JP4642342B2 - Proton conductor and fuel cell - Google Patents
Proton conductor and fuel cell Download PDFInfo
- Publication number
- JP4642342B2 JP4642342B2 JP2003398914A JP2003398914A JP4642342B2 JP 4642342 B2 JP4642342 B2 JP 4642342B2 JP 2003398914 A JP2003398914 A JP 2003398914A JP 2003398914 A JP2003398914 A JP 2003398914A JP 4642342 B2 JP4642342 B2 JP 4642342B2
- Authority
- JP
- Japan
- Prior art keywords
- proton
- proton conductor
- ion
- phosphate
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 title claims description 34
- 239000000446 fuel Substances 0.000 title claims description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 38
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 25
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 21
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 20
- 229910021645 metal ion Inorganic materials 0.000 claims description 16
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 14
- -1 iron ions Chemical class 0.000 claims description 13
- 229940085991 phosphate ion Drugs 0.000 claims description 11
- 239000003792 electrolyte Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 150000004693 imidazolium salts Chemical class 0.000 claims description 7
- 239000010452 phosphate Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 5
- 150000002460 imidazoles Chemical class 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 150000003222 pyridines Chemical class 0.000 claims description 4
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 2
- 229910001431 copper ion Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 9
- 230000007774 longterm Effects 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000005365 phosphate glass Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1034—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Description
本発明は、100℃以上300℃以下の作動温度下において、無加湿あるいは相対湿度50%以下であっても良好なイオン伝導性をしめすプロトン伝導体およびこのプロトン伝導体を用いた燃料電池に関する。 The present invention relates to a proton conductor that exhibits good ionic conductivity even at an operating temperature of 100 ° C. or more and 300 ° C. or less without humidity or a relative humidity of 50% or less, and a fuel cell using the proton conductor.
電圧を印加することによりイオンが移動するイオン伝導体が知られている。このイオン伝導体は電池や電気化学センサー等の電気化学デバイスとして広く利用されている。
例えば燃料電池においては、発電効率、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低加湿な作動条件で良好なプロトン伝導性を長期安定的にしめすプロトン伝導体が望まれている。従来の固体高分子型燃料電池の開発において、上記要求に鑑みて検討されてきたが、パーフルオロカーボンスルホン酸膜では100℃以上300℃以下の作動温度下、相対湿度50%以下では十分なプロトン伝導性および出力を得る事が出来ない欠点があった。
また、プロトン伝導性付与剤を含有させたもの(例えば、特許文献1参照。)や、シリカ分散膜を使用したもの(例えば、特許文献2参照。)、無機一有機複合膜を使用したもの(例えば、特許文献3参照。)、リン酸ドープグラフト膜を使用したもの(例えば、特許文献4参照。)、あるいはイオン性液体複合膜を使用したもの(例えば、特許文献5、特許文献6参照。)があるが、いずれも100℃以上300℃以下の作動温度下、相対湿度50%以下の使用環境下では十分なプ□トン伝導性を長期間安定的に発揮することはできない。
また、リン酸型燃料電池、固体酸化物型燃料電池、溶融塩型燃料電池においては作動温度が300℃を大きく超えてしまうため、構成部材の長期安定性に問題が生るなど、コストの観点から要求を十分満たすものではない。そこで、上記要求を満足するためにゾルーゲル多孔質ガラスを使用したもの(例えば、特許文献7参照。)やリン酸塩のハイドロゲルを使用するもの(例えば、特許文献8参照。)などが検討されているが、プロトン伝導度、長期安定性においてまだ十分ではない。
For example, in a fuel cell, from the viewpoints of power generation efficiency, system efficiency, and long-term durability of components, it is satisfactory under an operating temperature of about 100 ° C. to 300 ° C. under non-humidified or low humidified operating conditions of 50% or less relative humidity. Proton conductors that have stable proton conductivity for a long period of time are desired. In the development of a conventional polymer electrolyte fuel cell, it has been studied in view of the above requirements, but perfluorocarbon sulfonic acid membranes have sufficient proton conduction at an operating temperature of 100 ° C. to 300 ° C. and a relative humidity of 50% or less. There was a drawback that it was not possible to obtain characteristics and output.
In addition, a material containing a proton conductivity-imparting agent (for example, see Patent Document 1), a material using a silica dispersion film (for example, see Patent Document 2), or a material using an inorganic mono-organic composite film ( For example, see Patent Document 3), using a phosphate-doped graft membrane (see, for example, Patent Document 4), or using an ionic liquid composite membrane (see, for example, Patent Document 5 and Patent Document 6). However, in any case, under the operating temperature of 100 ° C. or more and 300 ° C. or less and the usage environment of relative humidity 50% or less, sufficient pton conductivity cannot be stably exhibited for a long period of time.
In addition, in the phosphoric acid fuel cell, solid oxide fuel cell, and molten salt fuel cell, since the operating temperature greatly exceeds 300 ° C., there is a problem in the long-term stability of the constituent members, etc. It does not satisfy the requirements from. Therefore, in order to satisfy the above requirements, those using sol-gel porous glass (for example, see Patent Document 7), those using phosphate hydrogel (for example, see Patent Document 8), and the like are studied. However, proton conductivity and long-term stability are still not sufficient.
燃料電池の発電効率、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低加湿な作動条件で良好なプロトン伝導性を長期安定的にしめすプロトン伝導体が望まれているが、従来の技術では困難で未だ充分な性能は得られていない。
本発明は、上記課題を解決するためになされたもので、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮することができるプロトン伝導体およびこれを用いた燃料電池を提供することを目的とする。
From the viewpoint of power generation efficiency of fuel cells, system efficiency, and long-term durability of components, good proton conductivity at operating temperatures of about 100 ° C to 300 ° C under non-humidified or low humidified operating conditions of 50% or less relative humidity Although a proton conductor that stably stabilizes the long term is desired, it is difficult to achieve with a conventional technique, and sufficient performance has not been obtained yet.
The present invention has been made in order to solve the above-mentioned problems, and exhibits good proton conductivity stably for a long period of time at an operating temperature of about 100 ° C. to 300 ° C. under non-humidified conditions or operating conditions of 50% or less relative humidity. It is an object of the present invention to provide a proton conductor that can be used and a fuel cell using the same.
上記課題を解決するために本発明のプロトン伝導体は、(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンおよび(4)プロトン配位性分子からなるプロトン伝導体とした。
このプロトン伝導体は100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮することができる。
In order to solve the above problems, the proton conductor of the present invention is a proton conductor comprising (1) condensed phosphoric acid, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule. .
This proton conductor can exhibit good proton conductivity stably for a long period of time at an operating temperature of about 100 ° C. to 300 ° C. under the operating conditions of no humidification or a relative humidity of 50% or less.
本発明のプロトン伝導体においては、前記(1)縮合リン酸と(2)リン酸イオンの比率がP2O5換算で10:90〜90:10の範囲にあり、前記(3)金属イオンの量がP2O5換算の前記(1)縮合リン酸及び(2)リン酸イオンのモル数に対して10〜90モル%の範囲にあり、かつ前記(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンの合計重量と、前記(4)プロトン配位性分子の重量との比が10:90〜90:10の範囲にあることが好ましい。 In the proton conductor of the present invention, the ratio of the (1) condensed phosphate and (2) phosphate ion is in the range of 10:90 to 90:10 in terms of P 2 O 5 , and the (3) metal ion Is in the range of 10 to 90 mol% with respect to the number of moles of the (1) condensed phosphoric acid and (2) phosphate ion in terms of P 2 O 5 , and (1) the condensed phosphoric acid, (2 It is preferable that the ratio of the total weight of the phosphate ions and (3) metal ions to the weight of the (4) proton-coordinating molecule is in the range of 10:90 to 90:10.
本発明のプロトン伝導体に使用するプロトン配位性分子としては、イミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩を使用することができる。
また、本発明に使用するプロトン配位性分子としては、上記物質にさらに水を加えたものであっても良い。
これらのプロトン配位性分子を使用すれば、100℃から300℃程度の作動温度においてプロトン伝導性が安定し、しかも長期的に安定性が持続するようになる。
Proton coordination molecules used in the proton conductor of the present invention include imidazole, imidazole derivatives, imidazolium salts, imidazolium derivatives, pyridine, pyridine derivatives, pyridinium salts, pyridinium derivative salts, tertiary alkyl ammonia, quaternary alkyl. Ammonium salts can be used.
In addition, the proton-coordinating molecule used in the present invention may be one obtained by adding water to the above substance.
When these proton coordination molecules are used, proton conductivity is stabilized at an operating temperature of about 100 ° C. to 300 ° C., and stability is maintained for a long time.
本発明の燃料電池は、上記本発明のプロトン伝導体を電解質膜として使用した燃料電池である。
本発明のプロトン伝導体を電解質膜として使用した本発明の燃料電池は、100℃以上300℃以下、相対湿度が50%以下の条件で、良好なプロトン電導性を長期間にわたって発揮するものとなる。
The fuel cell of the present invention is a fuel cell using the proton conductor of the present invention as an electrolyte membrane.
The fuel cell of the present invention using the proton conductor of the present invention as an electrolyte membrane exhibits good proton conductivity over a long period of time at 100 ° C. to 300 ° C. and a relative humidity of 50% or less. .
本発明によれば、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮するプロトン伝導体を得ることができる。このプロトン伝導体を電解質膜として用いれば、自動車等の高温になる使用環境においても良好なプロトン伝導性を長期安定的に発揮する燃料電池を得る事が出来るので、燃料電池の使用範囲を飛躍的に拡大することができる。 According to the present invention, it is possible to obtain a proton conductor that stably exhibits good proton conductivity for a long period of time under an operating condition of no humidification or a relative humidity of 50% or less at an operating temperature of about 100 ° C. to 300 ° C. If this proton conductor is used as an electrolyte membrane, it is possible to obtain a fuel cell that stably exhibits good proton conductivity for a long period of time even in a high temperature use environment such as an automobile. Can be expanded.
本発明に用いられる縮合リン酸とは、リン酸が脱水縮合した物であり、縮合度、分子量などに制限はない。縮合リン酸は通常のリン酸塩ガラスの製造方法によって得られる。
本発明に用いられるリン酸イオンとは、正リン酸を構成する3価のアニオンである。
本発明に用いられる金属イオンとは、リン酸ガラスを構成し得る金属イオンであり、カルシウムイオン、マグネシウムイオンなどのアルカリ土類金属イオンあるいは亜鉛イオン、銅イオン、鉄イオンなどの金属イオンである。本発明のプロトン伝導体においては、これらの金属イオンが少なくとも1種類以上含まれていれば良い。
The condensed phosphoric acid used in the present invention is a product obtained by dehydrating and condensing phosphoric acid, and there is no limitation on the degree of condensation and molecular weight. Condensed phosphoric acid is obtained by the usual method for producing phosphate glass.
The phosphate ion used in the present invention is a trivalent anion constituting normal phosphate.
The metal ion used in the present invention is a metal ion that can constitute a phosphate glass, and is an alkaline earth metal ion such as calcium ion or magnesium ion, or a metal ion such as zinc ion, copper ion, or iron ion. In the proton conductor of the present invention, it is sufficient that at least one kind of these metal ions is contained.
本発明に用いられるプロトン配位性分子とは、分子内にプロトンを配意することができる非共有電子対を持った分子であり、詳しくは分子構造内に窒素原子、酸素原子を1原子以上含んだ分子である。一例としては、アンモニア、ピリジン、イミダゾール、オキサゾール、ベンズイミダゾール、ベンズオキサゾール、チオールなどをあけることができる。本発明のプロトン伝導体はこれらのプロトン配位性分子を少なくとも1種類含んでいれば良い。これらプロトン配位性分子の中でも、特にイミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体塩、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩が取り扱い性、耐久性、性能、コストの観点から優れている。
また、水および水以外のプロトン配位性分子を組み合わせてプロトン配位性分子として使用することは、成形性、コストの観点から好ましく、特に水とイミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体塩、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩の中から一種類以上組み合わせる事は取り扱い性、耐久性、性能、コストの観点から優れている。
The proton-coordinating molecule used in the present invention is a molecule having an unshared electron pair capable of arranging a proton in the molecule, and more specifically, one or more nitrogen atoms and oxygen atoms in the molecular structure. It is a contained molecule. As an example, ammonia, pyridine, imidazole, oxazole, benzimidazole, benzoxazole, thiol and the like can be opened. The proton conductor of the present invention only needs to contain at least one of these proton coordination molecules. Among these proton coordination molecules, in particular, imidazole, imidazole derivatives, imidazolium salts, imidazolium derivative salts, pyridine, pyridine derivatives, pyridinium salts, pyridinium derivative salts, tertiary alkyl ammonia, quaternary alkyl ammonium salts are easy to handle. Excellent in terms of durability, performance and cost.
In addition, it is preferable to use water and a proton-coordinating molecule other than water as a proton-coordinating molecule from the viewpoint of moldability and cost, and particularly water and imidazole, imidazole derivatives, imidazolium salts, imidazolium derivatives. Combining one or more of salts, pyridine, pyridine derivatives, pyridinium salts, pyridinium derivative salts, tertiary alkyl ammonia, and quaternary alkyl ammonium salts is excellent from the viewpoints of handleability, durability, performance, and cost.
本発明のプロトン伝導体は、(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンおよび(4)プロトン配位性分子からなるプロトン伝導体から構成されているが、これら構成成分の好ましい配合割合は以下の通りである。
前記(1)縮合リン酸と(2)リン酸イオンは、(1)縮合リン酸と(2)リン酸イオンの比率がP2O5換算で10:90〜90:10の範囲、好ましくは1:4〜4:1の範囲にあることが好ましい。この範囲より縮合リン酸が多いとプロトン伝導性を損ない、少ないと取り扱い性を損なう。
The proton conductor of the present invention is composed of a proton conductor composed of (1) condensed phosphate, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule. The preferred blending ratio of the components is as follows.
The (1) condensed phosphoric acid and (2) phosphoric acid ion have a ratio of (1) condensed phosphoric acid and (2) phosphoric acid ion in the range of 10:90 to 90:10 in terms of P 2 O 5 , preferably It is preferably in the range of 1: 4 to 4: 1. If there is more condensed phosphoric acid than this range, proton conductivity will be impaired, and if it is less, handling will be impaired.
金属イオンの量は、P2O5換算の前記縮合リン酸及びリン酸イオンのモル数の合計に対して、金属イオンの量が10〜90モル%の範囲、好ましくは20〜80モル%の範囲にあることが好ましい。 この範囲より金属イオンが多いとプロトン伝導性を損ない、少ないと取り扱い性を損なう。 The amount of metal ions, relative to the total mole number of the condensed phosphoric acid and phosphate ions in terms of P 2 O 5, ranges amount of 10 to 90 mol% of metal ions, preferably 20 to 80 mol% It is preferable to be in the range. When there are more metal ions than this range, proton conductivity is impaired, and when it is less, handling properties are impaired.
さらに、プロトン配位性分子の配合量は、縮合リン酸、リン酸イオン、金属イオンの合計重量とプロトン配位性分子の重量との比が10:90〜90:10の範囲、好ましくは1:4〜4:1の範囲にあることが好ましい。この範囲よりプロトン配位性分子の配合量が多いとプロトン伝導性を損ない、少ないとプロトン伝導度の長期安定性を損なう。 Furthermore, the blending amount of the proton-coordinating molecule is such that the ratio of the total weight of the condensed phosphoric acid, phosphate ion and metal ion to the weight of the proton-coordinating molecule ranges from 10:90 to 90:10, preferably 1. : It is preferable that it exists in the range of 4-4: 1. If the blending amount of the proton-coordinating molecule is larger than this range, the proton conductivity is impaired, and if it is less, the long-term stability of the proton conductivity is impaired.
本発明のプロトン伝導体は、(1)縮合リン酸、(2)リン酸イオン、(3)金属イオンおよび(4)プロトン配位性分子から構成されているが、その製造方法には特に制限が無く、各成分を混合撹絆することによって得ることができる他、縮合ガラス化、ゲル化の二つのエ程を使用して製造するのが品質、コストなどの観点から好ましい。 The proton conductor of the present invention is composed of (1) condensed phosphate, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule, but its production method is particularly limited. In addition to being able to be obtained by mixing and stirring each component, it is preferable from the viewpoint of quality, cost, etc. to manufacture using two processes of condensation vitrification and gelation.
次に、本発明の燃料電池は上記プロトン伝導体を電解質膜として使用したものである。
周知のごとく、燃料電池は電解質膜が負極(水素極)と正極(酸素極)により挟まれた構造を有している。前記負極と正極には、外部回路がリード線を介して接続されている。前記負極側には、水素ガス(H2 )を導入するための入口、燃料ガスを排出するための出口を備えたセルが設けられている。前記正極側には、酸素ガス(O2 )を導入するための入口、(酸素+水)を排出するための出口を備えたセルが設けられている。こうした構成の燃料電池 のセル内では、負極側の入口から水素ガスを、正極側の入口から酸素ガスを夫々の出口に向けて供給し、両極間で電解質膜を介してプロトンを移動させて放電している。
本発明の燃料電池では、前記本発明のプロトン伝導体を電解質膜として使用したものである。
Next, the fuel cell of the present invention uses the proton conductor as an electrolyte membrane.
As is well known, a fuel cell has a structure in which an electrolyte membrane is sandwiched between a negative electrode (hydrogen electrode) and a positive electrode (oxygen electrode). An external circuit is connected to the negative electrode and the positive electrode via lead wires. On the negative electrode side, a cell having an inlet for introducing hydrogen gas (H 2 ) and an outlet for discharging fuel gas is provided. On the positive electrode side, a cell having an inlet for introducing oxygen gas (O 2 ) and an outlet for discharging (oxygen + water) is provided. In the fuel cell having such a configuration, hydrogen gas is supplied from the negative electrode side inlet and oxygen gas is supplied from the positive electrode side inlet to the respective outlets, and protons are moved between the two electrodes via the electrolyte membrane for discharging. is doing.
In the fuel cell of the present invention, the proton conductor of the present invention is used as an electrolyte membrane.
以下に本発明の好適な実施の形態を実施例に基づいて説明する。
なお、イオン伝導度の測定は次の方法によって行った。
電解質膜を直径1mmの自金電極で挟持、固定し測定用セルとした。このセルを150℃の恒温槽で24時間状態調整を行い、その後に交流法によりインピーダンス測定を行った。この時の測定条件は測定周波数1MHz〜0.1Hz、電圧振幅は50mVであった。この測定結果のCole−ColeプロットからZ”=0の時のZ’の値を膜抵抗とし計算によりイオン伝導度を求めた。
Preferred embodiments of the present invention will be described below based on examples.
The ion conductivity was measured by the following method.
The electrolyte membrane was sandwiched and fixed by a self-gold electrode having a diameter of 1 mm to obtain a measurement cell. This cell was conditioned for 24 hours in a thermostatic bath at 150 ° C., and thereafter impedance measurement was performed by an alternating current method. The measurement conditions at this time were a measurement frequency of 1 MHz to 0.1 Hz and a voltage amplitude of 50 mV. From the Cole-Cole plot of this measurement result, the value of Z ′ when Z ″ = 0 was taken as the membrane resistance, and the ionic conductivity was determined by calculation.
(実施例1)
正リン酸(純度85%)23g、炭酸カルシウム10g、水20ccを計り取り撹絆混合した。これを100℃で24時間乾燥し、その後1500℃の電気炉で2時間加熱した。加熱後、溶融物を冷却固化してリン酸カルシウムガラスを得た。このリン酸カルシウムガラスを粉砕後、プロトン配位性分子として等量のイミダゾール水溶液(20wt%)を加えたところ、ゲル状物質を得た。
このゲル状物質を、31PMAS−NMRで分析したところ、化学シフトの違いがらリン酸分子は縮合リン酸構造と正リン酸イオン構造として存在していることが確認された。このゲル状物質をプロトン伝導体としてイオン伝導度を150℃で測定したところ7×10−2S/cmであった。さらに100時間150℃の恒温槽で保持しイオン伝導度を測定したところ変わらず、イオン伝導度は7×10−2S/cmであった。このゲル状のプロトン伝導体を市販の燃料電池用電極(Electrochem 社)で挟持し膜電極接合体とし、150℃、無加湿の条件下、水素/空気で燃料電池を構成して運転を行ったところ、電流密度0.3A/cm2 において0.66Vの端子電圧を得た。
Example 1
23 g of normal phosphoric acid (purity 85%), 10 g of calcium carbonate, and 20 cc of water were weighed and mixed. This was dried at 100 ° C. for 24 hours, and then heated in an electric furnace at 1500 ° C. for 2 hours. After heating, the melt was cooled and solidified to obtain calcium phosphate glass. After this calcium phosphate glass was pulverized, an equivalent amount of an imidazole aqueous solution (20 wt%) was added as a proton-coordinating molecule to obtain a gel-like substance.
When this gel-like substance was analyzed by 31 PMAS-NMR, it was confirmed that the phosphoric acid molecules existed as a condensed phosphate structure and a normal phosphate ion structure with a difference in chemical shift. When this gelled substance was used as a proton conductor and the ionic conductivity was measured at 150 ° C., it was 7 × 10 −2 S / cm. Furthermore, when it hold | maintained in a 150 degreeC thermostat for 100 hours and the ionic conductivity was measured, the ionic conductivity was 7x10 <-2 > S / cm. The gel proton conductor was sandwiched between commercially available fuel cell electrodes (Electrochem) to form a membrane electrode assembly, and the fuel cell was constructed with hydrogen / air under conditions of 150 ° C. and no humidification. However, a terminal voltage of 0.66 V was obtained at a current density of 0.3 A / cm 2 .
(実施例2〜10)
プロトン配位性分子としてイミダゾールに変えて表1に示す物質を加え実施例1と同様にしてプロトン伝導体とした。このプロトン伝導体のイオン伝導度を実施例1と同様の温度条件で測定した。また、100時間150℃の恒温槽で保持した後のイオン伝導度を測定した。さらに、このプロトン伝導体を使用して実施例1と同様の燃料電池を構成して電流密度と端子電圧を測定した。これらの結果を表1にまとめて記す。
(Examples 2 to 10)
A proton conductor was obtained in the same manner as in Example 1 by adding the substances shown in Table 1 instead of imidazole as a proton-coordinating molecule. The ionic conductivity of this proton conductor was measured under the same temperature conditions as in Example 1. Moreover, the ion conductivity after hold | maintaining with a 150 degreeC thermostat for 100 hours was measured. Further, a fuel cell similar to that of Example 1 was constructed using this proton conductor, and the current density and the terminal voltage were measured. These results are summarized in Table 1.
(比較例1)
正リン酸(純度85%)23g、炭酸カルシウム10g、水20ccを計り取り撹幹混合した。これを100℃で24時間乾燥し、その後1500℃の電気炉で2時間加熱した。加熱後、溶融物を冷却固化してリン酸カルシウムガラスを得た。このリン酸カルシウムガラスを粉砕後、等量の水を加えてゲル状物質を得た。このゲル状物質を31PMAS−NMRで分析したところ、化学シフトの違いからリン酸元素は縮合リン酸構造と正リン酸イオン構造として存在していることが確認された。このゲル状物質をプロトン伝導体としてイオン伝導度を150℃で測定したところ6×10−3S/cmであった。さらに100時間150℃の恒温槽で保持しイオン伝導度を測定したところ2×10−6S/cmまで低下しており、イオン伝導度の長期安定性に問題があることが明らかになった。
また、このプロトン伝導体を使用して実施例1と同様の燃料電池を構成して電流密度と端子電圧を測定したところ、電流密度が0.3A/cm2 において端子電圧は0.24Vであった。
(Comparative Example 1)
23 g of normal phosphoric acid (purity: 85%), 10 g of calcium carbonate, and 20 cc of water were weighed and mixed with a stem. This was dried at 100 ° C. for 24 hours, and then heated in an electric furnace at 1500 ° C. for 2 hours. After heating, the melt was cooled and solidified to obtain calcium phosphate glass. After the calcium phosphate glass was pulverized, an equal amount of water was added to obtain a gel-like substance. When this gel-like substance was analyzed by 31 PMAS-NMR, it was confirmed from the difference in chemical shift that the phosphoric acid element was present as a condensed phosphate structure and a normal phosphate ion structure. The ionic conductivity of this gel-like material as a proton conductor was 6 × 10 -3 S / cm was measured at 0.99 ° C.. Further, when the ionic conductivity was measured while being held in a thermostatic bath at 150 ° C. for 100 hours, it was found to be 2 × 10 −6 S / cm, and it was revealed that there was a problem in the long-term stability of the ionic conductivity.
Further, a fuel cell similar to that of Example 1 was constructed using this proton conductor and the current density and the terminal voltage were measured. As a result, the terminal voltage was 0.24 V at a current density of 0.3 A / cm 2 . It was.
本発明によれば100℃以上300℃程度の高温の使用環境でも高いイオン電導度が得られ、しかもイオン伝導度が長期にわたって安定性しているので自動車等に利用する上でまことに有用である。
According to the present invention, high ionic conductivity is obtained even in a high temperature use environment of 100 ° C. or more and about 300 ° C., and the ionic conductivity is stable over a long period of time.
Claims (4)
前記(3)金属イオンが、アルカリ土類金属イオン、亜鉛イオン、銅イオン及び鉄イオンからなる群から選択された少なくとも一種を含み、
前記(4)プロトン配位性分子が、イミダゾール、イミダゾール誘導体、イミダゾリウム塩、イミダゾリウム誘導体、ピリジン、ピリジン誘導体、ピリジニウム塩、ピリジニウム誘導体塩、3級アルキルアンモニア、4級アルキルアンモニウム塩のうちのいずれか一種である、ことを特徴とするプロトン伝導体。 A proton conductor comprising (1) condensed phosphoric acid, (2) phosphate ion, (3) metal ion, and (4) proton-coordinating molecule ,
(3) The metal ion includes at least one selected from the group consisting of alkaline earth metal ions, zinc ions, copper ions and iron ions,
The (4) proton coordination molecule is any one of imidazole, imidazole derivative, imidazolium salt, imidazolium derivative, pyridine, pyridine derivative, pyridinium salt, pyridinium derivative salt, tertiary alkyl ammonia, and quaternary alkyl ammonium salt. A proton conductor characterized in that it is a kind .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003398914A JP4642342B2 (en) | 2003-11-28 | 2003-11-28 | Proton conductor and fuel cell |
KR1020040073360A KR100634513B1 (en) | 2003-11-28 | 2004-09-14 | Proton conductor and fuel cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003398914A JP4642342B2 (en) | 2003-11-28 | 2003-11-28 | Proton conductor and fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005158646A JP2005158646A (en) | 2005-06-16 |
JP4642342B2 true JP4642342B2 (en) | 2011-03-02 |
Family
ID=34723614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003398914A Expired - Lifetime JP4642342B2 (en) | 2003-11-28 | 2003-11-28 | Proton conductor and fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4642342B2 (en) |
KR (1) | KR100634513B1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100570745B1 (en) | 2003-10-30 | 2006-04-12 | 삼성에스디아이 주식회사 | A method for preparing poly2,5-benzimidazole |
WO2006051772A1 (en) * | 2004-11-09 | 2006-05-18 | Ube Industries, Ltd. | Liquid electrolyte |
JP4904750B2 (en) * | 2004-11-09 | 2012-03-28 | 宇部興産株式会社 | Liquid electrolyte |
WO2008050692A1 (en) * | 2006-10-23 | 2008-05-02 | Asahi Glass Company, Limited | Membrane electrode assembly for solid polymer fuel cell |
JP5231737B2 (en) * | 2007-01-25 | 2013-07-10 | 学校法人中部大学 | Fuel cell solid electrolyte |
JP4634540B2 (en) * | 2009-05-11 | 2011-02-16 | パナソニック株式会社 | Fuel cell using proton conductive gel, method for producing the same, and power generation method |
JP5461928B2 (en) * | 2009-09-02 | 2014-04-02 | 旭ファイバーグラス株式会社 | INORGANIC AQUEOUS COMPOSITION AND METHOD FOR PRODUCING INORGANIC AQUEOUS COMPOSITION |
JP4792547B2 (en) * | 2010-01-27 | 2011-10-12 | パナソニック株式会社 | Power generation method using fuel cell and fuel cell |
TWI424882B (en) | 2010-12-29 | 2014-02-01 | Ind Tech Res Inst | Metal catalyst composition modified by nitrogen-containing compound |
JP6139177B2 (en) | 2012-04-16 | 2017-05-31 | 株式会社デンソー | Proton conductor, method for producing proton conductor, and fuel cell |
JP6674204B2 (en) * | 2015-07-30 | 2020-04-01 | 株式会社デンソー | Proton conductor, method for producing proton conductor, and fuel cell |
JP2017224514A (en) * | 2016-06-16 | 2017-12-21 | 株式会社デンソー | Fuel cell electrode, fuel cell, and catalyst body |
JP6726633B2 (en) * | 2017-03-02 | 2020-07-22 | 株式会社デンソー | Proton conductor and fuel cell |
KR20190037412A (en) * | 2017-09-29 | 2019-04-08 | 가천대학교 산학협력단 | Method of manufacturing composite polymer electrolyte membrane and fuel cell |
JP2020113367A (en) * | 2019-01-08 | 2020-07-27 | 株式会社デンソー | Proton conductor and fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003123791A (en) * | 2001-10-09 | 2003-04-25 | Masayoshi Watanabe | Proton conductor and fuel cell using the same |
JP2003192380A (en) * | 2001-10-15 | 2003-07-09 | Tokyo Yogyo Co Ltd | Glass body having high proton conductivity and method for producing the same, water electrolysis apparatus, gas generating apparatus, fuel cell and hydrogen sensor |
JP2003217339A (en) * | 2002-01-16 | 2003-07-31 | Nagoya Industrial Science Research Inst | Proton conductive gel, proton conductor and method for manufacturing these |
WO2003083981A1 (en) * | 2002-03-29 | 2003-10-09 | Kri, Inc. | Proton exchanger for fuel cell and fuel cell containing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7108934B2 (en) | 2002-01-18 | 2006-09-19 | California Instituite Of Technology | Proton conducting membranes for high temperature fuel cells with solid state “water free” membranes |
JP2003242831A (en) | 2002-02-12 | 2003-08-29 | National Institute Of Advanced Industrial & Technology | Proton conductive film, its manufacturing method, and fuel cell using the same |
JP2003331869A (en) | 2002-05-14 | 2003-11-21 | Hitachi Ltd | Proton conductive material |
-
2003
- 2003-11-28 JP JP2003398914A patent/JP4642342B2/en not_active Expired - Lifetime
-
2004
- 2004-09-14 KR KR1020040073360A patent/KR100634513B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003123791A (en) * | 2001-10-09 | 2003-04-25 | Masayoshi Watanabe | Proton conductor and fuel cell using the same |
JP2003192380A (en) * | 2001-10-15 | 2003-07-09 | Tokyo Yogyo Co Ltd | Glass body having high proton conductivity and method for producing the same, water electrolysis apparatus, gas generating apparatus, fuel cell and hydrogen sensor |
JP2003217339A (en) * | 2002-01-16 | 2003-07-31 | Nagoya Industrial Science Research Inst | Proton conductive gel, proton conductor and method for manufacturing these |
WO2003083981A1 (en) * | 2002-03-29 | 2003-10-09 | Kri, Inc. | Proton exchanger for fuel cell and fuel cell containing the same |
Also Published As
Publication number | Publication date |
---|---|
KR100634513B1 (en) | 2006-10-16 |
KR20050052328A (en) | 2005-06-02 |
JP2005158646A (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4642342B2 (en) | Proton conductor and fuel cell | |
Li et al. | Preparation and characterization of sulfonated polyimide/TiO 2 composite membrane for vanadium redox flow battery | |
TWI286854B (en) | Proton conducting mediums for electrochemical devices and electrochemical devices comprising the same | |
Zhang et al. | Sulfonated polyimide/AlOOH composite membranes with decreased vanadium permeability and increased stability for vanadium redox flow battery | |
EP3197906B1 (en) | Processes for preparing polyoxometalate salts for use in proton exchange membranes and fuel cells | |
KR20090073649A (en) | Solid proton conductor and fuel cell using the same | |
JP5479323B2 (en) | Novel electrolyte using Lewis acid / Bronsted acid complex | |
JP2003123791A (en) | Proton conductor and fuel cell using the same | |
CA2460891C (en) | Proton conducting material, proton conducting membrane, and fuel cell | |
EP1474839B1 (en) | Polymer electrolyte membranes for use in fuel cells | |
Nair et al. | Role of protic ionic liquid concentration in proton conducting polymer electrolytes for improved electrical and thermal properties | |
JP2006147165A (en) | Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it | |
US7824781B2 (en) | Metal phosphate composite and dense material comprised of the same | |
KR101441411B1 (en) | Electrolyte membrane for fuel cell, the method for preparing the same, and the fuel cell comprising the membrane | |
Deimede et al. | Polymer electrolyte membranes based on blends of sulfonated polysulfone and PEO‐grafted polyethersulfone for low temperature water electrolysis | |
JP2005029655A (en) | Polymer electrolyte composition | |
JP4549663B2 (en) | Solid polymer electrolyte and fuel cell | |
JPWO2003083981A1 (en) | Proton exchanger for fuel cell and fuel cell equipped with the same | |
JP4597835B2 (en) | PROTON CONDUCTIVE ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL | |
JP5005160B2 (en) | Gel electrolyte and fuel cell | |
US20060260935A1 (en) | Aqueous ionomeric gels and products and methods related thereto | |
JP2011507979A (en) | Sulfonyl grafted heterocyclic materials for proton conducting electrolytes | |
JP4583874B2 (en) | Proton conducting solid polymer electrolyte membrane and fuel cell | |
JP2003229143A (en) | Proton conductive polymer membrane and fuel cell made thereof | |
JP2004311212A (en) | Proton conducting film and its manufacturing method and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4642342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |