KR20050041316A - A method for preparing poly(2,5-benzimidazole) - Google Patents

A method for preparing poly(2,5-benzimidazole) Download PDF

Info

Publication number
KR20050041316A
KR20050041316A KR1020030076443A KR20030076443A KR20050041316A KR 20050041316 A KR20050041316 A KR 20050041316A KR 1020030076443 A KR1020030076443 A KR 1020030076443A KR 20030076443 A KR20030076443 A KR 20030076443A KR 20050041316 A KR20050041316 A KR 20050041316A
Authority
KR
South Korea
Prior art keywords
benzimidazole
poly
polymer
electrolyte membrane
dehydrating agent
Prior art date
Application number
KR1020030076443A
Other languages
Korean (ko)
Other versions
KR100570745B1 (en
Inventor
김형준
은영찬
조성용
권호진
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020030076443A priority Critical patent/KR100570745B1/en
Priority to US10/972,421 priority patent/US7388035B2/en
Priority to JP2004318268A priority patent/JP2005133099A/en
Priority to CNB2004101038515A priority patent/CN1294181C/en
Publication of KR20050041316A publication Critical patent/KR20050041316A/en
Application granted granted Critical
Publication of KR100570745B1 publication Critical patent/KR100570745B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 연료전지의 고분자 전해질막으로 사용될 수 있는 폴리(2,5-벤즈이미다졸)의 제조방법에 관한 것으로서, 상기 제조방법은 P2O5와 CX3SO 3H(X는 수소 또는 F)를 포함하는 탈수제를 이용하여 3,4-디아미노벤조산 모노머를 중합하는 공정을 포함한다.The present invention relates to a method for producing a poly (2,5-benzimidazole) that can be used as a polymer electrolyte membrane of a fuel cell, the production method is P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F And a step of polymerizing the 3,4-diaminobenzoic acid monomer using a dehydrating agent containing).

Description

폴리(2,5-벤즈이미다졸)의 제조방법{A METHOD FOR PREPARING POLY(2,5-BENZIMIDAZOLE)}Production method of poly (2,5-benzimidazole) {A METHOD FOR PREPARING POLY (2,5-BENZIMIDAZOLE)}

[산업상 이용 분야][Industrial use]

본 발명은 폴리(2,5-벤즈이미다졸)의 제조방법에 관한 것으로서, 보다 상세하게는 프로톤 전도성이 우수한 폴리(2,5-벤즈이미다졸)을 제조하는 방법, 이 방법에 따라 제조된 폴리(2,5-벤즈이미다졸) 고분자 전해질막, 폴리(2,5-벤즈이미다졸) 고분자 전해질막을 포함하는 연료전지에 관한 것이다.The present invention relates to a method for preparing poly (2,5-benzimidazole), and more particularly, to a method for preparing poly (2,5-benzimidazole) having excellent proton conductivity, and a poly produced according to the method. A fuel cell comprising a (2,5-benzimidazole) polymer electrolyte membrane and a poly (2,5-benzimidazole) polymer electrolyte membrane.

[종래 기술][Prior art]

연료 전지는 전기화학 전지로서 연료 산화 반응에 의한 자유 에너지 변화가 전기 에너지로 변환되는 것이다. 연료 전지에서, 메탄올, 포름알데히드 또는 포름산과 같은 유기 연료는 애노드에서 이산화탄소로 산화되며, 공기 또는 산소는 캐소드에서 물로 환원된다. 부분적으로, 유기 연료의 높은 비에너지(specific energy)(예를 들어 메탄올의 비에너지는 6232wh/kg임) 때문에 유기 연료를 사용하는 연료 전지는 설치상 또는 휴대상 모두 극도로 매력적이다.A fuel cell is an electrochemical cell in which free energy changes due to fuel oxidation are converted into electrical energy. In fuel cells, organic fuels such as methanol, formaldehyde or formic acid are oxidized to carbon dioxide at the anode and air or oxygen is reduced to water at the cathode. In part, fuel cells using organic fuels are extremely attractive, both on installation and portable, because of the high specific energy of organic fuels (eg, the specific energy of methanol is 6232 wh / kg).

연료전지는 고체 고분자막이 애노드와 캐소드 사이에 위치하며 두 전극 사이에서 프로톤(proton) 이동의 매개체 역할을 한다. 연료전지의 전도성 고체 고분자막으로는 Dow 사나 Dupon 사의 퍼플루오로 카본 술폰산막(NafionTM)과 같은 불소계 전해질막이 화학적 안정성이 우수하고, 높은 이온 전도도와 뛰어난 기계적 물성을 가지므로 널리 사용되고 있다.In fuel cells, a solid polymer membrane is positioned between an anode and a cathode and serves as a medium for proton movement between two electrodes. BACKGROUND OF THE INVENTION As a conductive solid polymer membrane of a fuel cell, a fluorine-based electrolyte membrane such as Dow or Dupon's perfluorocarbon sulfonic acid membrane (Nafion ) is widely used because of its excellent chemical stability, high ionic conductivity and excellent mechanical properties.

그러나 불소계 전해질은 제조공정이 복잡하고, 가격이 고가라는 단점이 있다. 또한 고내열성이기는 하지만 내열 한계가 100 ℃를 넘지 않기 때문에 불소계 전해질막은 자동차용의 저공해 동력원으로서 연료전지, 민생용 소형 전원 또는 휴대용 전원 등에 사용시에는 개질 가스를 냉각하거나 개질 가스중에 일산화탄소를 제거할 필요가 있는 등 시스템을 복잡하게 하는 요인이 되고 있다. 또한 80 ℃ 이상의 높은 온도 또는 60% 이하의 낮은 습도 범위에서 프로톤 전도성이 낮으며, 낮은 메탄올 크로스-오버(cross-over)를 보이는 문제점이 있다.However, the fluorine-based electrolyte has a disadvantage in that the manufacturing process is complicated and the price is high. In addition, because the heat resistance is high, but the heat resistance limit does not exceed 100 ℃, fluorine-based electrolyte membranes are a low pollution power source for automobiles. When used in fuel cells, small-sized power sources or portable power sources, it is not necessary to cool the reformed gas or remove carbon monoxide from the reformed gas. It has become a factor that complicates the system. In addition, the proton conductivity is low at a high temperature of more than 80 ℃ or a low humidity range of less than 60%, there is a problem showing low methanol cross-over (cross-over).

따라서 불소계 전해질막을 대체할 수 있는 고분자 전해질막을 얻기 위하여 다른 술폰화 고분자, 예를 들어 폴리이미드, 폴리술폰, 폴리스티렌, 폴리페닐렌, PEEK(poly ether ether ketone) 등 여러 가지 고분자가 개발되었다. Celanese 사는 이와 같은 Nafion과 같은 불소계 고분자의 단점을 극복할 수 있는 소재로 폴리[2,2'-(m-페닐렌)-5,5'-바이벤즈이미다졸] (폴리벤즈이미다졸(polybenzimidazoles, PBI))를 개발하였다. PBI는 Nafion 류의 불소계 고분자에 비해 훨씬 낮은 메탄올 투과도를 갖고 있으며 순수 탄화수소로 이루어져 있기 때문에 저가로 공급되어질 수 있다. 또한 100 ℃ 이상의 온도에서 높은 전도도를 보이므로 고온용 연료전지에서 이용할 수 있는 소재이다. Therefore, various sulfonated polymers, such as polyimide, polysulfone, polystyrene, polyphenylene and polyether ether ketone (PEEK), have been developed to obtain a polymer electrolyte membrane that can replace the fluorine-based electrolyte membrane. Celanese is a material that can overcome the shortcomings of fluorine-based polymers such as Nafion and poly [2,2 '-(m-phenylene) -5,5'-bibenzimidazole] (polybenzimidazoles, PBI)). PBI has a much lower methanol permeability than Nafion fluorine-based polymers and can be supplied at low cost because it consists of pure hydrocarbons. In addition, since it shows high conductivity at a temperature of 100 ° C. or higher, it can be used in high temperature fuel cells.

폴리(2,5-벤즈이미다졸)은 PBI와 비슷한 구조와 전도도를 가지고 있지만 높은 분자량을 가지는 고분자를 만들 수 있기 때문에 더 좋은 기계적 물성을 갖는 연료전지용 고분자 전해질막으로 제조할 수 있다. 폴리(2,5-벤즈이미다졸)은 폴리포스포릭산(polyphosphoric acid)이나 P2O5와 포스포릭산(phosphoric acid)의 혼합물을 탈수제(dehydrating reagent)로 사용하여 3,4-디아미노벤조산(3,4-diaminobenzoic acid)을 가열하여 합성할 수 있다. 그라나 이들 탈수제들은 매우 점도가 높아서 100 ℃ 이상으로 온도를 올려야만 취급이 가능하므로 다루기가 용이하지 않고, 최종 합성된 고분자가 딱딱한 덩어리로 얻어지기 때문에 정제 작업이 어렵다. 폴리(2,5-벤즈이미다졸)을 연료전지용 고분자 전해질막으로 이용하기 위해서는 이러한 합성과 정제의 단점을 극복할 수 있는 새로운 합성방법 개발이 시급히 요청되고 있다.Poly (2,5-benzimidazole) has a structure and conductivity similar to that of PBI but can be produced as a polymer electrolyte membrane for fuel cells having better mechanical properties because it can produce a polymer having a high molecular weight. Poly (2,5-benzimidazole) is a 3,4-diaminobenzoic acid using polyphosphoric acid or a mixture of P 2 O 5 and phosphoric acid as a dehydrating reagent. It can be synthesized by heating (3,4-diaminobenzoic acid). However, these dehydrating agents are very viscous, so they can only be handled by raising the temperature to 100 ° C. or higher, and they are not easy to handle. In order to use poly (2,5-benzimidazole) as a polymer electrolyte membrane for fuel cells, it is urgently required to develop a new synthesis method that can overcome the disadvantages of synthesis and purification.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 프로톤 전도성이 우수하고 메탄올 투과도가 낮은 고분자 전해질막으로 사용될 수 있는 폴리(2,5-벤즈이미다졸)의 제조방법을 제공하기 위한 것이다. The present invention is to solve the above problems, an object of the present invention is to provide a method for producing a poly (2,5-benzimidazole) that can be used as a polymer electrolyte membrane having excellent proton conductivity and low methanol permeability will be.

본 발명의 다른 목적은 상기 방법에 따라 제조된 폴리(2,5-벤즈이미다졸) 고분자 전해질막 및 이의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a poly (2,5-benzimidazole) polymer electrolyte membrane prepared according to the above method and a method for producing the same.

본 발명의 또다른 목적은 상기 폴리(2,5-벤즈이미다졸) 고분자 전해질막을 포함하는 연료전지를 제공하기 위한 것이다.Still another object of the present invention is to provide a fuel cell comprising the poly (2,5-benzimidazole) polymer electrolyte membrane.

상기한 목적을 달성하기 위하여, 본 발명은 P2O5와 CX3SO3 H(X는 수소 또는 F) 를 포함하는 탈수제를 이용하여 3,4-디아미노벤조산 모노머를 중합하는 공정을 포함하는 폴리(2,5-벤즈이미다졸)의 제조방법을 제공한다.In order to achieve the above object, the present invention is P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F) It provides a method for producing poly (2,5-benzimidazole) comprising the step of polymerizing a 3,4-diaminobenzoic acid monomer using a dehydrating agent comprising a.

본 발명은 또한, P2O5와 CX3SO3H(X는 수소 또는 F)를 포함하는 탈수제를 이용하여 3,4-디아미노벤조산 모노머를 중합하여 폴리(2,5-벤즈이미다졸)을 포함하는 고분자 용액을 제조하고, 상기 고분자 용액을 기재에 캐스팅하는 공정을 포함하는 폴리(2,5-벤즈이미다졸) 고분자 전해질 막의 제조방법을 제공한다.The present invention also provides a poly (2,5-benzimidazole) polymerizing a 3,4-diaminobenzoic acid monomer using a dehydrating agent comprising P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F). It provides a polymer solution comprising a, and provides a method for producing a poly (2,5-benzimidazole) polymer electrolyte membrane comprising the step of casting the polymer solution on a substrate.

본 발명은 또한, 상기 방법으로 제조된 폴리(2,5-벤즈이미다졸)의 고분자 전해질막을 포함하는 연료전지를 제공한다.The present invention also provides a fuel cell comprising a polymer electrolyte membrane of poly (2,5-benzimidazole) prepared by the above method.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 연료전지의 고분자 전해질막으로 사용되는 폴리(2,5-벤즈이미다졸)을 P2O5와 CX3SO3H(X는 수소 또는 F)를 포함하는 탈수제를 이용하여 제조한다. 폴리(2,5-벤즈이미다졸)을 합성하기 위한 모노머로 3,4-디아미노벤조산을 상기 탈수제와 혼합한 후 가열하여 중합이 되도록 한다. 모노머인 3,4-디아미노벤조산은 탈수제와 혼합하기 전에 염기 또는 산과 반응시켜 정제하여 사용하는 것이 바람직하다.In the present invention, poly (2,5-benzimidazole) used as a polymer electrolyte membrane of a fuel cell is prepared using a dehydrating agent containing P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F). As a monomer for synthesizing poly (2,5-benzimidazole), 3,4-diaminobenzoic acid is mixed with the dehydrating agent and heated to allow polymerization. The monomer 3,4-diaminobenzoic acid is preferably used after being purified by reacting with a base or an acid before mixing with a dehydrating agent.

상기 P2O5와 CX3SO3H(X는 수소 또는 F)는 미리 혼합하여 균일한 용액 상태로 만들어 사용하는 것이 바람직하다.Preferably, the P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F) are mixed and used in a uniform solution state.

본 발명에서 사용되는 탈수제는 P2O5가 CX3SO3H(X는 수소 또는 F)에 완전히 녹아있는 투명한 용액으로 상온에서 거의 물과 같은 점도를 가지므로 취급이 용이하다. 종래에 탈수제로 사용되고 있는 폴리포스포릭산이나 P2O5와 포스포릭산의 혼합물은 200 ℃ 이상의 온도에서 3시간 이상 중합을 실시하여야 하나 본 발명의 탈수제를 이용하면 이보다 낮은 160 ℃ 에서 약 30분 정도 중합을 실시할 수 있다.The dehydrating agent used in the present invention is a transparent solution in which P 2 O 5 is completely dissolved in CX 3 SO 3 H (X is hydrogen or F). Polyphosphoric acid or a mixture of P 2 O 5 and phosphoric acid, which is conventionally used as a dehydrating agent, should be polymerized at a temperature of 200 ° C. or higher for at least 3 hours, but using the dehydrating agent of the present invention, it is about 30 minutes at lower 160 ° C. Degree of polymerization can be carried out.

또한 상기 종래의 탈수제는 점도가 높아 모노머와 불균일하게 섞여진 상태에서 불균일하게 중합이 진행되고 최종 생성물인 폴리(2,5-벤즈이미다졸)이 딱딱한 덩어리로 얻어지기 때문에 고분자의 회수 및 정제에 많은 시간이 소요되며, 이를 고분자 전해질막으로 제조하기 위해서는 잘게 분쇄하는 공정이 필요하다. 이렇게 잘게 분쇄된 고분자를 파우더, 칩(chip) 또는 섬유 형태로 만든 후 이를 다시 용매에 용해시켜 전해질 막을 제조하여야 한다. 즉 고분자의 합성공정과 고분자의 필름화 공정의 2단계로 실시하여야 한다. In addition, since the conventional dehydrating agent has a high viscosity, polymerization proceeds unevenly in a state where it is mixed with the monomer unevenly, and poly (2,5-benzimidazole) as a final product is obtained as a hard lump, which is useful for the recovery and purification of the polymer. It takes time, and in order to prepare it as a polymer electrolyte membrane, a fine grinding process is required. The finely pulverized polymer is made into a powder, chip, or fiber form, and then dissolved in a solvent to prepare an electrolyte membrane. That is, it should be carried out in two stages, the synthesis process of polymer and the film formation process of polymer.

그러나 본 발명의 탈수제를 이용하여 폴리(2,5-벤즈이미다졸)을 제조하는 경우에는 모노머가 탈수제에 완전히 용해된 상태에서 중합이 진행되고 최종 생성물도 딱딱한 덩어리가 아닌 미세한 섬유(fiber) 형태로 얻을 수 있어서 정제작업이 용이하게 진행될 수 있다. 즉 폴리(2,5-벤즈이미다졸) 합성과 전해질막의 제조공정이 하나의 단계(one step)로 진행될 수 있으므로 공정상 시간, 에너지 등을 절감할 수 있어 유리하다.However, when the poly (2,5-benzimidazole) is produced using the dehydrating agent of the present invention, the polymerization proceeds in the state in which the monomer is completely dissolved in the dehydrating agent, and the final product is not a hard mass, but in the form of fine fibers. It can be obtained so that purification can be easily carried out. That is, poly (2,5-benzimidazole) synthesis and the manufacturing process of the electrolyte membrane can be performed in one step (one step) is advantageous because it can save time, energy, etc. in the process.

P2O5와 CX3SO3H(X는 수소 또는 F)는 0.5-2:10의 중량비로 사용되는 것이 바람직하다.P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F) are preferably used in a weight ratio of 0.5-2: 10.

합성된 고분자는 non-solvent(고분자를 전혀 용해시키지 못하는 용매)에 침전시켜 얻을 수 있다. 상기 non-solvent로는 물과 에탄올 또는 메탄올의 혼합물을 사용하는 것이 바람직하다.Synthesized polymers can be obtained by precipitation in non-solvents (solvents that do not dissolve polymers at all). It is preferable to use a mixture of water and ethanol or methanol as the non-solvent.

고분자에 도핑(doping) 되어있거나 고분자 체인 사이에 존재하는 포스포릭산(phosphoric acid)은 감압과 같은 방법으로는 쉽게 제거할 수 없다. 이 포스포릭산을 제거하기 위해서는 분말로 분쇄하는 작업이나 섬유 형태로 제조하는 작업 및 속실렛 추출기(Soxhlet extractor)에서 암모늄 하이드록사이드와 반응시키는 방법을 이용한 작업 등을 거쳐야만 한다. 이러한 작업들은 대부분 긴 시간과 에너지를 요구하기 때문에 전해질막의 상업화를 위해서는 반드시 제거되어야 하는 단계이다. 본 발명에서는 상기 non solvent에 침전시키는 단계에서 포스포릭산이 거의 제거되므로 상기와 같은 공정을 생략하거나 공정시간을 단축하여 실시할 수 있다. Phosphoric acid doped in the polymer or present between the polymer chains cannot be easily removed by methods such as reduced pressure. In order to remove the phosphoric acid, it is necessary to grind it into powder, to prepare it in a fiber form, or to use a method of reacting with ammonium hydroxide in a Soxhlet extractor. Most of these operations require a long time and energy, which is a step that must be removed for the commercialization of the electrolyte membrane. In the present invention, since the phosphoric acid is almost removed in the step of precipitating in the non-solvent, it can be carried out by omitting the above process or shortening the process time.

본 발명에 따라 만들어진 폴리(2,5-벤즈이미다졸) 고분자는 하기 화학식 1로 나타내어진다.Poly (2,5-benzimidazole) polymer made according to the present invention is represented by the following formula (1).

[화학식 1][Formula 1]

도 1은 애노드(3), 캐소드(5), 및 고분자 전해질막(7)을 포함하는 연료전지(1)의 개략도이다. 애노드 챔버(9)는 유기연료(예를 들어 메탄올)와 물의 혼합물로 채워지고, 캐소드 챔버(11)는 공기와 산소로 채워져 있다. 유기연료는 애노드(3)를 지나 순환하는 반면 산소와 공기는 캐소드 챔버(11)로 펌프되어 캐소드(5)를 지나 순환된다. 애노드(3)에서 유기연료의 산화반응이 일어나고 캐소드(5)에서 산소의 환원반응이 일어나 두 전극간의 전압차를 발생시킨다. 애노드(3)에서 생성된 수소이온 또는 프로톤은 전해질(7)을 지나 캐소드(5)에 직접 전달된다. 그러므로 전해질막은 프로톤 전도성이 우수하여야 하고 연료로 사용되는 메탄올의 투과도는 낮아야 한다. 1 is a schematic diagram of a fuel cell 1 comprising an anode 3, a cathode 5, and a polymer electrolyte membrane 7. The anode chamber 9 is filled with a mixture of organic fuel (for example methanol) and water, and the cathode chamber 11 is filled with air and oxygen. The organic fuel circulates through the anode 3 while the oxygen and air are pumped into the cathode chamber 11 and circulated past the cathode 5. Oxidation reaction of organic fuel occurs at the anode 3 and reduction reaction of oxygen occurs at the cathode 5 to generate a voltage difference between the two electrodes. Hydrogen ions or protons produced at the anode 3 pass directly through the electrolyte 7 to the cathode 5. Therefore, the electrolyte membrane should have excellent proton conductivity and low permeability of methanol used as fuel.

본 발명의 폴리(2,5-벤즈이미다졸) 고분자는 높은 프로톤 전도도를 가지며, 메탄올 투과도가 낮으므로 연료전지의 고분자 전해질막으로 유용하게 사용될 수 있다. Since the poly (2,5-benzimidazole) polymer of the present invention has high proton conductivity and low methanol permeability, it may be usefully used as a polymer electrolyte membrane of a fuel cell.

위에서 설명한 바와 같이 본 발명의 폴리(2,5-벤즈이미다졸) 고분자는 최종 생성물을 하나의 단계로 미세한 섬유 형태로 얻어지므로 도핑되어 있는 포스포릭산의 제거가 용이하다. 또한 합성된 고분자를 이용하여 바로 전해질막을 제조하는 필름화 공정을 실시할 수 있다. 즉 합성된 고분자 용액을 기재 위에 캐스팅하여 고분자 필름을 제조하여 전해질막을 제조한다. 기재위에 캐스팅된 고분자 필름을 물에 담가 기재에서 분리할 수도 있다. 얇은 막으로 캐스팅하게 되면 중합용 용매로 사용한 CH3SO3H와 P2P5를 쉽게 제거할 수 있다. 고분자 필름에 존재하는 CX3SO3H는 고온 감압하여 제거하거나 non-solvent로 세척하여 제거한다.As described above, the poly (2,5-benzimidazole) polymer of the present invention is obtained in fine fiber form in one step, so that the doped phosphoric acid is easily removed. In addition, using the synthesized polymer can be carried out a film forming process for producing an electrolyte membrane immediately. That is, the synthesized polymer solution is cast on a substrate to prepare a polymer film to prepare an electrolyte membrane. The polymer film cast on the substrate may be soaked in water and separated from the substrate. Casting a thin film can easily remove CH 3 SO 3 H and P 2 P 5 used as a solvent for polymerization. CX 3 SO 3 H present in the polymer film is removed by high pressure and decompression or by non-solvent.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1: 폴리(2,5-벤즈이미다졸) 제조) Example 1 Poly (2,5-benzimidazole) Preparation

1-1 3,4-디아미노벤조산(3,4-Diaminobenzoic acid)의 정제 1-1 Purification of 3,4-Diaminobenzoic acid

3,4-디아미노벤조산 50 g을 500 mL의 증류수에 분산시키고, 70 ℃ 로 가열하였다. 히드라진 하이드레이트(Hydrazine hydrate)를 천천히 첨가하여 균일한 용액을 얻었다. 활성 카본 블랙(Activated carbon black) 20 g을 용액에 첨가하고 30 분간 더 가열하였다. 용액이 뜨거운 상태에서 Celite를 이용하여 여과하고, 여과된 용액이 상온으로 낮아지면, 결정이 생성될 때까지 아세트산을 천천히 첨가하였다. 용액을 상온에서 하루 더 방치하여 생성된 결정을 여과하고 70 ℃의 진공오븐에서 36 시간 동안 건조시켰다. 1H-NMR (D2SO4) δ8.40-8.15 (m, 2H, Ar H), 7.62 (d, 1H, ArH, J 3=8.0 Hz); mp (DSC): 204 ℃ (승온온도: 0.1℃/min).50 g of 3,4-diaminobenzoic acid was dispersed in 500 mL of distilled water and heated to 70 ° C. Hydrazine hydrate was added slowly to obtain a uniform solution. 20 g of activated carbon black was added to the solution and further heated for 30 minutes. Filtration was carried out using Celite while the solution was hot, and acetic acid was slowly added until the crystals formed were cooled to room temperature. The solution was left to stand at room temperature for another day, and the resulting crystals were filtered and dried in a vacuum oven at 70 ° C. for 36 hours. 1 H-NMR (D 2 SO 4 ) δ 8.40-8.15 (m, 2H, Ar H ), 7.62 (d, 1H, Ar H , J 3 = 8.0 Hz); mp (DSC): 204 ° C. (temperature rise: 0.1 ° C./min).

1.2 탈수제 제조 1.2 Manufacture of dehydrating agent

P2O5 2 g과 CH3SO3H 20 mL를 혼합하여 12 시간 교반하여 균일한 탈수제 용액을 얻었다.2 g of P 2 O 5 and 20 mL of CH 3 SO 3 H were mixed and stirred for 12 hours to obtain a uniform dehydrating solution.

1.3 폴리(2,5-벤즈이미다졸)의 합성 1.3 Synthesis of Poly (2,5-benzimidazole)

상기 1.1의 정제된 3,4-디아미노벤조산 2 g을 상기 1.2의 탈수제 용액에 첨가하여 160 ℃ 에서 30분간 가열하였다. 뜨거운 고분자 용액을 peristaltic pump를 이용하여 물 300 mL와 메탄올 300 mL 혼합 용매에 천천히 부어 미세한 섬유(fiber)를 얻었다. ABPBI안에 남아있는 포스포릭산은 고분자 섬유(polymer fiber)를 속실렛 추출기(Soxhlet extractor)에 넣어 10% 암모늄 하이드록사이드 수용액을 이용해 제거하였다. 1H-NMR (D2SO4) δ8.64-7.41 (b, 3H, Ar H), 5.38 (s, 1H, N-H); 점도 30℃, H2SO4 이용: 4-5 dL/g)2 g of the purified 3,4-diaminobenzoic acid of 1.1 was added to the dehydrating agent solution of 1.2 and heated at 160 ° C. for 30 minutes. The hot polymer solution was slowly poured into a mixed solvent of 300 mL of water and 300 mL of methanol using a peristaltic pump to obtain fine fibers. Phosphoric acid remaining in the ABPBI was removed by using a 10% aqueous ammonium hydroxide solution in a polymer fiber (Soxhlet extractor). 1 H-NMR (D 2 SO 4 ) δ 8.64-7.41 (b, 3H, Ar H ), 5.38 (s, 1H, N- H ); Viscosity 30 ° C., using H 2 SO 4 : 4-5 dL / g)

(실시예 2: 폴리(2,5-벤즈이미다졸) 전해질막 제조)Example 2: Preparation of poly (2,5-benzimidazole) electrolyte membrane

상기 실시예 1의 1.1에서 정제된 3,4-디아미노벤조산 2 g을 상기 실시예 1의 1.2에서 제조된 탈수제 용액에 첨가하여 160 ℃에서 30분간 가열하여 중합을 실시하였다. 이 고분자 용액을 글래스 플레이트에 붓고 닥터 블레이드를 이용하여 고분자 필름을 캐스팅하였다. 이 고분자 필름을 130℃의 진공오븐에서 넣고 24시간 동안 CH3SO3H를 제거하였다. 제조된 고분자 필름을 물과 에탄올로 세척하여 미량으로 잔존하는 CH3SO3H를 완전히 제거하여 전해질막을 제조하였다.2 g of 3,4-diaminobenzoic acid purified in 1.1 of Example 1 was added to the dehydrating agent solution prepared in 1.2 of Example 1, and heated at 160 ° C. for 30 minutes to conduct polymerization. The polymer solution was poured into a glass plate and a polymer film was cast using a doctor blade. The polymer film was placed in a vacuum oven at 130 ° C. and CH 3 SO 3 H was removed for 24 hours. The prepared polymer film was washed with water and ethanol to completely remove CH 3 SO 3 H remaining in trace amounts to prepare an electrolyte membrane.

(실시예 3: 폴리(2,5-벤즈이미다졸) 전해질막 제조Example 3 Preparation of Poly (2,5-benzimidazole) Electrolyte Membrane

상기 실시예 1의 1.1에서 정제된 3,4-디아미노벤조산 2 g을 상기 실시예 1의 1.2에서 제조된 탈수제 용액에 첨가하여 160 ℃에서 30분간 가열하여 중합을 실시하였다. 이 고분자 용액을 글래스 플레이트에 붓고 닥터 블레이드를 이용하여 고분자 필름을 캐스팅한 후 이것을 물에 담가 고분자 필름을 유리판에서 떨어뜨렸다. 이 고분자 필름을 130℃의 진공오븐에서 넣고 24시간 동안 CH3SO3H를 제거하였다. 제조된 고분자 필름을 물과 에탄올로 세척하여 미량으로 잔존하는 CH3SO3H를 완전히 제거하였다.2 g of 3,4-diaminobenzoic acid purified in 1.1 of Example 1 was added to the dehydrating agent solution prepared in 1.2 of Example 1, and heated at 160 ° C. for 30 minutes to conduct polymerization. The polymer solution was poured into a glass plate, a polymer film was cast using a doctor blade, and then immersed in water to drop the polymer film from the glass plate. The polymer film was placed in a vacuum oven at 130 ° C. and CH 3 SO 3 H was removed for 24 hours. The prepared polymer film was washed with water and ethanol to completely remove the residual CH 3 SO 3 H.

본 발명에서는 P2O5가 CX3SO3H(X는 수소 또는 F)를 탈수제로 사용함으로써 모노머가 탈수제에 완전히 용해되어 균일한 혼합계에서 중합을 진행시킬 수 있고 최종 생성물도 미세한 섬유(fiber) 형태로 얻을 수 있어서 정제작업이 용이하게 진행될 수 있으며, 중합이 끝난 직후 인시추(in-situ) 공정으로 연료전지용 전해질막을 제조할 수 있으므로 공정상 시간, 에너지 등을 절감할 수 있어 유리하다.In the present invention, by using P 2 O 5 CX 3 SO 3 H (X is hydrogen or F) as a dehydrating agent, the monomer is completely dissolved in the dehydrating agent to proceed the polymerization in a uniform mixing system, the final product is also a fine fiber (fiber Purification can be easily carried out in the form of), and since the electrolyte membrane for the fuel cell can be prepared in-situ immediately after the polymerization is completed, it is advantageous to reduce the time and energy in the process.

본 발명에 따라 제조된 폴리(2,5-벤즈이미다졸)은 높은 프로톤 전도도를 가지며, 메탄올 투과도가 낮아 연료전지의 고분자 전해질막으로 유용하게 사용될 수 있다. Poly (2,5-benzimidazole) prepared according to the present invention has a high proton conductivity and low methanol permeability, and thus may be usefully used as a polymer electrolyte membrane of a fuel cell.

도 1은 고분자 전해질 막을 포함하는 연료전지의 개략도이다.1 is a schematic diagram of a fuel cell including a polymer electrolyte membrane.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 연료전지 3: 애노드1: fuel cell 3: anode

5: 캐소드 7: 전해질막5: cathode 7: electrolyte membrane

9: 애노드 챔버 11: 캐소드 챔버9: anode chamber 11: cathode chamber

Claims (10)

P2O5와 CX3SO3H(X는 수소 또는 F)를 포함하는 탈수제를 이용하여 3,4-디아미노벤조산 모노머를 중합하는 공정을 포함하는 폴리(2,5-벤즈이미다졸)의 제조방법.Poly (2,5-benzimidazole) comprising the step of polymerizing a 3,4-diaminobenzoic acid monomer using a dehydrating agent comprising P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F). Manufacturing method. 제1항에 있어서, 상기 모노머인 3,4-디아미노벤조산은 탈수제와 혼합하기 전에 염기 또는 산과 반응시켜 정제된 것인 폴리(2,5-벤즈이미다졸)의 제조방법.The method for preparing poly (2,5-benzimidazole) according to claim 1, wherein the monomer 3,4-diaminobenzoic acid is purified by reaction with a base or an acid before mixing with a dehydrating agent. 제1항에 있어서, 상기 P2O5와 CX3SO3H(X는 수소 또는 F)는 0.5-2:10의 중량비로 혼합되어 사용되는 것인 폴리(2,5-벤즈이미다졸)의 제조방법.The poly (2,5-benzimidazole) according to claim 1, wherein P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F) are mixed and used in a weight ratio of 0.5-2: 10. Manufacturing method. 제1항에 있어서, 상기 폴리(2,5-벤즈이미다졸)을 non-solvent에 침전시켜 미세한 섬유 형태의 고분자를 얻는 공정을 더 포함하는 폴리(2,5-벤즈이미다졸)의 제조방법.The method of claim 1, further comprising the step of precipitating the poly (2,5-benzimidazole) in a non-solvent to obtain a polymer in a fine fiber form. 제1항 내지 제4항중 어느 하나의 항에 따라 제조된 폴리(2,5-벤즈이미다졸).Poly (2,5-benzimidazole) prepared according to any one of claims 1 to 4. P2O5와 CX3SO3H(X는 수소 또는 F)를 포함하는 탈수제를 이용하여 3,4-디아미노벤조산 모노머를 중합하여 폴리(2,5-벤즈이미다졸)을 포함하는 고분자 용액을 제조하고,Polymer solution containing poly (2,5-benzimidazole) by polymerizing 3,4-diaminobenzoic acid monomer using a dehydrating agent containing P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F) Manufacturing the 상기 고분자 용액을 기재에 캐스팅하는 공정을 포함하는 폴리(2,5-벤즈이미다졸) 고분자 전해질 막의 제조방법.A method for producing a poly (2,5-benzimidazole) polymer electrolyte membrane comprising the step of casting the polymer solution on a substrate. 제6항에 있어서, 상기 모노머인 3,4-디아미노벤조산은 탈수제와 혼합하기 전에 염기 또는 산과 반응시켜 정제된 것인 폴리(2,5-벤즈이미다졸) 고분자 전해질 막의 제조방법.The method for preparing a poly (2,5-benzimidazole) polymer electrolyte membrane according to claim 6, wherein the monomer 3,4-diaminobenzoic acid is purified by reacting with a base or an acid before mixing with a dehydrating agent. 제6항에 있어서, 상기 P2O5와 CX3SO3H(X는 수소 또는 F)는 0.5-2:10의 중량비로 혼합되어 사용되는 것인 폴리(2,5-벤즈이미다졸) 고분자 전해질 막의 제조방법.The poly (2,5-benzimidazole) polymer of claim 6, wherein P 2 O 5 and CX 3 SO 3 H (X is hydrogen or F) are mixed and used in a weight ratio of 0.5-2: 10. Method for producing an electrolyte membrane. 제6항 내지 제8항중 어느 하나의 항에 따라 제조된 폴리(2,5-벤즈이미다졸) 고분자 전해질막.A poly (2,5-benzimidazole) polymer electrolyte membrane prepared according to any one of claims 6 to 8. 제9항의 폴리(2,5-벤즈이미다졸) 고분자 전해질 막을 포함하는 연료전지.A fuel cell comprising the poly (2,5-benzimidazole) polymer electrolyte membrane of claim 9.
KR1020030076443A 2003-10-30 2003-10-30 A method for preparing poly2,5-benzimidazole KR100570745B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020030076443A KR100570745B1 (en) 2003-10-30 2003-10-30 A method for preparing poly2,5-benzimidazole
US10/972,421 US7388035B2 (en) 2003-10-30 2004-10-26 Method for preparing poly(2,5-benzimidazole)
JP2004318268A JP2005133099A (en) 2003-10-30 2004-11-01 Method for producing poly(2,5-benzimidazole), poly(2,5-benzimidazole), method for producing poly(2,5-benzimidazole) polyelectrolyte film, poly(2,5-benzimidazole) polyelectrolyte film and fuel cell comprising poly(2,5-benzimidazole) polyelectrolyte film
CNB2004101038515A CN1294181C (en) 2003-10-30 2004-11-01 Method for preparing poly(2,5-benzimidazole)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030076443A KR100570745B1 (en) 2003-10-30 2003-10-30 A method for preparing poly2,5-benzimidazole

Publications (2)

Publication Number Publication Date
KR20050041316A true KR20050041316A (en) 2005-05-04
KR100570745B1 KR100570745B1 (en) 2006-04-12

Family

ID=34587863

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030076443A KR100570745B1 (en) 2003-10-30 2003-10-30 A method for preparing poly2,5-benzimidazole

Country Status (4)

Country Link
US (1) US7388035B2 (en)
JP (1) JP2005133099A (en)
KR (1) KR100570745B1 (en)
CN (1) CN1294181C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612363B1 (en) * 2004-10-20 2006-08-16 삼성에스디아이 주식회사 A polymer membrane for fuel cell, method for preparing thereof, and fuel cell system comprising the same
KR100745741B1 (en) * 2006-08-22 2007-08-02 삼성에스디아이 주식회사 Membrane and electrode assembly for fuel cell and fuel cell employing the same
KR20190129425A (en) 2018-05-11 2019-11-20 주식회사 다금산업 Structure For Installation Of Outer Wall Panel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738788B1 (en) 2004-12-07 2007-07-12 주식회사 엘지화학 Polybenzimidazole-benzamide copolymer, process for preparing the same, electrolyte membrane prepared therefrom and process for preparing the same
EP1760110B1 (en) 2005-09-03 2011-11-02 Samsung SDI Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
KR100818255B1 (en) 2006-05-29 2008-04-02 삼성에스디아이 주식회사 Polybenzoxazines, an electrolyte membrane comprising the same and fuel cell employing the electrolyte membrane
TW200847513A (en) * 2006-11-27 2008-12-01 Sumitomo Chemical Co Method for manufacturing polyelectrolyte membrane, and polyelectrolyte membrane
EP2036910B1 (en) 2007-09-11 2012-06-27 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell includind the same, and fuel cell using the same
EP2433947B1 (en) * 2007-09-11 2014-05-07 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer
KR101366808B1 (en) * 2007-10-11 2014-02-25 삼성전자주식회사 Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
EP2055706B1 (en) * 2007-11-02 2011-08-24 Samsung Electronics Co., Ltd. Electrode and electrolyte membrane for fuel cell including a naphthoxazine based polymer and fuel cell using the electrode
KR101537311B1 (en) * 2007-11-02 2015-07-17 삼성전자주식회사 Electrolyte Membrane for fuel cell and fuel cell using the same
EP2058321B1 (en) 2007-11-02 2014-01-08 Samsung Electronics Co., Ltd. Phosphorous containing monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2062891B1 (en) * 2007-11-06 2012-08-08 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US9382496B1 (en) 2013-12-19 2016-07-05 Western Digital Technologies, Inc. Lubricants with high thermal stability for heat-assisted magnetic recording
CN103700874B (en) * 2013-12-23 2018-01-16 湖北工业大学 A kind of in-situ modified polybenzimidazoles PEM of inorganic nano-particle and preparation method thereof
WO2018163203A1 (en) * 2017-03-06 2018-09-13 Council Of Scientific And Industrial Research Porous polybenzimidazole as separator for lithium ion batteries
US11993867B2 (en) 2018-09-12 2024-05-28 Gharda Chemicals Limited Spun ABPBI fibers and process for preparing the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460763A (en) * 1981-08-07 1984-07-17 E. I. Dupont De Nemours And Company Preparation of small particle polybenzimidazole
US4394500A (en) * 1981-08-07 1983-07-19 E. I. Du Pont De Nemours And Company Bead polymerization process for preparing polybenzimidazole
DE3390220C2 (en) 1982-09-17 1995-04-20 Dow Chemical Co Liquid-crystalline polymer compositions, uses and products
JPH04194022A (en) 1990-11-28 1992-07-14 Mitsui Petrochem Ind Ltd Production of fiber of polybenzothiazoles, polybenzoxazoles or polybenzimidazoles
CN1080109A (en) * 1992-06-12 1993-12-29 王涛 A kind of complex electrocaloric film
US5599639A (en) 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
US5945233A (en) * 1997-07-16 1999-08-31 Avents Research & Technologies Gmbh & Co. Kg Process for producing polybenzimidazole pastes and gels for use in fuel cells
US6042968A (en) 1997-07-16 2000-03-28 Aventis Research & Technologies Gmbh & Co. Kg Process for producing polybenzimidazole fabrics for use in fuel
JP4061522B2 (en) 2000-11-16 2008-03-19 東洋紡績株式会社 POLYAZOLE POLYMER COMPOSITION, FILM CONTAINING THE SAME, AND METHOD FOR MOLDING POLYAZOLE POLYMER COMPOSITION
JP2002201269A (en) 2001-01-09 2002-07-19 Toyobo Co Ltd Novel polybenzazole having ionic group and membrane containing it as main component
DE10117686A1 (en) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Proton-conducting membrane for use e.g. in fuel cells, is made by coating a support with a solution of aromatic tetra-amine and aromatic polycarboxylic acid in polyphosphoric acid and then heating the coating
DE10144815A1 (en) 2001-09-12 2003-03-27 Celanese Ventures Gmbh Proton-conducting polymer membrane for use in membrane-electrode units for fuel cells, obtained by heating a polyazole polymer with polyphosphoric acid and coating the solution onto a substrate, e.g. an electrode
JP3999123B2 (en) 2001-10-20 2007-10-31 ピメアス・ゲーエムベーハー Methods for preparing polymer solutions containing repeated azole units, solutions prepared by this method, and methods for their use.
JP2005537384A (en) 2002-08-29 2005-12-08 ペメアス ゲーエムベーハー Proton conducting polymer membrane manufacturing method, improved polymer membrane and use thereof in fuel cells
DE10246461A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane containing a polyazole blend for use, e.g. in fuel cells, obtained by processing a mixture of polyphosphoric acid, polyazole and non-polyazole polymer to form a self-supporting membrane
KR100480782B1 (en) 2002-10-26 2005-04-07 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same
JP4642342B2 (en) 2003-11-28 2011-03-02 三星エスディアイ株式会社 Proton conductor and fuel cell
JP4549663B2 (en) 2003-12-05 2010-09-22 三星エスディアイ株式会社 Solid polymer electrolyte and fuel cell
JP5005160B2 (en) 2003-12-08 2012-08-22 三星エスディアイ株式会社 Gel electrolyte and fuel cell
JP4790225B2 (en) 2004-01-23 2011-10-12 三星エスディアイ株式会社 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte
JP4470099B2 (en) 2004-01-27 2010-06-02 東洋紡績株式会社 Acid group-containing polybenzimidazole compound and composition thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612363B1 (en) * 2004-10-20 2006-08-16 삼성에스디아이 주식회사 A polymer membrane for fuel cell, method for preparing thereof, and fuel cell system comprising the same
KR100745741B1 (en) * 2006-08-22 2007-08-02 삼성에스디아이 주식회사 Membrane and electrode assembly for fuel cell and fuel cell employing the same
KR20190129425A (en) 2018-05-11 2019-11-20 주식회사 다금산업 Structure For Installation Of Outer Wall Panel

Also Published As

Publication number Publication date
KR100570745B1 (en) 2006-04-12
JP2005133099A (en) 2005-05-26
US20050113469A1 (en) 2005-05-26
US7388035B2 (en) 2008-06-17
CN1294181C (en) 2007-01-10
CN1637044A (en) 2005-07-13

Similar Documents

Publication Publication Date Title
KR100570745B1 (en) A method for preparing poly2,5-benzimidazole
Park et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
JP3877794B2 (en) Acid-modified polybenzimidazole fuel cell element
US6767664B2 (en) Proton conducting polymer, method for producing the same, solid polymer electrolyte and electrode
EP2048183A1 (en) Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
EP2202261A1 (en) Hyper-branched polymer, electrode for fuel cell including the hyper-branched polymer, electrolyte membrane for fuel cell including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane
EP2056390A1 (en) Electrolyte membrane for fuel cell and fuel cell using the same
JP2004035891A (en) Proton conductive polymer having acid group on side chain, its manufacturing method, polymer membrane using the proton conductive polymer, and fuel cell using it
JP2005512272A (en) Method for producing membrane made of crosslinked polymer and fuel cell
Li et al. Fabrication of sulfonated poly (ether ether ketone)/sulfonated fully aromatic polyamide composite membranes for direct methanol fuel cells (DMFCs)
JP2009521385A (en) Novel metal (III) -chromium phosphate complex and use thereof
KR20120061156A (en) Polybenzimidazole Based Polymer Having Conductivity of Hydroxyl Ion and Method for Preparing the Same, Electrolyte Membrane and Fuel Cell Using the Same
EP1819751B1 (en) Polybenzimidazole-benzamide copolymer, process for preparing the same, electrolyte membrane prepared therefrom and process for preparing the same
US20070218335A1 (en) Polymer having oxocarbon group, and use thereof
KR100589345B1 (en) Preparation method of sulfonated polybenzimidazole and sulfonated polybenzimidazole prepared therefrom, and polymer electrolyte membrane comprising the same
KR100570686B1 (en) Proton conductive polymer, method for preparating the same, polymer electrolyte membrane comprising the same, and method for preparating the same
KR100681770B1 (en) Polybenzimidazole catalyst binder, method for preparing the same, membrane electrode assembly using the polybenzimidazole catalyst binder
US6303053B1 (en) Method for producing meta type polyaniline
KR101670966B1 (en) Hyperbranched polymer, electrode for fuel cell comprising the hyperbranched polymer, electrolyte membrane for fuel cell comprising the hyperbranched polymer, and fuel cell using at least one of the electrode and the electrolyte membrane
KR101558536B1 (en) Hyperbranched polymer electrode for fuel cell including the same electrolyte membrane for fuel cell including the same and fuel cell using the same
KR20040048140A (en) Preparation of high performance sulfonated polyimides Membranes for Fuel Cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120326

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130322

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee