KR20040048140A - Preparation of high performance sulfonated polyimides Membranes for Fuel Cell - Google Patents

Preparation of high performance sulfonated polyimides Membranes for Fuel Cell Download PDF

Info

Publication number
KR20040048140A
KR20040048140A KR1020020075915A KR20020075915A KR20040048140A KR 20040048140 A KR20040048140 A KR 20040048140A KR 1020020075915 A KR1020020075915 A KR 1020020075915A KR 20020075915 A KR20020075915 A KR 20020075915A KR 20040048140 A KR20040048140 A KR 20040048140A
Authority
KR
South Korea
Prior art keywords
polyamic acid
electrolyte membrane
formula
sulfonated polyimide
polyimide precursor
Prior art date
Application number
KR1020020075915A
Other languages
Korean (ko)
Inventor
한학수
이춘근
이상엽
Original Assignee
한학수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한학수 filed Critical 한학수
Priority to KR1020020075915A priority Critical patent/KR20040048140A/en
Publication of KR20040048140A publication Critical patent/KR20040048140A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: Provided is a method for making an electrolyte membrane for a fuel cell, which uses polyimide having excellent thermal, chemical and mechanical properties to give a polymeric electrolyte membrane having excellent chemical resistance, heat resistance and heat stress resistance, and high ion-conductivity. CONSTITUTION: The method comprises the step of forming a copolymerized sulfonated polyamic acid(polyimide precursor) by dissolving two different diamines at 30 deg.C under nitrogen atmosphere and mixing thereto a dianhydride. Additionally, a crosslinked type copolymerized sulfonated polyamic acid is formed by a two-step condensation. Both of the sulfonated polyamic acid solutions are directly used to form an electrolyte membrane. Otherwise, the copolymerized sulfonated polyamic acid, the crosslinked type copolymerized sulfonated polyamic acid and an inorganic additive are used to form an organic/inorganic composite electrolyte membrane.

Description

연료전지용 고기능성 술폰화 폴리이미드계 전해질막 제조 {Preparation of high performance sulfonated polyimides Membranes for Fuel Cell}Preparation of high functional sulfonated polyimide electrolyte membrane for fuel cell {Preparation of high performance sulfonated polyimides Membranes for Fuel Cell}

본 발명은 신규한 구조의 내열성, 고성능 공중합 술폰화 폴리이미드와 가교형 공중합 술폰화 폴리이미드 전해질막 그리고 이러한 전해질막의 전도도 향상을 위한 전도성 무기물과의 블랜딩을 통한 유·무기 복합 전해질막에 관한 것으로서 연료의 화학에너지를 전기화학반응에 의해 직접 전기에너지로 변환시키는 연료전지의 전해질막으로 이용 가능하며 특히 고분자 전해질 연료전지 및 직접 메탄올 연료전지 전해질막 재료로 사용될 수 있는 것이다.The present invention relates to a heat-resistant, high-performance copolymerized sulfonated polyimide and a crosslinked copolymerized sulfonated polyimide electrolyte membrane having a novel structure, and an organic / inorganic composite electrolyte membrane through blending with a conductive inorganic material for improving conductivity of the electrolyte membrane. It can be used as an electrolyte membrane of a fuel cell converting the chemical energy of the directly into electrical energy by an electrochemical reaction, and in particular, it can be used as a polymer electrolyte fuel cell material and a direct methanol fuel cell electrolyte membrane material.

일반적으로 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC)와 메탄올을 연료로 하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC)의 경우 고분자 전해질(Polymer Electrolyte)을 사용하는데 이러한 연료전지는 운전온도가 고체전해질 연료전지, 용융 탄산염 연료전지, 인산형 연료전지보다 낮은 온도에서 운전하며 에너지 밀도 및 효율이 높고, 높은 출력의 요구와 출력을 기민하게 변경할 수 있어 신속한 기동 및 정지가 용이하며 환경 친화적인 발전 방식으로서 알려져 있다. 이러한 연료전지는 고분자 전해질막과 전해질막의 양면에 중첩되어있는 전극으로 이루어져 있으며, 단위전지나 또는 이를 적층하여 구성된 형태로 사용된다.In general, polymer electrolyte fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) using methanol as fuels use polymer electrolytes. It operates at lower temperatures than solid electrolyte fuel cells, molten carbonate fuel cells, and phosphate fuel cells, and has a high energy density and efficiency, and can quickly change the demands and outputs of high outputs, making it easy to start and stop quickly and be environmentally friendly. It is known as a power generation method. The fuel cell is composed of a polymer electrolyte membrane and an electrode overlapping both surfaces of the electrolyte membrane, and is used in a unit cell or in a form of a laminate thereof.

현재 상용화 전해질막으로는 네피온(Nafion, 퍼플루오르화 술폰산 중합체, 듀퐁사) 고분자 전해질막이 널리 사용되고 있으나, 비싼 가격(900$/m2)과 100℃ 이상의 온도에서 급격한 함수율 감소로 인하여 운전이 어려워 낮은 에너지 효율을 나타내고 있으며 직접 메탄올 연료전지의 경우 메탄올의 양극에서 음극으로의 투과현상인 메탄올 크로스오버 현상이 발생하여 급격한 성능의 감소가 발생되어지고 있다. 따라서 100℃ 이하의 낮은 온도에서 운전되는 연료전지시스템의 높은 효율성을 위하여 백금 촉매를 전극으로 사용하게 되는데, 이러한 경우 전해질막 성능과 직접적으로 관련된 전극 표면의 피독현상을 막기 위하여 연료전지에 주입되는 연료의 CO농도를 낮게 유지하여야 하는 문제점이 있다. 특히, 간접적인 메탄올 연료전지(Indirect Methanol Fuel Cell) 시스템의 경우 메탄올을 개질하여 수소연료를 얻게 되며, 이와 같은 경우에는 고가의 CO 정제 시스템을 필요로 하게 된다. 또한, CO에 의해 오염된 백금촉매 전극은 낮은 온도에서 메탄올 산화반응이 점진적으로 발생하기 때문에 낮은 효율성을 보이게 되는 문제점이 있다.Currently, Nafion (Nafion, perfluorinated sulfonic acid polymer, DuPont) polymer electrolyte membrane is widely used as commercialized electrolyte membrane, but it is difficult to operate due to high price (900 $ / m2) and rapid water content reduction at temperature above 100 ℃. In the case of direct methanol fuel cell, methanol crossover, which is a permeation of methanol from the anode to the cathode, is occurring, resulting in a rapid decrease in performance. Therefore, platinum catalyst is used as an electrode for high efficiency of fuel cell system operating at low temperature below 100 ℃. In this case, fuel injected into fuel cell to prevent poisoning of electrode surface directly related to electrolyte membrane performance. There is a problem in maintaining a low CO concentration. In particular, an indirect methanol fuel cell system may obtain hydrogen fuel by reforming methanol. In such a case, an expensive CO purification system is required. In addition, the platinum catalyst electrode contaminated by CO has a problem of showing low efficiency because methanol oxidation occurs gradually at a low temperature.

따라서 연료전지의 운전온도를 높일 경우에는 CO에 의한 백금촉매 전극의 피독현상을 줄일 수 있을 뿐만 아니라, 산화반응 속도를 크게 증가시킬 수 있어 연료전지 운전 효율을 증가시킬 수 있다. 그리고, 고가의 백금촉매와 같은 귀금속 대신 저가의 비금속을 전극으로 대체할 수 있기 때문에 경제적인 연료전지 시스템을 구성할 수 있다. 또한 고분자 전해질 연료전지의 성능은 전해질막의 특성에 의해 크게 좌우되며 전해질막의 물리적, 화학적, 열적 특성에 크게 의존하는 경향이 있다.Therefore, when the operating temperature of the fuel cell is increased, the poisoning phenomenon of the platinum catalyst electrode due to CO can be reduced, and the oxidation reaction rate can be greatly increased, thereby increasing the fuel cell operating efficiency. In addition, inexpensive nonmetals can be replaced by electrodes instead of precious metals such as expensive platinum catalysts, thereby making it possible to construct an economical fuel cell system. In addition, the performance of the polymer electrolyte fuel cell is largely dependent on the characteristics of the electrolyte membrane and tends to be largely dependent on the physical, chemical, and thermal characteristics of the electrolyte membrane.

그래서 본 발명에서는 기존의 상용화막에 비하여 우수한 물리적, 화학적, 열적 특성을 보이는 신규한 공중합 술폰화계 폴리이미드 전해질막을 제공하는 것이다.Thus, the present invention provides a novel copolymerized sulfonated polyimide electrolyte membrane that exhibits excellent physical, chemical, and thermal properties as compared to conventional commercialized membranes.

본 발명은 상술한 문제점을 해결하기 위하여 도출된 것으로서 열적,화학적, 기계적 물성등 제반물성이 뛰어난 폴리이미드를 이용하여 상온으로부터 고온까지의 넓은 온도범위에서 운전 가능하고 메탄올 크로스오버가 적으며, 내열성, 내화학성 및 내열응력이 뛰어나며 높은 이온전도도를 보이는 공중합 술폰화 폴리이미드 전해질막과 가교형 공중합 술폰화 폴리이미드 전해질막 그리고 전도성 무기물과의 블랜딩을 통한 유·무기 복합 전해질막을 제조하여 연료전지의 고분자 전해질막 적용에 그 기술적 과제가 있다.The present invention was derived to solve the above problems, and can be operated in a wide temperature range from room temperature to high temperature using polyimide having excellent physical properties such as thermal, chemical, and mechanical properties, and have low methanol crossover, heat resistance, Polymer electrolyte of fuel cell by preparing copolymerized sulfonated polyimide electrolyte membrane, crosslinking copolymerized sulfonated polyimide electrolyte membrane, and conductive inorganic material with excellent chemical resistance and thermal stress and high ion conductivity There is a technical problem in membrane application.

본 발명에 따른 공중합 술폰화 폴리이미드 전구체(폴리아믹산)분말의 미분주사열분석기(DSC)의 분석결과도Analysis result of differential scanning thermal analyzer (DSC) of copolymerized sulfonated polyimide precursor (polyamic acid) powder according to the present invention

본 발명에 따른 공중합 술폰화 폴리이미드 전해질막의 적외선 분광기(FT-IR)의 분석결과도Analysis result of infrared spectroscopy (FT-IR) of copolymerized sulfonated polyimide electrolyte membrane according to the present invention

본 발명에 따른 공중합 술폰화 폴리이미드 전해질막의 중량열분석기(TGA)의 분석결과도Analysis result of the gravimetric thermal analyzer (TGA) of the copolymerized sulfonated polyimide electrolyte membrane according to the present invention

본 발명은 하기 화학식(1)로 표현되는 반복단위를 가진 공중합 술폰화 폴리이미드와 화학식(2)로 표현되는 가교형 공중합 술폰화 폴리이미드 전해질막과 전도성 무기물과의 블랜딩을 통한 유·무기 복합 전해질막을 제공한다.The present invention provides an organic-inorganic composite electrolyte through blending a copolymerized sulfonated polyimide having a repeating unit represented by the following formula (1) with a crosslinked copolymerized sulfonated polyimide electrolyte membrane represented by the formula (2) and a conductive inorganic material. Provide a membrane.

상기식에서,In the above formula,

Ar은,,,,,,,,,,,,,,,,,,,,,,,,,,, Ar is , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Ar’는Ar ’

,,,, , , , ,

Ar”는,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-(CH2)n- (n=4∼10)Ar ” , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,-(CH 2 ) n- (n = 4 to 10)

상기식에서,In the above formula,

Ar은 화학식(1)의 Ar과 동일 ;Ar is the same as Ar of Formula (1);

Ar’는Ar ’

,,,,,, , , , , , ,

Ar”은Ar ”

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

,,,,,, ,,,,,,,,,,,,,,,,,,,,,-(CH2)n- (n=4∼10) , , , , , , , , , , , , , , , , , , , , , , , , , , ,-(CH 2 ) n- (n = 4 to 10)

B는B is

,,, , , ,

여기서, 상기 화학식(1)로 표현되는 공중합 술폰화 폴리이미드와 화학식(2)로 표현되는 가교형 공중합 술폰화 폴리이미드의 분자량은 10,000이상에서 수십만에 이를 수 있다.Here, the molecular weight of the copolymerized sulfonated polyimide represented by the general formula (1) and the crosslinked copolymerized sulfonated polyimide represented by the general formula (2) may reach 10,000 to several hundred thousand.

본 발명에서는 연료전지용 고분자 전해질막을 제조하기 위하여 술폰기가 함유된 술폰화계 폴리이미드를 제조하였다. 연료전지용 고분자 전해질로써 적합한 화학식(1)과 같은 공중합 술폰화 폴리이미드 전해질막과 가교제 B를 사용하여 가교시킨 화학식(2)와 같은 가교형 술폰화 폴리이미드 전해질막, 전도성 무기물과의 블랜딩을 통한 유·무기 복합 전해질막을 합성하였다.In the present invention, a sulfonated polyimide containing a sulfone group was prepared to prepare a polymer electrolyte membrane for a fuel cell. A crosslinking sulfonated polyimide electrolyte membrane such as Formula (2) crosslinked using a crosslinking agent B with a copolymerized sulfonated polyimide electrolyte membrane such as Formula (1) suitable as a polymer electrolyte for fuel cells, and blended with a conductive inorganic material. Inorganic composite electrolyte membrane was synthesized.

위의 고분자 전해질막 제조시 유기용매는 다이아민과 다이안하이드라이드를 용해시키기 위한 것으로서 사용가능한 유기용매는 메타 크레졸(m-Cresol)을 비롯하여 N-메틸피롤리돈(NMP), N,N'-디메틸아세트아미드(DMAc), 디메틸설퍼옥사이드(DMSO) 등이 사용가능하며 메타 크레졸(m-Cresol)과 나머지 유기용매를 적당한 비율로 혼합하여 사용하여도 무방하다.In the preparation of the polymer electrolyte membrane, the organic solvent is used to dissolve diamine and dianhydride, and the usable organic solvent is N-methylpyrrolidone (NMP), N, N'- including meta-cresol. Dimethylacetamide (DMAc), dimethylsulfuroxide (DMSO), and the like can be used, and meta cresol (m-Cresol) and the remaining organic solvents can be mixed and used in an appropriate ratio.

또한 본 발명에 따른 트리알킬아민으로는 트리에틸아민, 트리메틸아민 및 트리프로필아민 중 어느것을 사용하여도 무방하다.As the trialkylamine according to the present invention, any of triethylamine, trimethylamine and tripropylamine may be used.

한편, 본 발명에 따른 무기 첨가제는 연료전지용 전해질막의 이온 전도도를 향상시키기 위하여 첨가하는 물질로서, 상기 다이아민과 다이안하이드라이드의 반응에 의하여 제조되는 공중합 술폰화 폴리이미드와 가교형 공중합 술폰화 폴리이미드 제조를 위해 사용되는 가교제 사용량에 따라 달라지는데, 통상 1 내지 99%가 사용가능하며, 사용가능한 물질로는 Hm(XxYyOz)(nH2O), 여기서, X는 B, Al, Ga, Si, Ge, Sn, P, As, Sb, Te 및 제 1, 2, 3 그룹 전이원소, Y는 제 1, 2, 3 그룹 전이원소 등의 헤테로폴리 에시드를 혼합하여 무기물의 첨가에 따라서 이온전도도를 증가시킬 수 있다.On the other hand, the inorganic additive according to the present invention is a material added to improve the ionic conductivity of the electrolyte membrane for fuel cells, copolymerized sulfonated polyimide and crosslinked copolymerized sulfonated polyimide prepared by the reaction of the diamine and dianhydride Depending on the amount of crosslinking agent used for the preparation, usually 1 to 99% is available, and the usable materials include H m (X x Y y O z ) (nH 2 O), where X is B, Al, Ga, Si, Ge, Sn, P, As, Sb, Te, and the first, second, and third group transition elements, and Y are mixed with heteropolyacids such as the first, second, and third group transition elements, and the ionic conductivity is increased according to the addition of the inorganic material. Can be increased.

이하 본 발명에 따른 술폰화계 폴리이미드 제조방법에 대하여 설명하면 다음과 같다.Hereinafter, a sulfonated polyimide manufacturing method according to the present invention will be described.

30℃, 질소분위기 하에서 서로 다른 두종류의 다이아민을 혼합하여 유기용매에 용해시킨 후 이 혼합물에 다이안하이드라이드를 혼합하여 0℃∼상온에서 충분히 교반하여 화학식(3)을 제조한다. 상기 교반이 종료된 후 상기 반응물을 스핀 코우터나 닥터브래이드를 이용하여 수㎛∼수백㎛의 두께를 가진 전해질막을 hot plate나 진공오븐에서 한시간 동안 80℃에서 프리베이크한 후 승온시켜서 150∼300℃의 온도사이에서 충분히 열경화시켜서 화학식(1)의 안정화된 공중합 술폰화 폴리이미드 전해질막을 제조한다.Two different diamines were mixed in an organic solvent at 30 ° C. under a nitrogen atmosphere, and then dissolved in an organic solvent. Then, dianhydride was mixed with the mixture, followed by sufficiently stirring at 0 ° C. to room temperature, thereby preparing Formula (3). After the stirring was completed, the reaction product was prebaked at 80 ° C. for 1 hour using a spin coater or a doctor blade at 80 ° C. in a hot plate or vacuum oven, and then heated up to 150 ° C. to 300 ° C. It is sufficiently thermoset between temperatures of to prepare a stabilized copolymerized sulfonated polyimide electrolyte membrane of the formula (1).

30℃, 질소분위기 하에서 서로 다른 두종류의 다이아민을 혼합하여 유기용매에 용해시킨 후 이 혼합물에 다이안하이드라이드를 혼합하여 0℃∼상온에서 충분히 교반하여 화학식(4)을 제조한다. 가교제인 B를 첨가하여 반응시키고 상기 교반이 종료된 후 상기 반응물인 화학식(5)를 스핀 코우터나 닥터브래이드를 이용하여 수㎛∼수백㎛의 두께를 가진 전해질막을 hot plate나 진공오븐에서 한시간 동안 80℃에서 프리베이크한 후 승온시켜서 150∼300℃의 온도사이에서 충분히 열경화 및 가교시켜서 화학식(2)의 안정화된 가교형 공중합 술폰화 폴리이미드 전해질막을 제조한다.Two different diamines were mixed in an organic solvent at 30 ° C. under a nitrogen atmosphere, and then dissolved in an organic solvent. Then, dianhydride was mixed with the mixture, and the mixture was sufficiently stirred at 0 ° C. to room temperature to prepare Chemical Formula (4). After the reaction was completed by the addition of the crosslinking agent B, the reaction formula (5) was reacted by using a spin coater or a doctor blade, and an electrolyte membrane having a thickness of several μm to several hundred μm was used for one hour on a hot plate or a vacuum oven. After prebaking at 80 ° C., the temperature is raised, and then sufficiently thermoset and crosslinked at a temperature of 150 ° C. to 300 ° C. to prepare a stabilized crosslinked copolymer sulfonated polyimide electrolyte membrane of the formula (2).

무기물을 이용한 유?무기 복합 전해질막의 경우 화학식(3), (4), (5)를 제조한 후 다양한 조성비로 무기첨가제 Hm(XxYyOz)(nH2O)를 더하여 제조한다.In the case of the organic-inorganic composite electrolyte membrane using an inorganic substance, Chemical Formulas (3), (4), and (5) are prepared, and the inorganic additive H m (X x Y y O z ) (nH 2 O) is added at various composition ratios.

그래서 상기의 제조된 전해질막은 두께 및 공정온도를 조절하여 특성변화를 이룰 수 있으며 사용온도 및 필요에 따라 조절이 가능하다.Thus, the prepared electrolyte membrane can achieve characteristics change by controlling thickness and process temperature, and can be adjusted according to use temperature and need.

이하에서 실시예를 본 발명을 구체적으로 설명하기로 한다. 그러나 다음 실시예는 본 발명을 구체적으로 설명하기 위한 것으로 이들 실시예에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the following examples are only for illustrating the present invention in detail and are not intended to limit the scope of the present invention by these examples.

<실시예 1><Example 1>

공중합 술폰화 폴리이미드 전구체(폴리아믹산)분말의 제조Preparation of copolymerized sulfonated polyimide precursor (polyamic acid) powder

공중합 술폰화 폴리이미드의 반응은 기계식 교반기와 질소와 같은 비활성 기체의 주입구 및 시료주입구가 갖추어진 100ml의 반응기에서 수행되었으며 일정한 반응온도를 유지할 수 있는 오일배스를 이용하였다.The reaction of the copolymerized sulfonated polyimide was carried out in a 100 ml reactor equipped with a mechanical stirrer, an inlet for inert gas such as nitrogen, and a sample inlet, and an oil bath capable of maintaining a constant reaction temperature was used.

30℃의 9ml의 메타-크레졸(TCI, 일본)이 채워져 있는 반응기에 4,4’-옥시디페닐렌디아민(4,4’-ODA)(Aldrich, 미국) 0.631g(3.15mmol)을 넣어서 완전히 용해시킨 후 4,4'-디아미노 바이페닐-2,2’-디술포닉 산(BDSA)(TCI, 일본) 0.465g(1.35mmol)을 넣어서 용해시킨다. 이때 4,4'-디아미노 바이페닐-2,2’-디술포닉 산(BDSA)의 용해성을 증대시키기 위해서 트리에틸아민(Aldrich, 미국) 0.375ml(2.7mmol)를 첨가하였다. 그리고 혼합용매의 조성을 위하여 메타-크레졸과 동량의 N-메틸피롤리돈(NMP)(Lancaster, 미국) 9ml를 첨가하여준다. 완전히 혼합된 상기 혼합물에 4,4’-(헥사플루오로 이소프로필렌)디프탈산이무수물(6FDA)(Aldrich, 미국) 2g(4.5mmol)을 천천히 적가시킨 후 0℃∼상온에서 충분히 교반하여 반응시켰다. 그 다음 반응이 종료된 상기 반응물에 과량의 에틸아세테이트를 첨가한 후 빠르게 교반하면서 분홍색의 침전물을 수득하였다. 상시 수득된 침전물을 감압 거름장치를 이용하여 여과한 후 수차례 걸쳐 에틸아세테이트로 세척하고 세척된 상기 침전물을 30℃∼100℃ 진공오븐에서 충분히 건조시켜 폴리아믹산 분말을 수득하였다. 제조한 공중합 술폰화 폴리아믹산의 열경화 온도는 150℃∼300℃사이에서 이루어졌으며 도 1에서 나타내었다.0.631 g (3.15 mmol) of 4,4'-oxydiphenylenediamine (4,4'-ODA) (Aldrich, USA) was added to a reactor filled with 9 ml of meta-cresol (TCI, Japan) at 30 ° C. After dissolving, 0.465 g (1.35 mmol) of 4,4'-diamino biphenyl-2,2'-disulfonic acid (BDSA) (TCI, Japan) was added and dissolved. At this time, 0.375 ml (2.7 mmol) of triethylamine (Aldrich, USA) was added to increase the solubility of 4,4'-diamino biphenyl-2,2'-disulfonic acid (BDSA). And, for the composition of the mixed solvent, 9 ml of meta-cresol and the same amount of N-methylpyrrolidone (NMP) (Lancaster, USA) is added. 2 g (4.5 mmol) of 4,4 '-(hexafluoroisopropylene) diphthalic anhydride (6FDA) (Aldrich, USA) was slowly added dropwise to the completely mixed mixture, followed by reaction with sufficient stirring at 0 ° C to room temperature. . Then, an excess of ethyl acetate was added to the reaction mixture after the reaction was completed, and a pink precipitate was obtained with rapid stirring. The precipitate obtained at all times was filtered through a vacuum filter, washed several times with ethyl acetate, and the washed precipitate was dried sufficiently in a vacuum oven at 30 ° C. to 100 ° C. to obtain a polyamic acid powder. The thermosetting temperature of the prepared copolymerized sulfonated polyamic acid was made between 150 ° C. and 300 ° C. and is shown in FIG. 1.

<실시예 2><Example 2>

공중합 술폰화 폴리이미드의 확인Identification of Copolymerized Sulfonated Polyimides

실시예 1을 통하여 얻은 공중합 술폰화 폴리아믹산 분말을 NMP에 녹여서 만든 용액이나 실시예 1에서 침전시키기 전의 공중합 술폰화 폴리아믹산 용액을 웨이퍼 상에 부은 후 스핀 코우터를 이용하여 상기 웨이퍼를 100∼5000rpm의 속도로 5∼60초 정도 적절히 회전시켜 막의 두께를 조절하고 스핀코우터의 회전에 의해 웨이퍼에 분산된 상기 혼합물을 진공오븐내에서 80℃에서 한시간 동안 프리베이크한 후 150∼300℃의 온도사이에서 충분히 열경화시켜서 약 10㎛의 두께를 가진 갈색의 술폰화 폴리이미드 전해질막을 제조하였다. 수득된 공중합 술폰화 폴리이미드 전해질막은 폴리아믹산이 공중합 술폰화 폴리이미드로의 전환을 확인하기 위하여 적외선 분광법(FT-IR)(ATI Mattsion Co., 미국)을 사용하여 분석하였다. 상기 적외선 분광법에 의한 분석결과를 도 2에 나타내었다.After the copolymer sulfonated polyamic acid powder obtained in Example 1 was dissolved in NMP or the copolymer sulfonated polyamic acid solution before precipitation in Example 1 was poured onto the wafer, the wafer was 100 to 5000 rpm using a spin coater. The thickness of the film is controlled by appropriately rotating at a speed of about 5 to 60 seconds, and the mixture dispersed on the wafer by the rotation of the spin coater is prebaked at 80 ° C. for 1 hour in a vacuum oven, and then the temperature is between 150 ° C. and 300 ° C. It was sufficiently thermally cured at to prepare a brown sulfonated polyimide electrolyte membrane having a thickness of about 10㎛. The obtained copolymerized sulfonated polyimide electrolyte membrane was analyzed using infrared spectroscopy (FT-IR) (ATI Mattsion Co., USA) to confirm the conversion of polyamic acid to copolymerized sulfonated polyimide. The analysis results by the infrared spectroscopy are shown in FIG. 2.

<실시예 3><Example 3>

공중합 술폰화 폴리이미드 전해질막의 제조 및 특성분석Preparation and Characterization of Copolymerized Sulfonated Polyimide Electrolyte Membrane

실시예 1을 통하여 얻은 공중합 술폰화 폴리아믹산 분말을 NMP에 녹여서 만든 용액이나 실시예 1에서 침전시키기 전의 공중합 술폰화 폴리아믹산 용액을 스핀 코우터나 닥터브래이드를 이용하여 수㎛∼수백㎛의 두께를 가진 전해질막을 hot plate나 진공오븐에서 한시간 동안 80℃에서 프리베이크한 후 승온시켜서 150∼300℃의 온도사이에서 충분히 열경화시켜 갈색의 술폰화 폴리이미드 전해질막을 제조하였다. 이렇게 제조된 막의 명칭을 표 1에 그리고 이온교환용량(Ion Exchange Capacity, IEC)과 수소이온전도도, 함수율을 표 2에 나타내었고 열적안정성을 확인하기 위해서 중량열분석기(TGA)를 이용하여 분석하였고 도 3에 나타내었다.The copolymer sulfonated polyamic acid powder obtained in Example 1 was dissolved in NMP, or the copolymer sulfonated polyamic acid solution before precipitation in Example 1 was prepared using a spin coater or a doctor blade to obtain a thickness of several micrometers to several hundred micrometers. The electrolyte membrane was prebaked at 80 ° C. for one hour on a hot plate or vacuum oven, and then heated to a sufficient temperature and heated to a temperature of 150 to 300 ° C. to prepare a brown sulfonated polyimide electrolyte membrane. The membranes thus prepared are shown in Table 1, ion exchange capacity (IEC), hydrogen ion conductivity, and water content in Table 2, and analyzed by gravimetric thermal analyzer (TGA) to confirm thermal stability. 3 is shown.

위와 같은 방법으로 다이아민의 조성비를 조절함으로써 다양한 조성비를 가진 공중합 술폰화 폴리이미드 전해질막을 제조할 수 있다.Copolymerization sulfonated polyimide electrolyte membrane having various composition ratios may be prepared by adjusting the composition ratio of diamines in the same manner as described above.

CompositionComposition 6FDA6FDA ODPAODPA BDSABDSA ODAODA MDAMDA 6FDO506DEO606FDO706FDO806FDO506DEO606FDO706FDO80 100100100100100100100100 5040302050403020 5060708050607080 ODM50ODM60ODM70ODM80ODM50ODM60ODM70ODM80 100100100100100100100100 5040302050403020 5060708050607080

25℃25 ℃ 40℃40 ℃ 60℃60 ℃ 80℃80 ℃ IECIEC Nafion115Nafion115 Conductivity(Scm-1)Conductivity (Scm -1 ) 1.36×10-2 1.36 × 10 -2 2.10×10-2 2.10 × 10 -2 2.41×10-2 2.41 × 10 -2 3.54×10-2 3.54 × 10 -2 1.21.2 Water uptake(%)Water uptake (%) 23.0923.09 24.3924.39 25.6525.65 29.0729.07 6FDO506FDO50 Conductivity(Scm-1)Conductivity (Scm -1 ) 3.94×10-3 3.94 × 10 -3 6.96×10-3 6.96 × 10 -3 8.16×10-3 8.16 × 10 -3 9.16×10-3 9.16 × 10 -3 1.691.69 Water uptake(%)Water uptake (%) 13.2413.24 15.2415.24 15.5815.58 17.5417.54 6FDO606FDO60 Conductivity(Scm-1)Conductivity (Scm -1 ) 1.93×10-3 1.93 × 10 -3 2.96×10-3 2.96 × 10 -3 4.34×10-3 4.34 × 10 -3 5.24×10-3 5.24 × 10 -3 1.3651.365 Water uptake(%)Water uptake (%) 11.711.7 12.0012.00 12.5812.58 14.2414.24 6FDO706FDO70 Conductivity(Scm-1)Conductivity (Scm -1 ) 1.51×10-4 1.51 × 10 -4 1.81×10-4 1.81 × 10 -4 2.36×10-4 2.36 × 10 -4 4.10×10-4 4.10 × 10 -4 0.920.92 Water uptake(%)Water uptake (%) 8.038.03 8.758.75 8.788.78 9.529.52 6FDO806FDO80 Conductivity(Scm-1)Conductivity (Scm -1 ) 1.40×10-5 1.40 × 10 -5 1.93×10-5 1.93 × 10 -5 2.57×10-5 2.57 × 10 -5 3.39×10-5 3.39 × 10 -5 0.680.68 Water uptake(%)Water uptake (%) 4.824.82 5.745.74 6.296.29 8.168.16

25℃25 ℃ 40℃40 ℃ 60℃60 ℃ 80℃80 ℃ IECIEC Nafion 115Nafion 115 Conductivity(Scm-1)Conductivity (Scm -1 ) 1.36×10-2 1.36 × 10 -2 2.10×10-2 2.10 × 10 -2 2.41×10-2 2.41 × 10 -2 3.54×10-2 3.54 × 10 -2 1.21.2 Water uptake(%)Water uptake (%) 23.0923.09 24.3924.39 25.6525.65 29.0729.07 ODM50ODM50 Conductivity(Scm-1)Conductivity (Scm -1 ) 4.79×10-3 4.79 × 10 -3 7.15×10-3 7.15 × 10 -3 8.82×10-3 8.82 × 10 -3 1.27×10-2 1.27 × 10 -2 1.741.74 Water uptake(%)Water uptake (%) 18.1418.14 19.0519.05 21.8421.84 22.722.7 ODM60ODM60 Conductivity(Scm-1)Conductivity (Scm-1) 2.34×10-3 2.34 × 10 -3 3.20×10-3 3.20 × 10 -3 4.69×10-3 4.69 × 10 -3 6.05×10-3 6.05 × 10 -3 1.421.42 Water uptake(%)Water uptake (%) 14.7514.75 15.9515.95 16.5216.52 18.3818.38 ODM70ODM70 Conductivity(Scm-1)Conductivity (Scm -1 ) 2.71×10-4 2.71 × 10 -4 3.31×10-4 3.31 × 10 -4 4.16×10-4 4.16 × 10 -4 6.05×10-4 6.05 × 10 -4 1.051.05 Water uptake(%)Water uptake (%) 9.579.57 10.5310.53 10.8310.83 11.1611.16 ODM80ODM80 Conductivity(Scm-1)Conductivity (Scm -1 ) 2.73×10-5 2.73 × 10 -5 3.15×10-5 3.15 × 10 -5 3.85×10-5 3.85 × 10 -5 4.97×10-5 4.97 × 10 -5 0.730.73 Water uptake(%)Water uptake (%) 5.855.85 6.576.57 7.147.14 7.837.83

<실시예 4><Example 4>

가교형 공중합 술폰화 폴리이미드 전해질막의 제조Preparation of Crosslinked Copolymer Sulfonated Polyimide Electrolyte Membrane

가교형 공중합 술폰화 폴리이미드의 반응은 기계식 교반기와 질소와 같은 비활성 기체의 주입구 및 시료주입구가 갖추어진 100ml의 반응기에서 수행되었으며 일정한 반응온도를 유지할 수 있는 오일배스를 이용하였다.The reaction of the crosslinked copolymer sulfonated polyimide was carried out in a 100 ml reactor equipped with a mechanical stirrer, an inlet for inert gas such as nitrogen, and a sample inlet, and an oil bath capable of maintaining a constant reaction temperature was used.

상온의 18ml의 N-메틸피롤리돈(NMP)(Lancaster, 미국)이 채워져 있는 반응기에 가교가능한 3,5-디아미노 벤조산(DBA)(Aldrich, 미국) 0.342g(2.25mmol)과 4,4’-옥시디페닐렌디아민(4,4’-ODA)(Aldrich, 미국) 0.45g(2.25mmol)을 넣어서 완전히 용해시킨다. 완전히 혼합된 상기 혼합물에 4,4'-(헥사플루오로 이소프로필렌)디프탈산 이무수물(6FDA)(Aldrich, 미국) 2g(4.5mmol)을 천천히 적가시킨 후 0℃~상온에서 충분히 교반하여 반응시켰다. 그 다음 가교제인 N,N-비스(2-하이드록시 에틸)-2-아미노에탄술폰산(BES) 0.239g(1.125mmol)을 넣어주어서 3시간이상 교반하여준다. 그 다음 상기 수득된 용액을 스핀 코우터나 닥터브래이드를 이용하여 수㎛∼수백㎛의 두께를 가진 전해질막을 hot plate나 진공오븐에서 한시간 동안 80℃에서 프리베이크한 후 승온시켜서 150∼300℃의 온도사이에서 충분히 열경화 및 가교시켜서 갈색의 가교형 술폰화 폴리이미드 전해질막을 제조하였다.0.342 g (2.25 mmol) and 4,4 crosslinkable 3,5-diamino benzoic acid (DBA) (Aldrich, USA) in a reactor filled with 18 ml of N-methylpyrrolidone (NMP) (Lancaster, USA) at room temperature 0.45 g (2.25 mmol) of '-oxydiphenylenediamine (4,4'-ODA) (Aldrich, USA) is added to dissolve completely. 2 g (4.5 mmol) of 4,4 '-(hexafluoroisopropylene) diphthalic dianhydride (6FDA) (Aldrich, USA) was slowly added dropwise to the completely mixed mixture, followed by reaction with sufficient stirring at 0 ° C to room temperature. . Then, add 0.239 g (1.125 mmol) of N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES) as a crosslinking agent and stir for at least 3 hours. Then, the obtained solution was prebaked at 80 ° C. for 1 hour in a hot plate or vacuum oven using a spin coater or a doctor blade, and then heated up to a temperature of 150 to 300 ° C. It was thermally cured and crosslinked sufficiently to prepare a brown crosslinked sulfonated polyimide electrolyte membrane.

위와 같은 방법으로 다이아민의 조성비와 가교제의 조성비를 조절하여 다양한 조성비를 가진 가교형 공중합 술폰화 폴리이미드 전해질막을 제조할 수 있다.By adjusting the composition ratio of the diamine and the composition ratio of the crosslinking agent in the above manner it can be prepared a cross-linked copolymer sulfonated polyimide electrolyte membrane having a variety of composition ratios.

<실시예 5>Example 5

유·무기 복합 전해질막의 제조Preparation of Organic / Inorganic Composite Electrolyte Membrane

실시예 4와 같은 방법으로 얻은 용액에 가교제 중량의 30중량%의 무기물인 H3PW12O40(29H2O) 0.086g을 첨가하여 충분히 교반하여준다. 그 다음 상기 수득된 용액을 스핀 코우터나 닥터브래이드를 이용하여 수㎛∼수백㎛의 두께를 가진 전해질막을 hot plate나 진공오븐에서 한시간 동안 80℃에서 프리베이크한 후 승온시켜서 150∼300℃의 온도사이에서 충분히 열경화 및 가교시켜서 갈색의 유·무기 복합 전해질막을 제조하였다.To the solution obtained in the same manner as in Example 4, 0.086 g of H 3 PW 12 O 40 (29H 2 O), which is an inorganic substance of 30% by weight of the crosslinking agent, was sufficiently stirred. Then, the obtained solution was prebaked at 80 ° C. for 1 hour in a hot plate or vacuum oven using a spin coater or a doctor blade, and then heated up to a temperature of 150 to 300 ° C. It was sufficiently thermally cured and crosslinked between to prepare a brown organic-inorganic composite electrolyte membrane.

위와 같은 방법으로 공중합 술폰화 폴리아믹산 용액 혹은 가교제와 무기물의 조성비를 조절하여 다양한 조성비를 가진 유·무기 복합 전해질막을 제조할 수 있다.By adjusting the composition ratio of the copolymerized sulfonated polyamic acid solution or the crosslinking agent and the inorganic substance by the above method, an organic-inorganic composite electrolyte membrane having various composition ratios can be prepared.

본 발명에 따른 연료전지용 전해질막은 공정(경화온도) 및 막제조법(두께조절)에 따라 다양한 특성을 보여줄 수 있는 전해질막으로써 적당한 몰비율을 변화 제조하여 요구되는 특성을 향상시킬 수 있다. 특히 뛰어난 내열성, 내화학성 및 내열응력 등의 우수한 물성을 바탕으로 낮은 전기저항(높은 전도도), 높은 기계적 강도 및 균일한 두께를 가질 뿐만 아니라 100℃이상의 고온에서도 열적 안정성과 높은 이온 교환능력을 유지할 수 있고 메탄올 크로스오버현상을 감소시켜 연료전지용 고효율 고성능 고분자 전해질막으로의 응용이 가능하다고 할 수 있다.The electrolyte membrane for a fuel cell according to the present invention is an electrolyte membrane capable of showing various characteristics according to a process (curing temperature) and a membrane manufacturing method (thickness control), and thus, the required molar ratio may be changed and manufactured to improve the required characteristics. In particular, it has low electrical resistance (high conductivity), high mechanical strength and uniform thickness based on excellent physical properties such as excellent heat resistance, chemical resistance and thermal stress, and can maintain thermal stability and high ion exchange ability even at high temperatures of 100 ° C. or higher. In addition, it can be said that it is possible to apply to high efficiency high performance polymer electrolyte membrane for fuel cell by reducing methanol crossover phenomenon.

Claims (4)

다음과 같은 2단계 축합반응을 통해 화학식(3)의 반복단위를 가지는 공중합 술폰화 폴리이미드 전구체(폴리아믹산)의 제조방법;A method of preparing a copolymerized sulfonated polyimide precursor (polyamic acid) having a repeating unit of formula (3) through a two-step condensation reaction as follows; 상기식에서,In the above formula, Ar은,,,,,,,,,,,,,,,Ar is , , , , , , , , , , , , , , , ,,,,,,,,,,,,, , , , , , , , , , , , , , Ar’는Ar ’ ,,,, , , , , Ar”는,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-(CH2)n- (n=4∼10)Ar ” , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,-(CH 2 ) n- (n = 4 to 10) 실시예 1과 2와 같은 방법으로 온도 30℃, 질소분위기 하에서 서로 다른 두 종류의 다이아민을 용해시킨 후 혼합물에 다이안하이드라이드를 혼합하여 0℃~상온에서 충분히 교반하여 화학식(3)의 공중합 술폰화 폴리이미드 전구체(폴리아믹산)를 제조하는 방법.In the same manner as in Examples 1 and 2, two different types of diamines were dissolved under a nitrogen atmosphere at 30 ° C., and then dianhydride was mixed in the mixture, and the mixture was sufficiently stirred at 0 ° C. to room temperature. A method of making a fonned polyimide precursor (polyamic acid). 이 용액 자체를 이용하여도 무방하며 에틸아세테이트에 침전시켜 공중합 술폰화 폴리이미드 전구체(폴리아믹산) 분말을 제조하여 이를 NMP등의 유기용매에 녹여서 다시 용액을 제조할 수도 있다.The solution itself may be used and precipitated in ethyl acetate to prepare a copolymer sulfonated polyimide precursor (polyamic acid) powder, which may be dissolved in an organic solvent such as NMP to prepare a solution. 다음과 같은 2단계 축합반응을 통해 화학식(4), (5)의 반복단위를 가지는 가교형 공중합 술폰화 폴리이미드 전구체(폴리아믹산)의 제조방법;Method for producing a crosslinked copolymer sulfonated polyimide precursor (polyamic acid) having a repeating unit of formula (4), (5) through the following two-step condensation reaction; 상기식에서,In the above formula, Ar은 화학식(1)의 Ar과 동일 ;Ar is the same as Ar of Formula (1); Ar’는Ar ’ ,,,,,, , , , , , , Ar”은Ar ” ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,,,,,, ,,,,,,,,,,,,,,,,,,,,,-(CH2)n- (n=4∼10) , , , , , , , , , , , , , , , , , , , , , , , , , , ,-(CH 2 ) n- (n = 4 to 10) B는B is ,,, , , , 청구항 1과 같은 방법으로 화학식(4)의 공중합 술폰화 폴리이미드 전구체(폴리아믹산) 용액을 제조한 후 가교제(B)를 첨가해서 충분히 교반하여 화학식(5)의 가교형 공중합 술폰화 폴리이미드 전구체(폴리아믹산) 용액을 제조하는 방법.After preparing a solution of the copolymerized sulfonated polyimide precursor (polyamic acid) of the formula (4) by the same method as in claim 1, the crosslinking agent (B) was added thereto and stirred sufficiently to form a crosslinked copolymerized sulfonated polyimide precursor of the formula (5) ( Polyamic acid) solution. 청구항 1, 2를 통해 제조 가능한 화학식(3), (4), (5)의 공중합 및 가교형 공중합 술폰화 폴리이미드 전구체(폴리아믹산) 용액에 무기 첨가제를 더 포함하는 제조방법.Claims 1 and 2, the copolymerization of the formula (3), (4), (5) and the production method further comprising an inorganic additive in the sulfonated polyimide precursor (polyamic acid) solution. 상기 무기 첨가제는 Hm(XxYyOz)(nH2O)이며 X는 B, Al, Ga, Si, Ge, Sn, P, As, Sb, Te 및 제 1, 2, 3 그룹 전이원소 중에서 선택된 어느 하나이며, Y는 제 1, 2, 3 그룹 전이원소 중에 선택된 어느 하나이다.The inorganic additive is H m (X x Y y O z ) (nH 2 O) and X is B, Al, Ga, Si, Ge, Sn, P, As, Sb, Te and the 1, 2, 3 group transition Any one selected from the elements, Y is any one selected from the first, second, third group transition elements. 청구항 1을 통하여 제조한 공중합 술폰화 폴리아믹산 용액과 청구항 2를 통하여 제조한 가교형 공중합 술폰화 폴리아믹산 용액 그리고 청구항 3을 통하여 제조한 무기첨가제를 함유하고 있는 용액을 스핀 코우터나 닥터브래이드를 이용하여 hot plate나 진공오븐에서 한시간 동안 80℃에서 프리베이크한 후 승온시켜서 150∼300℃의 온도사이에서 충분히 열경화 및 가교시켜서 수㎛∼수백㎛의 두께를 가진 안정화된 화학식(1)의 공중합 술폰화 폴리이미드 전해질막과 화학식(2)의 가교형 공중합 술폰화 폴리이미드 전해질막 그리고 유·무기 복합 전해질막 제조방법 및 제조되어진 전해질막.A solution containing a copolymer sulfonated polyamic acid solution prepared according to claim 1, a crosslinked copolymer sulfonated polyamic acid solution prepared according to claim 2, and an inorganic additive prepared according to claim 3 is used by using a spin coater or a doctor blade. After prebaking at 80 ° C. in a hot plate or vacuum oven for 1 hour, the temperature was raised, and then sufficiently thermoset and crosslinked at a temperature of 150 to 300 ° C. to stabilize the copolymer of Chemical Formula (1) having a thickness of several μm to several hundred μm. A method for producing an ionized polyimide electrolyte membrane, a crosslinked copolymer sulfonated polyimide electrolyte membrane of formula (2), and an organic / inorganic composite electrolyte membrane and an prepared electrolyte membrane.
KR1020020075915A 2002-12-02 2002-12-02 Preparation of high performance sulfonated polyimides Membranes for Fuel Cell KR20040048140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020075915A KR20040048140A (en) 2002-12-02 2002-12-02 Preparation of high performance sulfonated polyimides Membranes for Fuel Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020075915A KR20040048140A (en) 2002-12-02 2002-12-02 Preparation of high performance sulfonated polyimides Membranes for Fuel Cell

Publications (1)

Publication Number Publication Date
KR20040048140A true KR20040048140A (en) 2004-06-07

Family

ID=37343049

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020075915A KR20040048140A (en) 2002-12-02 2002-12-02 Preparation of high performance sulfonated polyimides Membranes for Fuel Cell

Country Status (1)

Country Link
KR (1) KR20040048140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562469B1 (en) * 2004-11-16 2006-03-17 주식회사 코오롱 Thermoplastic polyimide copolymer, its manufacturing method and flexible copper-clad laminate using thereof
KR100655176B1 (en) * 2005-08-11 2006-12-08 한양대학교 산학협력단 Crosslinked polyimides and their applications as electrochemical materials
CN104183806A (en) * 2014-08-13 2014-12-03 江苏安瑞达新材料有限公司 Composite lithium battery diaphragm and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562469B1 (en) * 2004-11-16 2006-03-17 주식회사 코오롱 Thermoplastic polyimide copolymer, its manufacturing method and flexible copper-clad laminate using thereof
KR100655176B1 (en) * 2005-08-11 2006-12-08 한양대학교 산학협력단 Crosslinked polyimides and their applications as electrochemical materials
CN104183806A (en) * 2014-08-13 2014-12-03 江苏安瑞达新材料有限公司 Composite lithium battery diaphragm and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2202261B1 (en) Hyper-branched polymer, electrode for fuel cell including the hyper-branched polymer, electrolyte membrane for fuel cell including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane
JP3645558B2 (en) PROTON CONDUCTIVE POLYMER HAVING ACID GROUP ON SIDE CHAIN, METHOD FOR PRODUCING THE SAME, POLYMER MEMBRANE USING THE PROTON CONDUCTIVE POLYMER
JPWO2003033566A1 (en) Protonic acid group-containing crosslinkable aromatic resin, and ion conductive polymer membrane, binder and fuel cell using the same
JP5015631B2 (en) POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE SAME
TWI418580B (en) High proton conductivity proton exchange membrane composites
Seo et al. Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell
US7465780B2 (en) Polyimide comprising sulfonic acid group at the terminal of side chain, and polymer electrolyte and fuel cell using the same
US7388035B2 (en) Method for preparing poly(2,5-benzimidazole)
WO2007108143A1 (en) Electrolyte composition, solid electrolyte membrane and solid polymer fuel cell
US20070148520A1 (en) Novel metal (III) -chromium-phosphate complex and use thereof
JP4065424B2 (en) Cross-linked sulfonated polyimide film
KR20140017213A (en) Sulfonated polymer electrolyte membrane having cardo structure and fuel cell comprising the same
US20060275637A1 (en) Electrolyte membrane and preparing method thereof
KR100449788B1 (en) Synthesis of Sulfonated Polyimides and Preparation of Membranes for PEMFC
KR20040048140A (en) Preparation of high performance sulfonated polyimides Membranes for Fuel Cell
Shimura et al. Synthesis, properties, and fuel cell performance of perfluorosulfonated poly (arylene ether) s
KR100589345B1 (en) Preparation method of sulfonated polybenzimidazole and sulfonated polybenzimidazole prepared therefrom, and polymer electrolyte membrane comprising the same
KR100476283B1 (en) Crosslinked Sulfonated polyimide films
KR100668798B1 (en) Polyarylene ether copolymer with polystyrene sulfonate grafts
JP2003338298A (en) Polyamide precursor varnish containing protonic acid group and cross-linked polyamide containing protonic acid group
KR101558536B1 (en) Hyperbranched polymer electrode for fuel cell including the same electrolyte membrane for fuel cell including the same and fuel cell using the same
KR100570686B1 (en) Proton conductive polymer, method for preparating the same, polymer electrolyte membrane comprising the same, and method for preparating the same
KR20050062701A (en) Preparation of novel electrolyte membranes for fuel cell
KR20050072183A (en) Synthesis of crosslinked sulfonated copolyimide networks as electrolyte membrane
JP2004026935A (en) Sulfo group-containing resin cured product, ion conductive polymeric membrane for fuel cell to be obtained therefrom and fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application