JP4642342B2 - Proton conductor and fuel cell - Google Patents

Proton conductor and fuel cell Download PDF

Info

Publication number
JP4642342B2
JP4642342B2 JP2003398914A JP2003398914A JP4642342B2 JP 4642342 B2 JP4642342 B2 JP 4642342B2 JP 2003398914 A JP2003398914 A JP 2003398914A JP 2003398914 A JP2003398914 A JP 2003398914A JP 4642342 B2 JP4642342 B2 JP 4642342B2
Authority
JP
Japan
Prior art keywords
proton
proton conductor
ion
phosphate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003398914A
Other languages
Japanese (ja)
Other versions
JP2005158646A (en
Inventor
房樹 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003398914A priority Critical patent/JP4642342B2/en
Priority to KR1020040073360A priority patent/KR100634513B1/en
Publication of JP2005158646A publication Critical patent/JP2005158646A/en
Application granted granted Critical
Publication of JP4642342B2 publication Critical patent/JP4642342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Description

本発明は、100℃以上300℃以下の作動温度下において、無加湿あるいは相対湿度50%以下であっても良好なイオン伝導性をしめすプロトン伝導体およびこのプロトン伝導体を用いた燃料電池に関する。   The present invention relates to a proton conductor that exhibits good ionic conductivity even at an operating temperature of 100 ° C. or more and 300 ° C. or less without humidity or a relative humidity of 50% or less, and a fuel cell using the proton conductor.

電圧を印加することによりイオンが移動するイオン伝導体が知られている。このイオン伝導体は電池や電気化学センサー等の電気化学デバイスとして広く利用されている。
例えば燃料電池においては、発電効率、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低加湿な作動条件で良好なプロトン伝導性を長期安定的にしめすプロトン伝導体が望まれている。従来の固体高分子型燃料電池の開発において、上記要求に鑑みて検討されてきたが、パーフルオロカーボンスルホン酸膜では100℃以上300℃以下の作動温度下、相対湿度50%以下では十分なプロトン伝導性および出力を得る事が出来ない欠点があった。
また、プロトン伝導性付与剤を含有させたもの(例えば、特許文献1参照。)や、シリカ分散膜を使用したもの(例えば、特許文献2参照。)、無機一有機複合膜を使用したもの(例えば、特許文献3参照。)、リン酸ドープグラフト膜を使用したもの(例えば、特許文献4参照。)、あるいはイオン性液体複合膜を使用したもの(例えば、特許文献5、特許文献6参照。)があるが、いずれも100℃以上300℃以下の作動温度下、相対湿度50%以下の使用環境下では十分なプ□トン伝導性を長期間安定的に発揮することはできない。
また、リン酸型燃料電池、固体酸化物型燃料電池、溶融塩型燃料電池においては作動温度が300℃を大きく超えてしまうため、構成部材の長期安定性に問題が生るなど、コストの観点から要求を十分満たすものではない。そこで、上記要求を満足するためにゾルーゲル多孔質ガラスを使用したもの(例えば、特許文献7参照。)やリン酸塩のハイドロゲルを使用するもの(例えば、特許文献8参照。)などが検討されているが、プロトン伝導度、長期安定性においてまだ十分ではない。
特開2001−035509号公報 特開平06−111827号公報 特開2000−090946号公報 特開2001−213987号公報 特開2001−167629号公報 特開2003−123791号公報 特開2002−097272号公報 特開2003−217339号公報
An ion conductor in which ions move by applying a voltage is known. This ion conductor is widely used as an electrochemical device such as a battery or an electrochemical sensor.
For example, in a fuel cell, from the viewpoints of power generation efficiency, system efficiency, and long-term durability of components, it is satisfactory under an operating temperature of about 100 ° C. to 300 ° C. under non-humidified or low humidified operating conditions of 50% or less relative humidity. Proton conductors that have stable proton conductivity for a long period of time are desired. In the development of a conventional polymer electrolyte fuel cell, it has been studied in view of the above requirements, but perfluorocarbon sulfonic acid membranes have sufficient proton conduction at an operating temperature of 100 ° C. to 300 ° C. and a relative humidity of 50% or less. There was a drawback that it was not possible to obtain characteristics and output.
In addition, a material containing a proton conductivity-imparting agent (for example, see Patent Document 1), a material using a silica dispersion film (for example, see Patent Document 2), or a material using an inorganic mono-organic composite film ( For example, see Patent Document 3), using a phosphate-doped graft membrane (see, for example, Patent Document 4), or using an ionic liquid composite membrane (see, for example, Patent Document 5 and Patent Document 6). However, in any case, under the operating temperature of 100 ° C. or more and 300 ° C. or less and the usage environment of relative humidity 50% or less, sufficient pton conductivity cannot be stably exhibited for a long period of time.
In addition, in the phosphoric acid fuel cell, solid oxide fuel cell, and molten salt fuel cell, since the operating temperature greatly exceeds 300 ° C., there is a problem in the long-term stability of the constituent members, etc. It does not satisfy the requirements from. Therefore, in order to satisfy the above requirements, those using sol-gel porous glass (for example, see Patent Document 7), those using phosphate hydrogel (for example, see Patent Document 8), and the like are studied. However, proton conductivity and long-term stability are still not sufficient.
Japanese Patent Laid-Open No. 2001-035509 Japanese Patent Laid-Open No. 06-1111827 JP 2000-090946 A JP 2001-213987 A JP 2001-167629 A JP 2003-123791 A JP 2002-097272 A JP 2003-217339 A

燃料電池の発電効率、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低加湿な作動条件で良好なプロトン伝導性を長期安定的にしめすプロトン伝導体が望まれているが、従来の技術では困難で未だ充分な性能は得られていない。
本発明は、上記課題を解決するためになされたもので、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮することができるプロトン伝導体およびこれを用いた燃料電池を提供することを目的とする。
From the viewpoint of power generation efficiency of fuel cells, system efficiency, and long-term durability of components, good proton conductivity at operating temperatures of about 100 ° C to 300 ° C under non-humidified or low humidified operating conditions of 50% or less relative humidity Although a proton conductor that stably stabilizes the long term is desired, it is difficult to achieve with a conventional technique, and sufficient performance has not been obtained yet.
The present invention has been made in order to solve the above-mentioned problems, and exhibits good proton conductivity stably for a long period of time at an operating temperature of about 100 ° C. to 300 ° C. under non-humidified conditions or operating conditions of 50% or less relative humidity. It is an object of the present invention to provide a proton conductor that can be used and a fuel cell using the same.

上記課題を解決するために本発明のプロトン伝導体は、(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンおよび(4)プロトン配位性分子からなるプロトン伝導体とした。
このプロトン伝導体は100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮することができる。
In order to solve the above problems, the proton conductor of the present invention is a proton conductor comprising (1) condensed phosphoric acid, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule. .
This proton conductor can exhibit good proton conductivity stably for a long period of time at an operating temperature of about 100 ° C. to 300 ° C. under the operating conditions of no humidification or a relative humidity of 50% or less.

本発明のプロトン伝導体においては、前記(1)縮合リン酸と(2)リン酸イオンの比率がP換算で10:90〜90:10の範囲にあり、前記(3)金属イオンの量がP換算の前記(1)縮合リン酸及び(2)リン酸イオンのモル数に対して10〜90モル%の範囲にあり、かつ前記(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンの合計重量と、前記(4)プロトン配位性分子の重量との比が10:90〜90:10の範囲にあることが好ましい。 In the proton conductor of the present invention, the ratio of the (1) condensed phosphate and (2) phosphate ion is in the range of 10:90 to 90:10 in terms of P 2 O 5 , and the (3) metal ion Is in the range of 10 to 90 mol% with respect to the number of moles of the (1) condensed phosphoric acid and (2) phosphate ion in terms of P 2 O 5 , and (1) the condensed phosphoric acid, (2 It is preferable that the ratio of the total weight of the phosphate ions and (3) metal ions to the weight of the (4) proton-coordinating molecule is in the range of 10:90 to 90:10.

本発明のプロトン伝導体に使用するプロトン配位性分子としては、イミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩を使用することができる。
また、本発明に使用するプロトン配位性分子としては、上記物質にさらに水を加えたものであっても良い。
これらのプロトン配位性分子を使用すれば、100℃から300℃程度の作動温度においてプロトン伝導性が安定し、しかも長期的に安定性が持続するようになる。
Proton coordination molecules used in the proton conductor of the present invention include imidazole, imidazole derivatives, imidazolium salts, imidazolium derivatives, pyridine, pyridine derivatives, pyridinium salts, pyridinium derivative salts, tertiary alkyl ammonia, quaternary alkyl. Ammonium salts can be used.
In addition, the proton-coordinating molecule used in the present invention may be one obtained by adding water to the above substance.
When these proton coordination molecules are used, proton conductivity is stabilized at an operating temperature of about 100 ° C. to 300 ° C., and stability is maintained for a long time.

本発明の燃料電池は、上記本発明のプロトン伝導体を電解質膜として使用した燃料電池である。
本発明のプロトン伝導体を電解質膜として使用した本発明の燃料電池は、100℃以上300℃以下、相対湿度が50%以下の条件で、良好なプロトン電導性を長期間にわたって発揮するものとなる。
The fuel cell of the present invention is a fuel cell using the proton conductor of the present invention as an electrolyte membrane.
The fuel cell of the present invention using the proton conductor of the present invention as an electrolyte membrane exhibits good proton conductivity over a long period of time at 100 ° C. to 300 ° C. and a relative humidity of 50% or less. .

本発明によれば、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮するプロトン伝導体を得ることができる。このプロトン伝導体を電解質膜として用いれば、自動車等の高温になる使用環境においても良好なプロトン伝導性を長期安定的に発揮する燃料電池を得る事が出来るので、燃料電池の使用範囲を飛躍的に拡大することができる。   According to the present invention, it is possible to obtain a proton conductor that stably exhibits good proton conductivity for a long period of time under an operating condition of no humidification or a relative humidity of 50% or less at an operating temperature of about 100 ° C. to 300 ° C. If this proton conductor is used as an electrolyte membrane, it is possible to obtain a fuel cell that stably exhibits good proton conductivity for a long period of time even in a high temperature use environment such as an automobile. Can be expanded.

本発明に用いられる縮合リン酸とは、リン酸が脱水縮合した物であり、縮合度、分子量などに制限はない。縮合リン酸は通常のリン酸塩ガラスの製造方法によって得られる。
本発明に用いられるリン酸イオンとは、正リン酸を構成する3価のアニオンである。
本発明に用いられる金属イオンとは、リン酸ガラスを構成し得る金属イオンであり、カルシウムイオン、マグネシウムイオンなどのアルカリ土類金属イオンあるいは亜鉛イオン、銅イオン、鉄イオンなどの金属イオンである。本発明のプロトン伝導体においては、これらの金属イオンが少なくとも1種類以上含まれていれば良い。
The condensed phosphoric acid used in the present invention is a product obtained by dehydrating and condensing phosphoric acid, and there is no limitation on the degree of condensation and molecular weight. Condensed phosphoric acid is obtained by the usual method for producing phosphate glass.
The phosphate ion used in the present invention is a trivalent anion constituting normal phosphate.
The metal ion used in the present invention is a metal ion that can constitute a phosphate glass, and is an alkaline earth metal ion such as calcium ion or magnesium ion, or a metal ion such as zinc ion, copper ion, or iron ion. In the proton conductor of the present invention, it is sufficient that at least one kind of these metal ions is contained.

本発明に用いられるプロトン配位性分子とは、分子内にプロトンを配意することができる非共有電子対を持った分子であり、詳しくは分子構造内に窒素原子、酸素原子を1原子以上含んだ分子である。一例としては、アンモニア、ピリジン、イミダゾール、オキサゾール、ベンズイミダゾール、ベンズオキサゾール、チオールなどをあけることができる。本発明のプロトン伝導体はこれらのプロトン配位性分子を少なくとも1種類含んでいれば良い。これらプロトン配位性分子の中でも、特にイミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体塩、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩が取り扱い性、耐久性、性能、コストの観点から優れている。
また、水および水以外のプロトン配位性分子を組み合わせてプロトン配位性分子として使用することは、成形性、コストの観点から好ましく、特に水とイミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体塩、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩の中から一種類以上組み合わせる事は取り扱い性、耐久性、性能、コストの観点から優れている。
The proton-coordinating molecule used in the present invention is a molecule having an unshared electron pair capable of arranging a proton in the molecule, and more specifically, one or more nitrogen atoms and oxygen atoms in the molecular structure. It is a contained molecule. As an example, ammonia, pyridine, imidazole, oxazole, benzimidazole, benzoxazole, thiol and the like can be opened. The proton conductor of the present invention only needs to contain at least one of these proton coordination molecules. Among these proton coordination molecules, in particular, imidazole, imidazole derivatives, imidazolium salts, imidazolium derivative salts, pyridine, pyridine derivatives, pyridinium salts, pyridinium derivative salts, tertiary alkyl ammonia, quaternary alkyl ammonium salts are easy to handle. Excellent in terms of durability, performance and cost.
In addition, it is preferable to use water and a proton-coordinating molecule other than water as a proton-coordinating molecule from the viewpoint of moldability and cost, and particularly water and imidazole, imidazole derivatives, imidazolium salts, imidazolium derivatives. Combining one or more of salts, pyridine, pyridine derivatives, pyridinium salts, pyridinium derivative salts, tertiary alkyl ammonia, and quaternary alkyl ammonium salts is excellent from the viewpoints of handleability, durability, performance, and cost.

本発明のプロトン伝導体は、(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンおよび(4)プロトン配位性分子からなるプロトン伝導体から構成されているが、これら構成成分の好ましい配合割合は以下の通りである。
前記(1)縮合リン酸と(2)リン酸イオンは、(1)縮合リン酸と(2)リン酸イオンの比率がP換算で10:90〜90:10の範囲、好ましくは1:4〜4:1の範囲にあることが好ましい。この範囲より縮合リン酸が多いとプロトン伝導性を損ない、少ないと取り扱い性を損なう。
The proton conductor of the present invention is composed of a proton conductor composed of (1) condensed phosphate, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule. The preferred blending ratio of the components is as follows.
The (1) condensed phosphoric acid and (2) phosphoric acid ion have a ratio of (1) condensed phosphoric acid and (2) phosphoric acid ion in the range of 10:90 to 90:10 in terms of P 2 O 5 , preferably It is preferably in the range of 1: 4 to 4: 1. If there is more condensed phosphoric acid than this range, proton conductivity will be impaired, and if it is less, handling will be impaired.

金属イオンの量は、P換算の前記縮合リン酸及びリン酸イオンのモル数の合計に対して、金属イオンの量が10〜90モル%の範囲、好ましくは20〜80モル%の範囲にあることが好ましい。 この範囲より金属イオンが多いとプロトン伝導性を損ない、少ないと取り扱い性を損なう。 The amount of metal ions, relative to the total mole number of the condensed phosphoric acid and phosphate ions in terms of P 2 O 5, ranges amount of 10 to 90 mol% of metal ions, preferably 20 to 80 mol% It is preferable to be in the range. When there are more metal ions than this range, proton conductivity is impaired, and when it is less, handling properties are impaired.

さらに、プロトン配位性分子の配合量は、縮合リン酸、リン酸イオン、金属イオンの合計重量とプロトン配位性分子の重量との比が10:90〜90:10の範囲、好ましくは1:4〜4:1の範囲にあることが好ましい。この範囲よりプロトン配位性分子の配合量が多いとプロトン伝導性を損ない、少ないとプロトン伝導度の長期安定性を損なう。   Furthermore, the blending amount of the proton-coordinating molecule is such that the ratio of the total weight of the condensed phosphoric acid, phosphate ion and metal ion to the weight of the proton-coordinating molecule ranges from 10:90 to 90:10, preferably 1. : It is preferable that it exists in the range of 4-4: 1. If the blending amount of the proton-coordinating molecule is larger than this range, the proton conductivity is impaired, and if it is less, the long-term stability of the proton conductivity is impaired.

本発明のプロトン伝導体は、(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンおよび(4)プロトン配位性分子から構成されているが、その製造方法には特に制限が無く、各成分を混合撹絆することによって得ることができる他、縮合ガラス化、ゲル化の二つのエ程を使用して製造するのが品質、コストなどの観点から好ましい。   The proton conductor of the present invention is composed of (1) condensed phosphate, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule, but its production method is particularly limited. In addition to being able to be obtained by mixing and stirring each component, it is preferable from the viewpoint of quality, cost, etc. to manufacture using two processes of condensation vitrification and gelation.

次に、本発明の燃料電池は上記プロトン伝導体を電解質膜として使用したものである。
周知のごとく、燃料電池は電解質膜が負極(水素極)と正極(酸素極)により挟まれた構造を有している。前記負極と正極には、外部回路がリード線を介して接続されている。前記負極側には、水素ガス(H )を導入するための入口、燃料ガスを排出するための出口を備えたセルが設けられている。前記正極側には、酸素ガス(O )を導入するための入口、(酸素+水)を排出するための出口を備えたセルが設けられている。こうした構成の燃料電池 のセル内では、負極側の入口から水素ガスを、正極側の入口から酸素ガスを夫々の出口に向けて供給し、両極間で電解質膜を介してプロトンを移動させて放電している。
本発明の燃料電池では、前記本発明のプロトン伝導体を電解質膜として使用したものである。
Next, the fuel cell of the present invention uses the proton conductor as an electrolyte membrane.
As is well known, a fuel cell has a structure in which an electrolyte membrane is sandwiched between a negative electrode (hydrogen electrode) and a positive electrode (oxygen electrode). An external circuit is connected to the negative electrode and the positive electrode via lead wires. On the negative electrode side, a cell having an inlet for introducing hydrogen gas (H 2 ) and an outlet for discharging fuel gas is provided. On the positive electrode side, a cell having an inlet for introducing oxygen gas (O 2 ) and an outlet for discharging (oxygen + water) is provided. In the fuel cell having such a configuration, hydrogen gas is supplied from the negative electrode side inlet and oxygen gas is supplied from the positive electrode side inlet to the respective outlets, and protons are moved between the two electrodes via the electrolyte membrane for discharging. is doing.
In the fuel cell of the present invention, the proton conductor of the present invention is used as an electrolyte membrane.

以下に本発明の好適な実施の形態を実施例に基づいて説明する。
なお、イオン伝導度の測定は次の方法によって行った。
電解質膜を直径1mmの自金電極で挟持、固定し測定用セルとした。このセルを150℃の恒温槽で24時間状態調整を行い、その後に交流法によりインピーダンス測定を行った。この時の測定条件は測定周波数1MHz〜0.1Hz、電圧振幅は50mVであった。この測定結果のCole−ColeプロットからZ”=0の時のZ’の値を膜抵抗とし計算によりイオン伝導度を求めた。
Preferred embodiments of the present invention will be described below based on examples.
The ion conductivity was measured by the following method.
The electrolyte membrane was sandwiched and fixed by a self-gold electrode having a diameter of 1 mm to obtain a measurement cell. This cell was conditioned for 24 hours in a thermostatic bath at 150 ° C., and thereafter impedance measurement was performed by an alternating current method. The measurement conditions at this time were a measurement frequency of 1 MHz to 0.1 Hz and a voltage amplitude of 50 mV. From the Cole-Cole plot of this measurement result, the value of Z ′ when Z ″ = 0 was taken as the membrane resistance, and the ionic conductivity was determined by calculation.

(実施例1)
正リン酸(純度85%)23g、炭酸カルシウム10g、水20ccを計り取り撹絆混合した。これを100℃で24時間乾燥し、その後1500℃の電気炉で2時間加熱した。加熱後、溶融物を冷却固化してリン酸カルシウムガラスを得た。このリン酸カルシウムガラスを粉砕後、プロトン配位性分子として等量のイミダゾール水溶液(20wt%)を加えたところ、ゲル状物質を得た。
このゲル状物質を、31PMAS−NMRで分析したところ、化学シフトの違いがらリン酸分子は縮合リン酸構造と正リン酸イオン構造として存在していることが確認された。このゲル状物質をプロトン伝導体としてイオン伝導度を150℃で測定したところ7×10−2S/cmであった。さらに100時間150℃の恒温槽で保持しイオン伝導度を測定したところ変わらず、イオン伝導度は7×10−2S/cmであった。このゲル状のプロトン伝導体を市販の燃料電池用電極(Electrochem 社)で挟持し膜電極接合体とし、150℃、無加湿の条件下、水素/空気で燃料電池を構成して運転を行ったところ、電流密度0.3A/cm において0.66Vの端子電圧を得た。
Example 1
23 g of normal phosphoric acid (purity 85%), 10 g of calcium carbonate, and 20 cc of water were weighed and mixed. This was dried at 100 ° C. for 24 hours, and then heated in an electric furnace at 1500 ° C. for 2 hours. After heating, the melt was cooled and solidified to obtain calcium phosphate glass. After this calcium phosphate glass was pulverized, an equivalent amount of an imidazole aqueous solution (20 wt%) was added as a proton-coordinating molecule to obtain a gel-like substance.
When this gel-like substance was analyzed by 31 PMAS-NMR, it was confirmed that the phosphoric acid molecules existed as a condensed phosphate structure and a normal phosphate ion structure with a difference in chemical shift. When this gelled substance was used as a proton conductor and the ionic conductivity was measured at 150 ° C., it was 7 × 10 −2 S / cm. Furthermore, when it hold | maintained in a 150 degreeC thermostat for 100 hours and the ionic conductivity was measured, the ionic conductivity was 7x10 <-2 > S / cm. The gel proton conductor was sandwiched between commercially available fuel cell electrodes (Electrochem) to form a membrane electrode assembly, and the fuel cell was constructed with hydrogen / air under conditions of 150 ° C. and no humidification. However, a terminal voltage of 0.66 V was obtained at a current density of 0.3 A / cm 2 .

(実施例2〜10)
プロトン配位性分子としてイミダゾールに変えて表1に示す物質を加え実施例1と同様にしてプロトン伝導体とした。このプロトン伝導体のイオン伝導度を実施例1と同様の温度条件で測定した。また、100時間150℃の恒温槽で保持した後のイオン伝導度を測定した。さらに、このプロトン伝導体を使用して実施例1と同様の燃料電池を構成して電流密度と端子電圧を測定した。これらの結果を表1にまとめて記す。
(Examples 2 to 10)
A proton conductor was obtained in the same manner as in Example 1 by adding the substances shown in Table 1 instead of imidazole as a proton-coordinating molecule. The ionic conductivity of this proton conductor was measured under the same temperature conditions as in Example 1. Moreover, the ion conductivity after hold | maintaining with a 150 degreeC thermostat for 100 hours was measured. Further, a fuel cell similar to that of Example 1 was constructed using this proton conductor, and the current density and the terminal voltage were measured. These results are summarized in Table 1.

Figure 0004642342
Figure 0004642342

(比較例1)
正リン酸(純度85%)23g、炭酸カルシウム10g、水20ccを計り取り撹幹混合した。これを100℃で24時間乾燥し、その後1500℃の電気炉で2時間加熱した。加熱後、溶融物を冷却固化してリン酸カルシウムガラスを得た。このリン酸カルシウムガラスを粉砕後、等量の水を加えてゲル状物質を得た。このゲル状物質を31PMAS−NMRで分析したところ、化学シフトの違いからリン酸元素は縮合リン酸構造と正リン酸イオン構造として存在していることが確認された。このゲル状物質をプロトン伝導体としてイオン伝導度を150℃で測定したところ6×10−3S/cmであった。さらに100時間150℃の恒温槽で保持しイオン伝導度を測定したところ2×10−6S/cmまで低下しており、イオン伝導度の長期安定性に問題があることが明らかになった。
また、このプロトン伝導体を使用して実施例1と同様の燃料電池を構成して電流密度と端子電圧を測定したところ、電流密度が0.3A/cm において端子電圧は0.24Vであった。
(Comparative Example 1)
23 g of normal phosphoric acid (purity: 85%), 10 g of calcium carbonate, and 20 cc of water were weighed and mixed with a stem. This was dried at 100 ° C. for 24 hours, and then heated in an electric furnace at 1500 ° C. for 2 hours. After heating, the melt was cooled and solidified to obtain calcium phosphate glass. After the calcium phosphate glass was pulverized, an equal amount of water was added to obtain a gel-like substance. When this gel-like substance was analyzed by 31 PMAS-NMR, it was confirmed from the difference in chemical shift that the phosphoric acid element was present as a condensed phosphate structure and a normal phosphate ion structure. The ionic conductivity of this gel-like material as a proton conductor was 6 × 10 -3 S / cm was measured at 0.99 ° C.. Further, when the ionic conductivity was measured while being held in a thermostatic bath at 150 ° C. for 100 hours, it was found to be 2 × 10 −6 S / cm, and it was revealed that there was a problem in the long-term stability of the ionic conductivity.
Further, a fuel cell similar to that of Example 1 was constructed using this proton conductor and the current density and the terminal voltage were measured. As a result, the terminal voltage was 0.24 V at a current density of 0.3 A / cm 2 . It was.

本発明によれば100℃以上300℃程度の高温の使用環境でも高いイオン電導度が得られ、しかもイオン伝導度が長期にわたって安定性しているので自動車等に利用する上でまことに有用である。

According to the present invention, high ionic conductivity is obtained even in a high temperature use environment of 100 ° C. or more and about 300 ° C., and the ionic conductivity is stable over a long period of time.

Claims (4)

(1)縮合リン酸と、(2)リン酸イオンと、(3)金属イオンおよび(4)プロトン配位性分子からなるプロトン伝導体であって、
前記(3)金属イオンが、アルカリ土類金属イオン、亜鉛イオン、銅イオン及び鉄イオンからなる群から選択された少なくとも一種を含み、
前記(4)プロトン配位性分子が、イミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩のうちのいずれか一種である、ことを特徴とするプロトン伝導体。
A proton conductor comprising (1) condensed phosphoric acid, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule ,
(3) The metal ion includes at least one selected from the group consisting of alkaline earth metal ions, zinc ions, copper ions and iron ions,
The (4) proton coordination molecule is any one of imidazole, imidazole derivative, imidazolium salt, imidazolium derivative, pyridine, pyridine derivative, pyridinium salt, pyridinium derivative salt, tertiary alkyl ammonia, and quaternary alkyl ammonium salt. A proton conductor characterized in that it is a kind .
前記(1)縮合リン酸と(2)リン酸イオンの比率がP換算で10:90〜90:10の範囲にあり、前記(3)金属イオンの量がP換算の前記(1)縮合リン酸及び(2)リン酸イオンのモル数に対して10〜90モル%の範囲にあり、かつ前記(1)縮合リン酸と(2)リン酸イオンと(3)金属イオンの合計重量と、前記(4)プロトン配位性分子の重量との比が10:90〜90:10の範囲にあることを特徴とする請求項1に記載のプロトン伝導体。 The ratio of (1) condensed phosphoric acid and (2) phosphate ion is in the range of 10:90 to 90:10 in terms of P 2 O 5 , and the amount of (3) metal ion in terms of P 2 O 5 It is in the range of 10 to 90 mol% with respect to the number of moles of (1) condensed phosphate and (2) phosphate ion, and (1) condensed phosphate, (2) phosphate ion, and (3) metal 2. The proton conductor according to claim 1, wherein the ratio of the total weight of ions to the weight of the (4) proton-coordinating molecule is in the range of 10:90 to 90:10. 前記プロトン配位性分子さらに水を加えたことを特徴とする請求項1又は請求項2に記載のプロトン伝導体。 The proton conductor according to claim 1, wherein water is further added to the proton coordination molecule. 請求項1から請求項のいずれか項に記載のプロトン伝導体を電解質として用いたことを特徴とする燃料電池。 A fuel cell using the proton conductor according to any one of claims 1 to 3 as an electrolyte.
JP2003398914A 2003-11-28 2003-11-28 Proton conductor and fuel cell Expired - Lifetime JP4642342B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003398914A JP4642342B2 (en) 2003-11-28 2003-11-28 Proton conductor and fuel cell
KR1020040073360A KR100634513B1 (en) 2003-11-28 2004-09-14 Proton conductor and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398914A JP4642342B2 (en) 2003-11-28 2003-11-28 Proton conductor and fuel cell

Publications (2)

Publication Number Publication Date
JP2005158646A JP2005158646A (en) 2005-06-16
JP4642342B2 true JP4642342B2 (en) 2011-03-02

Family

ID=34723614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398914A Expired - Lifetime JP4642342B2 (en) 2003-11-28 2003-11-28 Proton conductor and fuel cell

Country Status (2)

Country Link
JP (1) JP4642342B2 (en)
KR (1) KR100634513B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570745B1 (en) 2003-10-30 2006-04-12 삼성에스디아이 주식회사 A method for preparing poly2,5-benzimidazole
WO2006051772A1 (en) * 2004-11-09 2006-05-18 Ube Industries, Ltd. Liquid electrolyte
JP4904750B2 (en) * 2004-11-09 2012-03-28 宇部興産株式会社 Liquid electrolyte
WO2008050692A1 (en) * 2006-10-23 2008-05-02 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell
JP5231737B2 (en) * 2007-01-25 2013-07-10 学校法人中部大学 Fuel cell solid electrolyte
JP4634540B2 (en) * 2009-05-11 2011-02-16 パナソニック株式会社 Fuel cell using proton conductive gel, method for producing the same, and power generation method
JP5461928B2 (en) * 2009-09-02 2014-04-02 旭ファイバーグラス株式会社 INORGANIC AQUEOUS COMPOSITION AND METHOD FOR PRODUCING INORGANIC AQUEOUS COMPOSITION
JP4792547B2 (en) * 2010-01-27 2011-10-12 パナソニック株式会社 Power generation method using fuel cell and fuel cell
TWI424882B (en) 2010-12-29 2014-02-01 Ind Tech Res Inst Metal catalyst composition modified by nitrogen-containing compound
JP6139177B2 (en) 2012-04-16 2017-05-31 株式会社デンソー Proton conductor, method for producing proton conductor, and fuel cell
JP6674204B2 (en) * 2015-07-30 2020-04-01 株式会社デンソー Proton conductor, method for producing proton conductor, and fuel cell
JP2017224514A (en) * 2016-06-16 2017-12-21 株式会社デンソー Fuel cell electrode, fuel cell, and catalyst body
JP6726633B2 (en) * 2017-03-02 2020-07-22 株式会社デンソー Proton conductor and fuel cell
KR20190037412A (en) * 2017-09-29 2019-04-08 가천대학교 산학협력단 Method of manufacturing composite polymer electrolyte membrane and fuel cell
JP2020113367A (en) * 2019-01-08 2020-07-27 株式会社デンソー Proton conductor and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123791A (en) * 2001-10-09 2003-04-25 Masayoshi Watanabe Proton conductor and fuel cell using the same
JP2003192380A (en) * 2001-10-15 2003-07-09 Tokyo Yogyo Co Ltd Glass body having high proton conductivity and method for producing the same, water electrolysis apparatus, gas generating apparatus, fuel cell and hydrogen sensor
JP2003217339A (en) * 2002-01-16 2003-07-31 Nagoya Industrial Science Research Inst Proton conductive gel, proton conductor and method for manufacturing these
WO2003083981A1 (en) * 2002-03-29 2003-10-09 Kri, Inc. Proton exchanger for fuel cell and fuel cell containing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108934B2 (en) 2002-01-18 2006-09-19 California Instituite Of Technology Proton conducting membranes for high temperature fuel cells with solid state “water free” membranes
JP2003242831A (en) 2002-02-12 2003-08-29 National Institute Of Advanced Industrial & Technology Proton conductive film, its manufacturing method, and fuel cell using the same
JP2003331869A (en) 2002-05-14 2003-11-21 Hitachi Ltd Proton conductive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123791A (en) * 2001-10-09 2003-04-25 Masayoshi Watanabe Proton conductor and fuel cell using the same
JP2003192380A (en) * 2001-10-15 2003-07-09 Tokyo Yogyo Co Ltd Glass body having high proton conductivity and method for producing the same, water electrolysis apparatus, gas generating apparatus, fuel cell and hydrogen sensor
JP2003217339A (en) * 2002-01-16 2003-07-31 Nagoya Industrial Science Research Inst Proton conductive gel, proton conductor and method for manufacturing these
WO2003083981A1 (en) * 2002-03-29 2003-10-09 Kri, Inc. Proton exchanger for fuel cell and fuel cell containing the same

Also Published As

Publication number Publication date
KR100634513B1 (en) 2006-10-16
KR20050052328A (en) 2005-06-02
JP2005158646A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4642342B2 (en) Proton conductor and fuel cell
Li et al. Preparation and characterization of sulfonated polyimide/TiO 2 composite membrane for vanadium redox flow battery
TWI286854B (en) Proton conducting mediums for electrochemical devices and electrochemical devices comprising the same
Zhang et al. Sulfonated polyimide/AlOOH composite membranes with decreased vanadium permeability and increased stability for vanadium redox flow battery
EP3197906B1 (en) Processes for preparing polyoxometalate salts for use in proton exchange membranes and fuel cells
KR20090073649A (en) Solid proton conductor and fuel cell using the same
JP5479323B2 (en) Novel electrolyte using Lewis acid / Bronsted acid complex
JP2003123791A (en) Proton conductor and fuel cell using the same
CA2460891C (en) Proton conducting material, proton conducting membrane, and fuel cell
EP1474839B1 (en) Polymer electrolyte membranes for use in fuel cells
Nair et al. Role of protic ionic liquid concentration in proton conducting polymer electrolytes for improved electrical and thermal properties
JP2006147165A (en) Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it
US7824781B2 (en) Metal phosphate composite and dense material comprised of the same
KR101441411B1 (en) Electrolyte membrane for fuel cell, the method for preparing the same, and the fuel cell comprising the membrane
Deimede et al. Polymer electrolyte membranes based on blends of sulfonated polysulfone and PEO‐grafted polyethersulfone for low temperature water electrolysis
JP2005029655A (en) Polymer electrolyte composition
JP4549663B2 (en) Solid polymer electrolyte and fuel cell
JPWO2003083981A1 (en) Proton exchanger for fuel cell and fuel cell equipped with the same
JP4597835B2 (en) PROTON CONDUCTIVE ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
JP5005160B2 (en) Gel electrolyte and fuel cell
US20060260935A1 (en) Aqueous ionomeric gels and products and methods related thereto
JP2011507979A (en) Sulfonyl grafted heterocyclic materials for proton conducting electrolytes
JP4583874B2 (en) Proton conducting solid polymer electrolyte membrane and fuel cell
JP2003229143A (en) Proton conductive polymer membrane and fuel cell made thereof
JP2004311212A (en) Proton conducting film and its manufacturing method and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term