
JP2003502878A (en) * 1999-06-24 2003-01-21 ナーハ ガジル、プラサード Atomic layer chemical vapor deposition system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198069A1 (en) * 2007-09-13 2010-06-23 Ramot at Tel-Aviv University Ltd. Vapor deposition of biomolecules
JP2011521431A (en) * 2008-05-19 2011-07-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Apparatus and method for vapor phase coating in electronic devices
JP2011072922A (en) * 2009-09-30 2011-04-14 National Institute Of Advanced Industrial Science & Technology Self-assembled film producing method
JP2016513885A (en) * 2013-03-15 2016-05-16 東京エレクトロン株式会社 Solvent annealing treatment for guided self-assembly applications
US10490402B2 (en) 2013-09-04 2019-11-26 Tokyo Electron Limited UV-assisted stripping of hardened photoresist to create chemical templates for directed self-assembly
US11538684B2 (en) 2013-09-04 2022-12-27 Tokyo Electron Limited UV-assisted stripping of hardened photoresist to create chemical templates for directed self-assembly
US9715172B2 (en) 2013-10-20 2017-07-25 Tokyo Electron Limited Use of topography to direct assembly of block copolymers in grapho-epitaxial applications
US9793137B2 (en) 2013-10-20 2017-10-17 Tokyo Electron Limited Use of grapho-epitaxial directed self-assembly applications to precisely cut logic lines
JPWO2017069221A1 (en) * 2015-10-22 2018-06-21 東京エレクトロン株式会社 Film forming apparatus and film forming method
WO2017069221A1 (en) * 2015-10-22 2017-04-27 東京エレクトロン株式会社 Film formation apparatus and film formation method
US9947597B2 (en) 2016-03-31 2018-04-17 Tokyo Electron Limited Defectivity metrology during DSA patterning
WO2021132163A1 (en) * 2019-12-27 2021-07-01 東京エレクトロン株式会社 Film formation method and film formation device
JP2021108335A (en) * 2019-12-27 2021-07-29 東京エレクトロン株式会社 Film forming method and film forming device
JP7365898B2 (en) 2019-12-27 2023-10-20 東京エレクトロン株式会社 Film-forming method and film-forming equipment

Similar Documents

Publication Publication Date Title
JP2007100191A (en) Apparatus and method for forming monolayer
US10900123B2 (en) Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
JP4422684B2 (en) Apparatus and method for controlling reactive vapors to produce thin films and coatings
US9194043B2 (en) Atomic layer deposition apparatus
JP2014531508A5 (en)
JP6263450B2 (en) Organic monomolecular film formation method
TWI507559B (en) Multilayer coating, method for fabricating a multilayer coating, and uses for the same
KR20140144243A (en) Atomic layer deposition method and apparatuses
KR20140142659A (en) Organic molecular film forming apparatus and organic molecular film forming method
KR20230117636A (en) Particle coating by atomic layer depostion
JP6761031B2 (en) Cleaning method, semiconductor device manufacturing method, substrate processing device and program
KR100994920B1 (en) Thin film coating apparatus of forming vapor phase self-assembled monolayer
JP2010024484A (en) Surface treatment apparatus and surface treatment method
US8382071B2 (en) Raw material supply device
Kaloyeros et al. Emerging molecular and atomic level techniques for nanoscale applications
KR100697505B1 (en) Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
JP2009256796A (en) Apparatus for and method of forming monolayer film
US8598706B2 (en) Method for forming interlayer dielectric film, interlayer dielectric film, semiconductor device and semiconductor manufacturing apparatus
US20050089695A1 (en) Silane coated substrate
US20150147487A1 (en) Method and apparatus for forming organic monolayer
KR100904719B1 (en) Thin Film Coating Apparatus and method
JP2009256795A (en) Monolayer film-forming apparatus
KR100397046B1 (en) Thin film deposition apparatus and the method
KR20050057806A (en) Method for fabricating self-assembled monolayers in the gas phase
JP3847863B2 (en) Vacuum apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608