KR20050014189A - Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same - Google Patents

Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same

Info

Publication number
KR20050014189A
KR20050014189A KR1020030052690A KR20030052690A KR20050014189A KR 20050014189 A KR20050014189 A KR 20050014189A KR 1020030052690 A KR1020030052690 A KR 1020030052690A KR 20030052690 A KR20030052690 A KR 20030052690A KR 20050014189 A KR20050014189 A KR 20050014189A
Authority
KR
South Korea
Prior art keywords
carbon
tin
active material
negative electrode
electrode active
Prior art date
Application number
KR1020030052690A
Other languages
Korean (ko)
Other versions
KR100571457B1 (en
Inventor
최용국
김우성
정광일
손동언
김병호
Original Assignee
대한민국(전남대학교총장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(전남대학교총장) filed Critical 대한민국(전남대학교총장)
Priority to KR1020030052690A priority Critical patent/KR100571457B1/en
Publication of KR20050014189A publication Critical patent/KR20050014189A/en
Application granted granted Critical
Publication of KR100571457B1 publication Critical patent/KR100571457B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An anode active material for a lithium ion secondary battery and its preparation method are provided, to reduce the loss of capacity generated during charge/discharge and to improve reversible capacity and cycle performance. CONSTITUTION: The anode active material comprises tin; carbon; 1-3 wt% of Al2O3; and 5-10 wt% of Li2CO3. Preferably the ratio of tin and carbon is 0.5-1 : 0.5-1; and the carbon is Kawasaki mesophase fine carbon. The method comprises the steps of preparing tin, carbon, Al2O3 and Li2CO3; mixing tin and carbon, and adding Al2O3 and Li2CO3 to the obtained mixture; and making an anode active material by using the obtained mixture.

Description

가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질 및 그의 제조 방법{Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same}Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same

본 발명은 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질 및 그의 제조 방법에 관한 것으로, 보다 상세하게는 고용량 부극 재료로서 리튬 이차 전지에 적용되는 주석과 카본을 혼합한 전극에 첨가제(Al2O3, Li2CO3)를 사용하여 충방전시 발생하는 용량 손실을 줄이고 가역용량의 증대와 사이클 성능(cycle performance) 향상을 위해 더욱 안정한 부극 활물질을 개발하기 위한 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질 및 그의 제조 방법에 관한 것이다.The present invention relates to a negative electrode active material of a lithium ion battery for expanding the reversible capacity and a method of manufacturing the same, and more particularly, an additive (Al 2 O 3) to an electrode mixed with tin and carbon applied to a lithium secondary battery as a high capacity negative electrode material. , Li 2 CO 3 ) to reduce the capacity loss during charging and discharging, to improve the reversible capacity and to improve the cycle performance (cycle performance) to develop a more stable negative electrode active material negative electrode of the lithium ion battery for expanding the reversible capacity An active material and its manufacturing method are related.

일반적으로, 리튬 이온(Li-ion) 2차 전지의 성능은 용량과 수명 시험 결과로 평가한다. 대개 리튬 이온전지의 부극으로는 탄소계 물질(carbonaceous materials)이 사용된다.In general, the performance of lithium ion (Li-ion) secondary battery is evaluated by the capacity and life test results. Usually, carbonaceous materials are used as negative electrodes of lithium ion batteries.

현재 탄소계 리튬-이온 2차 전지는 이론적 충전용량이 LiC6의 구조를 가질 때 372mAh/g 정도로 리튬금속이 가지는 3,600mAh/g의 용량에 비하여 많은 에너지의 손실을 감수해야한다.Current carbon-based lithium-ion secondary battery has to lose a lot of energy compared to the capacity of 3,600mAh / g of lithium metal when the theoretical charge capacity has a structure of LiC 6 372mAh / g.

고용량의 실현을 위하여 부극 재료로는 리튬 2차전지에 처음 적용되었던 리튬금속과 주석, 알루미늄, 실리콘 화합물 등이 있다.In order to realize high capacity, negative electrode materials include lithium metal, tin, aluminum, and silicon compounds, which were first applied to lithium secondary batteries.

특히 주석과 같은 재료들은 높은 용량에도 불구하고 첫 번째 싸이클에서 높은 비가역 용량과 충방전시 따른 큰 부피 변화로 인하여 수명 특성이 나쁘기 때문에 실용화는데 문제점이 있었다.In particular, materials such as tin have had problems in practical use because of their poor life characteristics due to high irreversible capacity and large volume change during charge and discharge in the first cycle.

상기와 같이 충방전 동안에 용량손실과 합금(alloy)을 붕괴시키는 부피 변화를 억제하는 방법으로 주석에 다른 금속 계열 물질들을 혼합한 전극들이 많이 연구가 진행되어지고 있다.As described above, many researches have been conducted on electrodes in which other metal-based materials are mixed with tin as a method of suppressing capacity loss and volume change during alloying during charge and discharge.

따라서, 본 발명은 이러한 종래 기술의 문제점을 감안하여 안출된 것으로, 그 목적은 주석에 사이클 안정성이 우수한 카본(KMFC) 분말을 혼합한 전극에 열역학적으로 안정한 세라믹 입자인 Al2O3와 안정적인 필름을 형성시켜 주는 Li2CO3를 첨가함으로써 충방전 과정 동안에 발생되는 가역 용량의 감소를 줄이고, 사이클 성능을 향상시키며, 고용량을 확보할 수 있는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질 및 그의 제조 방법을 제공하는데 있다.Accordingly, the present invention has been made in view of the problems of the prior art, and its object is to provide Al 2 O 3 , which is a thermodynamically stable ceramic particle, and a stable film on an electrode mixed with carbon (KMFC) powder having excellent cycle stability in tin. By adding Li 2 CO 3 to form a negative electrode active material of a lithium ion battery for reducing the reduction of the reversible capacity generated during the charging and discharging process, to improve the cycle performance, and to secure a high capacity, and a method of manufacturing the same To provide.

도 1은 1M LiPF6/EC:DEC(1:1, 부피비) 전해질 용액에서 주석과 카본을 혼합한 전극(1:2, 2:1, 중량비)과 첨가제(Al2O3, Li2CO3)를 사용한 주석과 카본을 혼합한 전극을 사용하여 1사이클 충방전 그래프.1 is an electrode (1: 2, 2: 1, weight ratio) and additives (Al 2 O 3 , Li 2 CO 3 mixed with tin and carbon in a 1M LiPF 6 / EC: DEC (1: 1, volume ratio) electrolyte solution 1 cycle charging and discharging graph using a mixture of tin and carbon using).

도 2a는 1M LiPF6/EC:DEC(1:1, 부피비) 전해질 용액에서 주석과 카본을 혼합한 전극(1:2, 2:1, 중량비)을 사용하여 10사이클 충방전시의 사이클 라이프를 나타낸 그래프.FIG. 2A shows the cycle life of 10 cycle charging and discharging using an electrode (1: 2, 2: 1, weight ratio) mixed with tin and carbon in a 1M LiPF 6 / EC: DEC (1: 1, by volume) electrolyte solution. Graph shown.

도 2b는 첨가제(Al2O3, Li2CO3)를 사용한 주석과 카본을 혼합한 전극(1:2, 2:1, 중량비)을 사용하여 10사이클 충방전시의 사이클 라이프를 나타낸 그래프.Figure 2b is a graph showing the cycle life at 10 cycles charge and discharge using an electrode (1: 2, 2: 1, weight ratio) mixed with tin and carbon using additives (Al 2 O 3 , Li 2 CO 3 ).

도 3a는 주석과 카본을 혼합한 전극(1:2, 중량비)의 3.0V∼0.0V 전위에서 초기 충전 동안에 측정한 임피던스 스펙트러(spectra)를 나타낸 그래프.FIG. 3A is a graph showing impedance spectra measured during initial charging at 3.0V to 0.0V potential of tin and carbon mixed electrode (1: 2, weight ratio). FIG.

도 3b는 첨가제(Al2O3, Li2CO3)를 사용한 주석과 카본을 혼합한 전극(1:2, 중량비)의 3.0V∼0.0V 전위에서 초기 충전 동안에 측정한 임피던스스펙트러(spectra)를 나타낸 그래프.FIG. 3B is an impedance spectra measured during initial charging at 3.0V to 0.0V potential of an electrode (1: 2, weight ratio) mixed with tin and carbon using additives (Al 2 O 3 , Li 2 CO 3 ). Graph showing.

도 4는 주석과 카본을 혼합한 전극(1:2, 중량비)과 첨가제를 사용한 주석과 카본을 혼합한 전극(1:2, 중량비)을 OCV(Open Circuit Voltage) 상태에서 측정한 임피던스 스펙트러(spectra)를 나타낸 그래프.FIG. 4 is an impedance spectrometer measuring an electrode (1: 2, weight ratio) mixed with tin and carbon and an electrode (1: 2, weight ratio) mixed with tin and carbon using an additive in an OCV (Open Circuit Voltage) state ( spectra).

상기한 목적을 달성하기 위하여, 본 발명은 리튬 2차 전지용 부극 활물질에 있어서, 주석과; 카본과; Al2O3와; Li2CO3으로 조성된 것을 특징으로 하는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질을 제공한다.In order to achieve the above object, the present invention is a negative electrode active material for a lithium secondary battery, tin; Carbon; Al 2 O 3 ; Provided is a negative electrode active material of a lithium ion battery for expanding a reversible capacity, which is composed of Li 2 CO 3 .

상기 카본은 KMFC이며, 상기 주석, 카본, Al2O3, Li2CO3은 주석과 카본이 0.5∼1 : 0.5∼1의 비율로 혼합된 혼합물에 대하여, Al2O3, Li2CO3이 각각 1%∼3%, 5%∼10%로 첨가되어 조성된다.The carbon is KMFC is, the tin, carbon, Al 2 O 3, Li 2 CO 3 is the tin and carbon 0.5 to 1: with respect to the mixture in a ratio of 0.5 to 1, Al 2 O 3, Li 2 CO 3 These are added in 1% to 3% and 5% to 10%, respectively.

그리고, 본 발명은 리튬 2차 전지용 부극 활물질 제조 방법에 있어서, 주석, 카본, Al2O3, Li2CO3을 준비하는 단계; 상기 주석, 카본, Al2O3, Li2CO3을 주석과 카본이 0.5∼1 : 0.5∼1의 비율로 혼합된 혼합물에 대하여, Al2O3, Li2CO3을 각각 1%∼3%, 5%∼10%로 혼합하여 혼합물을 얻는 단계; 상기 혼합물로 부극 활물질을 제조하는 단계를 포함하는 것을 특징으로 하는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질 제조 방법을 제공한다.In addition, the present invention provides a method for producing a negative electrode active material for a lithium secondary battery, comprising: preparing tin, carbon, Al 2 O 3 , and Li 2 CO 3 ; Al 2 O 3 and Li 2 CO 3 are each 1% to 3 to a mixture of tin, carbon, Al 2 O 3 , and Li 2 CO 3 in a ratio of 0.5 to 1: 0.5 to 1, respectively. Mixing at%, 5% to 10% to obtain a mixture; It provides a method for producing a negative electrode active material of a lithium ion battery for expanding the reversible capacity, comprising the step of preparing a negative electrode active material from the mixture.

주석의 성분이 줄어들면 고용량의 효과를 보여주지 못하여 용량 증대 효과가 줄어들며, 주석 성분이 많아지면 0.5V∼0.0V에서 보이는 평탄 전위가 길어져서 비가역용량의 증대로 사이클 라이프의 저하를 가져오기 때문에 주석과 카본 성분을 0.5∼1 : 0.5∼1의 비율로 혼합한다.If the content of tin decreases, the effect of increasing the capacity is reduced because it does not show the effect of high capacity, and if the content of tin increases, the flat potential seen at 0.5V to 0.0V becomes long, which increases the irreversible capacity, resulting in a decrease in cycle life. And the carbon component are mixed at a ratio of 0.5 to 1: 0.5 to 1.

그리고, 첨가제로 사용되는 Al2O3, Li2CO3성분의 경우에 각 성분별로 하한치 미만으로 혼합되면 용량 증대의 효과를 보여주지 못하고, 상한치 초과로 혼합되면 전극 제조시 전극의 안정성에 영향을 줘서 부극 활물질이 구리 집전체에 잘 도포되지 않기 때문에 Al2O3, Li2CO3을 각각 1%∼3%, 5%∼10%로 혼합해야 한다.In addition, in the case of Al 2 O 3 and Li 2 CO 3 components used as an additive, the mixing of each component below the lower limit does not show an effect of increasing the capacity. If the mixing exceeds the upper limit, the stability of the electrode may be affected. Since the negative electrode active material is hardly applied to the copper current collector, Al 2 O 3 and Li 2 CO 3 must be mixed in 1% to 3% and 5% to 10%, respectively.

(실시예)(Example)

본 발명에 따른 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질을 첨부한 도면을 참조하여 상세하게 설명한다.A negative electrode active material of a lithium ion battery for expanding a reversible capacity according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 1M LiPF6/EC:DEC(1:1, 부피비)을 전해질로 사용하는 리튬 이온 2차 전지에 사용되는 부극 활물질에 대한 것이다.The present invention relates to a negative electrode active material used in a lithium ion secondary battery using 1M LiPF 6 / EC: DEC (1: 1, volume ratio) as an electrolyte.

상기 EC는 에틸렌 카보네이트(Ethylene Carbonate)이고, DEC는 디에틸 카보네이트(Diethyl Carbonate)이다.The EC is ethylene carbonate (Ethylene Carbonate), DEC is diethyl carbonate (Diethyl Carbonate).

여기서, 본 발명에 따른 부극 활물질의 성능을 확인하기 위한 전지의 구성을 설명하면 다음과 같다.Herein, the configuration of a battery for confirming the performance of the negative electrode active material according to the present invention will be described.

본 발명에 상요되는 전지의 구성은 테프론(teflon)과 스테인리스 스틸(stainless steel)로 이루어진 실린더형 2 전극계 전지(laboratory cell) 형태로 하였으며, 부극(작업전극)으로는 주석과 카본을 혼합한 극판을 제조하여 1cm×1cm의 크기로 잘라 사용하였다. 기준전극으로는 리튬 칩(chip)을 사용하였으며, 상대전극으로는 리튬 호일을 사용하였다.The configuration of the battery of the present invention is a cylindrical two-electrode cell consisting of a teflon and stainless steel (laboratory cell), the negative electrode (working electrode) as a negative electrode plate mixed with tin and carbon To prepare and cut to use the size of 1cm × 1cm. A lithium chip was used as a reference electrode and a lithium foil was used as a counter electrode.

그러나 2전극계 전지에서는 리튬 호일을 기준전극과 상대전극으로 겸하여 사용하였으며 부극(작업전극)과 상대전극(기준전극) 사이에는 두 전극간 단락의 방지를 위하여 분리판(separator)으로써 다공성 PP(polypropylene) 재질인 microporous membrane(Celgard #2500)를 샌드위치 형태로 밀착하여 구성하였다.However, in the two-electrode battery, lithium foil was used as a reference electrode and a counter electrode, and a porous PP (polypropylene) was used as a separator between the negative electrode (working electrode) and the counter electrode (reference electrode) to prevent a short circuit between two electrodes. ) Microporous membrane (Celgard # 2500) was composed by sandwiching closely.

부극(작업전극)에 사용된 부극 극판들의 제조는 각각의 부극 활물질(KMFC, Sn, ; 80 중량%)과 첨가제(Al2O3+ Li2CO3, ; 10중량%), 이를 고정하기 위한 결합제PVDF(polyvinyldifluoride; 10중량%), 그리고 전자 전도성을 향상시키기 위한 도전제인 KS-15로 구성되며, 이들 재료를 일정비율로 혼합하고 구리 집전체에 도포할 수 있도록 분산용매인 NMP(N-methylpyrrolidone)를 사용하여 제조하였고, 건조로에서 120℃로 장시간 건조하였다.The preparation of the negative electrode plates used for the negative electrode (working electrode) was performed for each negative electrode active material (KMFC, Sn,; 80% by weight) and additives (Al 2 O 3 + Li 2 CO 3 ,; 10% by weight), for fixing the same. It consists of binder PVDF (polyvinyldifluoride (10% by weight)) and KS-15, a conductive agent to improve electronic conductivity, and NMP (N-methylpyrrolidone) as a dispersion solvent to mix these materials in a proportion and apply them to a copper current collector. ) Was dried for a long time at 120 ℃ in a drying furnace.

캐스팅하기 전에 4∼5시간동안 교반하여 슬러리화 하였고, 캐스팅 후 공기분위기의 전기로에서 4∼5시간동안 건조하였다.The slurry was stirred for 4 to 5 hours before casting and then dried for 4 to 5 hours in an electric furnace in an air atmosphere after casting.

도 1은 1M LiPF6/EC:DEC(1:1, 부피비) 전해질 용액에서 주석과 카본 분말인 KMFC(Kawasaki Mesophase Fine Carbon)을 각각 중량비로 1:2, 2:1로 혼합한 부극 활물질(도 1의 Original(1:2, 중량비) 및 Origina(2:1, 중량비))과 Al2O3, Li2CO3가 첨가된 주석과 카본이 각각 중량비로 2:1, 1:2로 혼합한 부극활물질(도 1의 Added(2:1, 중량비) 및 Added(1:2, 중량비))을 사용한 리튬 이온 2차 전지의 1사이클 충방전 그래프이다.1 is a negative electrode active material in which tin and carbon powder KMFC (Kawasaki Mesophase Fine Carbon) in a 1 M LiPF 6 / EC: DEC (1: 1, volume ratio) electrolyte solution are mixed in a weight ratio of 1: 2 and 2: 1, respectively (FIG. Original (1: 2, weight ratio) and Origina (2: 1, weight ratio)), tin and carbon to which Al 2 O 3 and Li 2 CO 3 were added were mixed at a weight ratio of 2: 1 and 1: 2, respectively. 1 cycle charge and discharge graph of a lithium ion secondary battery using a negative electrode active material (Added (2: 1, weight ratio) and Added (1: 2, weight ratio) of FIG. 1).

도 1에서 보는 바와 같이, 주석과 카본을 혼합한 부극 활물질보다 주석과 카본에 Al2O3, Li2CO3를 첨가하여 제조한 부극 활물질을 사용한 리튬 이온 2차 전지의 용량이 증대하는 것을 알 수 있다.As shown in FIG. 1, it can be seen that the capacity of a lithium ion secondary battery using a negative electrode active material prepared by adding Al 2 O 3 and Li 2 CO 3 to tin and carbon is increased rather than the negative electrode active material mixed with tin and carbon. Can be.

참고적으로, 도 1의 첫 번째 충전 동안 OCV(Open Circuit Voltage) 상태의 2.1V∼0.8V에서 관찰되는 급한 기울기의 전위 변화는 용매분해로 인한 SEI(Solid Electrolyte Interface) 피막 형성 반응에 의한 것이다.For reference, the sudden change of the potential gradient observed at 2.1 V to 0.8 V in the OCV (Open Circuit Voltage) state during the first charging of FIG. 1 is due to the SEI (Solid Electrolyte Interface) film formation reaction due to solvent decomposition.

즉, 초기 충전 과정에서 용매 분해가 주석과 카본 표면에 SEI 피막을 형성하는 것인데, 이 SEI 피막은 리튬 이온의 출입을 허용하지만 전자의 흐름은 막아주기 때문에 일단 SEI 피막이 주석과 카본 표면에 안정하게 형성되면 용매 분해는 더 이상 발생하지 않는다.In other words, solvent decomposition during the initial filling process forms an SEI film on the surface of tin and carbon. The SEI film allows lithium ions to pass in but prevents the flow of electrons. Solvent decomposition no longer occurs.

그리고 0.5V∼0.0V에서 보이는 평탄 전위는 리튬 이온이 주석과 합금(alloy)을 형성하는 반응과 카본(KMFC)에 리튬 이온이 삽입하는 충전되는 반응, 이 두 가지 반응이 복합적으로 발생하는 것을 의미한다.In addition, the planar potential seen at 0.5 V to 0.0 V means that the reaction of lithium ions to form an alloy with tin and the reaction of lithium ions to be inserted into carbon (KMFC) are combined. do.

도 2는 1M LiPF6/EC:DEC(1:1, 부피비) 전해질 용액에서 주석과 카본을 혼합한 부극 활물질(1:2, 2:1, 중량비)과 주석과 카본에 Al2O3, Li2CO3를 첨가한 부극활물질을 사용한 리튬 이온 2차 전지(1:2, 2:1,중량비)를 10사이클 충방전한 사이클 라이프이다.2 is a negative electrode active material (1: 2, 2: 1, weight ratio) mixed with tin and carbon in a 1M LiPF 6 / EC: DEC (1: 1, volume ratio) electrolyte solution and Al 2 O 3 , Li in the tin and carbon two lithium-ion secondary battery using a negative electrode active material is added to the CO 3 (1: 2, 2 : 1, weight ratio) is a 10 cycle charge-discharge cycle life.

도 2에서 보는 바와 같이, 주석과 카본에 Al2O3, Li2CO3를 첨가한 부극 활물질의 경우가 용량면에서 증대한 것을 알 수 있다.As shown in FIG. 2, it can be seen that the capacity of the negative electrode active material in which Al 2 O 3 and Li 2 CO 3 were added to tin and carbon was increased.

이 것은 첨가제인 Al2O3와 Li2CO3가 각각 부극 활물질의 표면을 안정화시키고, 우수한 필름을 형성시킴으로서 우수한 용량을 나타낸 것으로 보인다.It is believed that the additives Al 2 O 3 and Li 2 CO 3 exhibited excellent capacity by stabilizing the surface of the negative electrode active material and forming an excellent film, respectively.

도 3a 및 도 3b는 주석과 카본을 혼합한 전극(1:2, 중량비)의 3.0V∼0.0V 전위에서 초기 충전 동안에 측정한 임피던스 스펙트러(spectra)를 나타낸 그래프이며, 도 4는 주석 및 카본만의 부극 활물질과 주석 및 카본에 Al2O3와 Li2CO3가 첨가된 부극 활물질을 사용한 리튬 이온 2차 전지를 OCV(Open Circuit Voltage) 상태에서 측정한 임피던스 스펙트러(spectra)를 나타낸 그래프이다.3A and 3B are graphs showing impedance spectra measured during initial charging at 3.0V to 0.0V potential of a tin-carbon mixed electrode (1: 2, weight ratio), and FIG. 4 is a tin and carbon Graph showing the impedance spectra of a lithium ion secondary battery using a negative electrode active material, a negative electrode active material containing Al 2 O 3 and Li 2 CO 3 added to tin and carbon in an OCV (Open Circuit Voltage) state to be.

상기 도 3∼도 4를 비교해 보면, 주석과 카본만을 부극 활물질로 사용한 것에 비해 첨가제(Al2O3, Li2CO3)가 첨가된 부극 활물질을 리튬 이온 2차 전지의 전극 저항이 상대적으로 작은 것을 알 수 있으며, 이러한 전극 저항의 감소는 첨가제(Al2O3, Li2CO3)를 사용하여 우수한 필름의 형성과 전극표면을 안정화시킴으로서 충방전 용량의 증대를 확인할 수 있다.Compared to FIGS. 3 to 4, the electrode resistance of the lithium ion secondary battery is relatively low in the negative electrode active material to which the additives (Al 2 O 3 and Li 2 CO 3 ) are added, compared to using only tin and carbon as the negative electrode active material. It can be seen that the reduction of the electrode resistance can be confirmed by the increase of charge and discharge capacity by stabilizing the formation of the excellent film and the electrode surface using additives (Al 2 O 3 , Li 2 CO 3 ).

상기한 바와 같이 이루어진 본 발명은 부극 활물질인 주석과 카본으로 이루어진 부극 활물질에 전극 표면을 안정화시켜 주는 Al2O3과 안정적인 필름을 형성시켜 주는 Li2CO3을 혼합하여 조성함으로써 충방전 중에 발생하는 용량 저하를 줄이고 충방전 싸이클 성능 및 특성을 향상시킬 수 있는 효과가 있다.The present invention made as described above is generated during charging and discharging by mixing and mixing Al 2 O 3 to stabilize the surface of the electrode and Li 2 CO 3 to form a stable film in the negative electrode active material consisting of tin and carbon as the negative electrode active material There is an effect that can reduce the capacity decrease and improve the charge and discharge cycle performance and characteristics.

이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. Various changes and modifications will be made by those who possess.

Claims (4)

리튬 2차 전지용 부극 활물질에 있어서,In the negative electrode active material for lithium secondary batteries, 주석과;Tin; 카본과;Carbon; Al2O3와;Al 2 O 3 ; Li2CO3으로 조성된 것을 특징으로 하는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질.A negative electrode active material of a lithium ion battery for expanding the reversible capacity, characterized in that composed of Li 2 CO 3 . 제 1항에 있어서, 상기 카본은 KMFC(Kawasaki Mesophase Fine Carbon)인 것을 특징으로 하는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질.The negative electrode active material of a lithium ion battery according to claim 1, wherein the carbon is KMFC (Kawasaki Mesophase Fine Carbon). 제 1항에 있어서, 상기 주석, 카본, Al2O3, Li2CO3The method of claim 1, wherein the tin, carbon, Al 2 O 3 , Li 2 CO 3 주석과 카본이 0.5∼1 : 0.5∼1의 비율로 혼합된 혼합물에 대하여,For a mixture in which tin and carbon are mixed at a ratio of 0.5 to 1: 0.5 to 1, Al2O3, Li2CO3이 각각 1∼3중량%, 5∼10중량%로 첨가된 것을 특징으로 하는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질.An anode active material for a lithium ion battery for expanding a reversible capacity, wherein Al 2 O 3 and Li 2 CO 3 are added at 1 to 3 wt% and 5 to 10 wt%, respectively. 리튬 2차 전지용 음극 활물질 제조 방법에 있어서,In the negative electrode active material manufacturing method for a lithium secondary battery, 주석, 카본, Al2O3, Li2CO3을 준비하는 단계;Preparing tin, carbon, Al 2 O 3 , Li 2 CO 3 ; 상기 주석, 카본, Al2O3, Li2CO3을 주석과 카본이 0.5∼1 : 0.5∼1의 비율로 혼합된 혼합물에 대하여, Al2O3, Li2CO3을 각각 1∼3중량%, 5∼10중량%로 혼합하여 혼합물을 얻는 단계;1 to 3 weights of Al 2 O 3 and Li 2 CO 3 , respectively, based on the mixture of tin, carbon, Al 2 O 3 and Li 2 CO 3 in a ratio of 0.5 to 1: 0.5 to 1 %, 5 to 10% by weight to obtain a mixture; 상기 혼합물로 부극 활물질을 제조하는 단계를 포함하는 것을 특징으로 하는 가역 용량 확대를 위한 리튬 이온 전지의 부극 활물질 제조 방법.A method of manufacturing a negative electrode active material of a lithium ion battery for expanding a reversible capacity, comprising the step of preparing a negative electrode active material from the mixture.
KR1020030052690A 2003-07-30 2003-07-30 Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same KR100571457B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030052690A KR100571457B1 (en) 2003-07-30 2003-07-30 Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030052690A KR100571457B1 (en) 2003-07-30 2003-07-30 Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same

Publications (2)

Publication Number Publication Date
KR20050014189A true KR20050014189A (en) 2005-02-07
KR100571457B1 KR100571457B1 (en) 2006-04-25

Family

ID=37225355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030052690A KR100571457B1 (en) 2003-07-30 2003-07-30 Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same

Country Status (1)

Country Link
KR (1) KR100571457B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049872A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
KR100728783B1 (en) * 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
CN109411717A (en) * 2018-09-28 2019-03-01 华南理工大学 A kind of negative electrode material and preparation method thereof through prelithiation with high reversible capacity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049872A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
US7799462B2 (en) 2005-10-26 2010-09-21 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
KR100728783B1 (en) * 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
US8394531B2 (en) 2005-11-02 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
CN109411717A (en) * 2018-09-28 2019-03-01 华南理工大学 A kind of negative electrode material and preparation method thereof through prelithiation with high reversible capacity

Also Published As

Publication number Publication date
KR100571457B1 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
US9985326B2 (en) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
US11114659B2 (en) Negative electrode sheet and secondary battery
JP2020053172A (en) Lithium secondary battery
KR102165762B1 (en) Method for producing sulfide solid-state battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
KR101052377B1 (en) Nonaqueous Electrolyte Secondary Battery
CN110600680A (en) Positive electrode slurry, positive plate comprising positive electrode slurry and lithium ion battery
KR20140046496A (en) Silicon compound based negative active material, manufacturing method thereof and lithium secondary battery comprising the same
US20040043291A1 (en) Cathode containing muticomponent binder mixture and lithium-sulfur battery using the same
US11075366B2 (en) Method for producing sulfide solid-state battery
CN108808005B (en) Method for preparing lithium battery cathode additive and preparing cathode by calcining mixture
EP3641026A1 (en) Secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JPH11288718A (en) Nonaqueous solvent secondary battery
KR100571457B1 (en) Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002260633A (en) Nonaqueous electrolyte secondary battery
CN108987803B (en) Lithium metal negative electrode film-forming electrolyte for lithium-sulfur battery and additive thereof
KR100698372B1 (en) Manufacturing Mathod of Negative Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
CN109659563A (en) A kind of carbon nanotube silicon combined conductive agent and its preparation method and application
EP4078711B1 (en) Electrolyte for li secondary batteries
US20230022865A1 (en) Solid electrolyte interphase in li secondary batteries
KR100398468B1 (en) Sulfur positive electrode for lithium battery and it's fabrication method
JP3179434B2 (en) Non-aqueous secondary battery
WO2018155582A1 (en) Nonaqueous electrolyte secondary battery and charging method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee