KR20050007139A - High strength and electric conductivity copper alloy excellent in ductility - Google Patents

High strength and electric conductivity copper alloy excellent in ductility Download PDF

Info

Publication number
KR20050007139A
KR20050007139A KR1020040052301A KR20040052301A KR20050007139A KR 20050007139 A KR20050007139 A KR 20050007139A KR 1020040052301 A KR1020040052301 A KR 1020040052301A KR 20040052301 A KR20040052301 A KR 20040052301A KR 20050007139 A KR20050007139 A KR 20050007139A
Authority
KR
South Korea
Prior art keywords
copper alloy
grain boundary
strength
mass
less
Prior art date
Application number
KR1020040052301A
Other languages
Korean (ko)
Other versions
KR100592205B1 (en
Inventor
간무리가즈끼
후까마찌가즈히꼬
Original Assignee
닛꼬 긴조꾸 가꼬 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛꼬 긴조꾸 가꼬 가부시키가이샤 filed Critical 닛꼬 긴조꾸 가꼬 가부시키가이샤
Publication of KR20050007139A publication Critical patent/KR20050007139A/en
Application granted granted Critical
Publication of KR100592205B1 publication Critical patent/KR100592205B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

PURPOSE: To provide a high strength high electric conductivity copper alloy that is excellent in strength and formability, easy in production management and suitably used as a conductive spring material for terminals, connectors, relays and switches. CONSTITUTION: The high strength high electric conductivity copper alloy comprises 0.05 to 1.0 mass% of Cr, 0.05 to 0.25 mass% of Zr, and the balance being Cu and inevitable impurities, wherein a ratio of coincidence site lattice Σ3 at the grain boundary is 10% or more in case that a space between each crystals is regarded as a grain boundary when misorientation of adjacent grains is 5 degrees or more of an angle, wherein the copper alloy further comprises 0.01 to 1.0 mass% of one or more elements selected from the group consisting of Zn, P, Fe, Mg, Mn, Al, Co and Ni, wherein the cooper alloy comprises 0.6 mass% or less of Cr and has an elongation of 8% or more, and wherein the cooper alloy comprises 0.2 mass% or less of Cr and has an elongation of 10% or more.

Description

연성이 우수한 고력 고도전성 구리합금 {HIGH STRENGTH AND ELECTRIC CONDUCTIVITY COPPER ALLOY EXCELLENT IN DUCTILITY}High Strength High Conductivity Copper Alloy with High Ductility {HIGH STRENGTH AND ELECTRIC CONDUCTIVITY COPPER ALLOY EXCELLENT IN DUCTILITY}

본 발명은 단자, 커넥터, 릴레이 또는 스위치에 사용되는 도전성 스프링재에 적합하고, 강도와 도전성이 우수한 고력 고도전성 구리합금에 관한 것이다.The present invention relates to a high-strength highly conductive copper alloy suitable for conductive spring materials used for terminals, connectors, relays or switches, and excellent in strength and conductivity.

종래 각종 단자, 커넥터, 릴레이, 스위치 등에 사용되는 도전성 스프링재로서 인청동이 사용되고 있다.Conventionally, phosphor bronze is used as a conductive spring material used in various terminals, connectors, relays, switches, and the like.

또, 최근에는 부품의 소형화, 박육화의 요구로부터 인청동 대신에 Cu-Cr계나 Cu-Cr-Zr계와 같은 고강도 고도전성 구리합금이 주목되고 있다 (예컨대, 특허문헌 1, 2 참조). Cu-Cr계 구리합금이나 Cu-Cr-Zr계 구리합금은 Cr 이나 Cu-Zr 의 석출에 의해 재료강도를 향상시키기 때문에 고용경화형의 합금에 비하여 도전성을 높일 수 있다. 단, Cr, Zr 의 석출에 의한 강도 향상은 그다지 크지 않아, 상기 합금은 냉간압연하여 석출경화와 가공경화를 함께 실행함으로써 고강도화를 꾀하고 있다.In recent years, high-strength highly conductive copper alloys such as Cu-Cr or Cu-Cr-Zr are attracting attention due to the demand for miniaturization and thinning of components (see, for example, Patent Documents 1 and 2). Since Cu-Cr type copper alloy and Cu-Cr-Zr type copper alloy improve material strength by precipitation of Cr or Cu-Zr, electroconductivity can be improved compared with a solid solution type alloy. However, the strength improvement by precipitation of Cr and Zr is not so large, and the said alloy is cold-rolled, and high strength is achieved by performing precipitation hardening and work hardening together.

그러나, 일반적으로 금속재료를 가공경화시키면, 연성의 저하 나아가서는 굽힘성 등의 가공성이나 내응력완화특성을 열화시킨다. 이와 같은 점에서 최근가공열처리 방법에 의해 재료를 개질하는 것이 주목되고 있다. 예컨대, 특허문헌 3 에는 냉간압연 후의 (동적) 재결정에 의해, Cu-Cr-Zr계 구리합금 중에 미세한 결정입자를 형성시켜 연성을 향상시키는 기술이 기재되어 있다.In general, however, work hardening of a metal material deteriorates ductility and deteriorates workability and stress relaxation resistance such as bendability. In this regard, attention has been paid to modifying the material by the recent processing heat treatment method. For example, Patent Document 3 describes a technique of forming fine crystal grains in a Cu—Cr—Zr based copper alloy by (dynamic) recrystallization after cold rolling to improve ductility.

[특허문헌 1] 일본 공개특허공보 평9-87814호[Patent Document 1] Japanese Patent Application Laid-Open No. 9-87814

[특허문헌 2] 일본 공개특허공보 평7-258804호[Patent Document 2] Japanese Patent Application Laid-Open No. 7-258804

[특허문헌 3] 일본 공개특허공보 2002-356728호[Patent Document 3] Japanese Unexamined Patent Publication No. 2002-356728

그러나, 상기 특허문헌 3 에 기재된 기술의 경우, 결정립계의 형상이나 입경을 관리할 필요가 있기 때문에, 실제 생산에 있어서의 분리 제작, 품질관리가 곤란하다는 문제가 있었다. 또, 이 기술을 이용해도 또한 연성의 향상은 불충분하였다.However, in the case of the technique described in Patent Document 3, since it is necessary to manage the shape and particle size of the grain boundary, there is a problem that separation production and quality control in actual production are difficult. Moreover, even if this technique was used, ductility improvement was inadequate.

본 발명은 상기 과제를 해결하기 위해 이루어진 것으로, 강도와 가공성이 모두 우수하고, 생산관리가 용이한 고력 고도전성 구리합금의 제공을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a high-strength highly conductive copper alloy having excellent strength and workability and easy production management.

본 발명자들은 여러가지로 검토한 결과, 결정립계 중 후술하는 대응 입계 ∑3 의 비율이 많아지면, 재료가 가공경화되어도 가공성이 저하되지 않고, 연성이 현저하게 향상되는 것을 밝혀냈다. 즉, 상기 목적을 달성하기 위해 본 발명의 고력 고도전성 구리합금은, 질량% 로, Cr : 0.05 ∼ 1.0%, Zr : 0.05 ∼ 0.25%, 잔부 Cu 및 불가피한 불순물로 이루어지고, 인접하는 결정의 방위차가 5°이상일 때에 각 결정 사이를 결정립계로 간주한 경우에, 상기 결정립계에서의 대응 입계 ∑3의 비율이 10% 이상인 것을 특징으로 한다.As a result of various studies, the inventors have found that when the ratio of the corresponding grain boundaries 3 described later in the grain boundaries increases, the workability does not decrease even when the material is hardened, and the ductility is remarkably improved. That is, in order to achieve the above object, the high-strength highly conductive copper alloy of the present invention is made of mass% of Cr: 0.05 to 1.0%, Zr: 0.05 to 0.25%, residual Cu and inevitable impurities, and the orientation of adjacent crystals. In the case where the difference is regarded as a grain boundary when the difference is 5 degrees or more, the ratio of the corresponding grain boundary 3 at the grain boundary is 10% or more.

또한, 질량% 로, Zn, P, Fe, Mg, Mn, Al, Co 및 Ni 의 군에서 선택되는 1종 이상을 합계로 0.01 ∼ 1.0% 함유하면 바람직하다.Moreover, it is preferable to contain 0.01-1.0% by mass of 1 or more types chosen from the group of Zn, P, Fe, Mg, Mn, Al, Co, and Ni in total.

Cr 함유량을 0.6% 이하로 하고, 8% 이상의 연신율을 나타내는 것이 바람직하고, Cr 함유량을 0.2% 이하로 하고, 10% 이상의 연신율을 나타내는 것이 더욱 바람직하다.It is preferable to make Cr content into 0.6% or less and to show 8% or more of elongation, and it is more preferable to make Cr content into 0.2% or less and to show 10% or more of elongation.

발명을 실시하기 위한 최선의 형태Best Mode for Carrying Out the Invention

이하, 본 발명에 관련되는 고력 고도전성 구리합금의 실시형태에 대해 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the high strength highly conductive copper alloy which concerns on this invention is described.

먼저, 본 발명에 있어서 각 성분원소의 함유량을 규정한 이유에 대해 설명한다. 본 발명에서 % 는 특별한 언급이 없는 한 질량% 를 나타내는 것으로 한다.First, the reason which prescribed | regulated content of each component element in this invention is demonstrated. In this invention,% shall represent the mass% unless there is particular notice.

[Cr, Zr][Cr, Zr]

본 발명은 도전성과 강도를 확보하기 위해 Cu-Cr-Zr계 구리합금을 대상으로 한다. 여기에서, Cr 및 Zr 은 용체화처리 후에 시효시킴으로써 Cu 모상 중에 석출되어 강도 향상에 기여하는 원소이다. Cr 함유량을 0.05∼1.0%, Zr 함유량을 0.05∼0.25% 로 한다. Cr 함유량이 0.05% 미만이면 강도가 충분히 향상되지 않고, 1.0% 를 초과해도 효과가 포화되기 때문이다. Zr 함유량의 상한 및 하한을 규정한 이유도 상기 Cr 의 경우와 동일하다. 또, Cr 함유량을 0.6% 이하로 하면 8% 이상의 연신율이 얻어지고, 또한 보다 바람직하게는 0.2% 이하로 하면 10% 이상의 높은 연신율이 얻어진다.The present invention targets a Cu—Cr—Zr based copper alloy to secure conductivity and strength. Here, Cr and Zr are elements which precipitate in the Cu mother phase by aging after the solution treatment and contribute to the strength improvement. The Cr content is 0.05 to 1.0% and the Zr content is 0.05 to 0.25%. It is because intensity | strength will not fully improve that Cr content is less than 0.05%, and an effect will be saturated even if it exceeds 1.0%. The reason for specifying the upper limit and the lower limit of the Zr content is also the same as in the case of Cr. Moreover, when Cr content is made into 0.6% or less, 8% or more elongation is obtained, More preferably, when it is 0.2% or less, high elongation 10% or more is obtained.

다음으로, 필요에 따라 첨가되는 첨가원소에 대해 설명한다.Next, the addition element added as needed is demonstrated.

[Zn, P, Fe, Mg, Mn, Al, Co, Ni][Zn, P, Fe, Mg, Mn, Al, Co, Ni]

이들 원소는 도전율을 크게 저하시키지 않고 구리 모상 내에 고용 또는 석출시킴으로써 강도를 향상시키는 것으로, 합계로 0.01∼1.0% 함유시킨다. 함유량이 0.01% 미만이면 강도의 향상효과가 작고, 1.0% 를 초과하면 도전율이 저하되기 때문이다.These elements improve the strength by solid solution or precipitation in the copper matrix without significantly lowering the conductivity, and are contained in an amount of 0.01 to 1.0% in total. If the content is less than 0.01%, the effect of improving strength is small, and if it exceeds 1.0%, the electrical conductivity is lowered.

다음으로, 본 발명에 관련되는 고력 고도전성 구리합금의 조직에 대해 설명한다. 본 발명은 Cu-Cr-Zr계 구리합금의 연성을 향상시키는 방법으로서 입계구조에 착안하여 대응 입계 (對應粒界) ∑3 을 규정한 것이다. 여기에서, 대응 입계란 입계를 구성하는 어느 결정의 격자점을 연장시켜 다른 결정의 격자점과 겹치는 상태를 본 경우에, 서로 겹치는 격자점 (대응 격자) 이 주기적으로 발생하는 관계에 있는 입계를 말한다. 이 때, 대응 격자점의 밀도의 역수를 ∑값으로 정의한다. ∑3 이란 대응 격자점의 밀도가 1/3, 즉 원래의 격자점 3 개에 대해 대응 격자점이 1개 나타나는 것을 의미하고, 이것은 대응 격자가 주기적으로 나타나는 격자간격이 3 격자분인 것을 말한다. ∑값이 작을수록 주기가 짧고, 입계의 규칙성이 높은 것을 나타낸다. 또한, ∑3 이 가장 작은 값이다. 대응 입계에 대해서는, 예컨대 「강좌ㆍ현대의 금속학 재료편 제3권 재료강도의 원자론 63∼65 페이지」(사단법인 일본금속학회 1985년 발행) 에 기재되어 있다.Next, the structure of the high strength highly conductive copper alloy which concerns on this invention is demonstrated. As a method of improving the ductility of Cu-Cr-Zr-based copper alloys, the present invention defines a corresponding grain boundary 3 in view of the grain boundary structure. Here, the corresponding grain boundary refers to a grain boundary in which a lattice point (corresponding lattice) overlapping with each other occurs periodically when the lattice point of one crystal constituting the grain boundary is extended to see the state overlapping with the lattice point of another crystal. . At this time, the inverse of the density of the corresponding lattice point is defined as? Value. 3 means that the corresponding lattice points have a density of 1/3, that is, one corresponding lattice point appears for three original lattice points, which means that the lattice spacing at which the corresponding lattice appears periodically is three lattice points. Smaller values indicate shorter periods and higher regularity of grain boundaries. Also, ∑3 is the smallest value. Corresponding grain boundaries are described in, for example, "Atomic Theory of Lectures on Modern Metallurgical Materials, Vol.

그리고, 본 발명에 있어서는 인접한 결정의 방위차가 5°이상일 때에 각 결정 사이를 결정립계로 간주한 경우에, 결정립계에서의 대응 입계 ∑3 의 비율을10% 이상으로 한다. 여기에서, 일반적으로 결정입자 사이의 방위차가 15°이상이면 대각 (大角) 입계로 되고, 15°미만이면 소각 (小角) 입계로 된다. 본 발명에서는 방위차가 5°미만인 것은 결정립의 하부 조직인 서브 그레인 조직, 셀 조직으로 하고, 5°이상의 것을 결정립계로 간주하였다.In the present invention, when the orientation difference between adjacent crystals is 5 DEG or more, when each crystal is regarded as a grain boundary, the ratio of the corresponding grain boundary 3 at the grain boundary is 10% or more. Generally, when the orientation difference between crystal grains is 15 degrees or more, it becomes a diagonal grain boundary, and when it is less than 15 degrees, it becomes an incineration grain boundary. In the present invention, the azimuth difference of less than 5 ° is regarded as a sub-grain tissue and a cell structure, which are lower tissues of grains, and a 5 ° or more is regarded as a grain boundary.

결정립계에서의 대응 입계 ∑3 의 비율을 10% 이상으로 한 이유는, ∑3 의 비율이 10% 미만이 되면 연성이나 가공성의 향상을 기대할 수 없게 되기 때문이다. ∑3 의 비율이 10% 이상이 되면 연성이 향상되는 이유는 명확하지 않지만, ∑3 의 비율이 증가함으로써 취화 (脆化) 를 초래하는 Cr 이나 Zr 의 입계 편석이 나빠지는 것을 생각할 수 있다.The reason why the ratio of the corresponding grain boundary 3 at the grain boundary is 10% or more is because when the ratio of 3 is less than 10%, ductility and workability improvement cannot be expected. It is not clear why the ductility improves when the ratio of Σ3 is 10% or more. However, it is conceivable that the grain boundary segregation of Cr or Zr, which causes embrittlement, is worsened by increasing the ratio of ∑3.

대응 입계 ∑3 의 비율을 구하는 방법으로는, 예컨대 FESEM (Field Emission Scanning Electron Microscope) 에 의한 EBSP (electron Backscatter Diffraction Pattern) 법이 있다. 이 방법은 시료 표면에 비스듬하게 전자선을 쏘았을 때에 발생되는 후방 산란 전자 회절 패턴 (키쿠치 패턴) 에 기초하여 결정방위를 해석하는 방법이다. 이 방법에서는 다음과 같은 수순으로 해석된다. 먼저, 측정되는 재료의 측정영역을 통상, 육각형 등의 영역으로 구획하고, 구획된 각 영역에 대해 얻어진 키쿠치 패턴을, 이미 알려진 결정 구조의 데이터와 비교하여 그 측정점에서의 결정방위를 구한다. 마찬가지로, 그 측정점에 인접하는 측정점의 결정방위를 구하고, 양방의 결정의 방위차가 5°이상이면 그 사이 (양방의 육각형이 접해 있는 변 등) 를 입계로 하고, 5°미만이면 양자를 동일한 결정으로 한다. 이와 같이 하여, 시료 표면의 결정립계의 분포를 구한다. 다음으로, 소정의 방법으로 각 결정입자가 대응 입계 ∑3 으로 되어 있는지 여부를 판정하고, (대응 입계 ∑3 의 총합)/(결정립계의 길이의 총합) 에 100을 곱하여 대응 입계 ∑3 의 비율을 구한다. 또한, 통상 시판되고 있는 FESEM/EBSP 장치에는 대응 입계 ∑3 을 동정하는 모드가 있으므로 이것을 사용하면 된다. 그 외에, TEM (투과형 전자현미경) 에 의한 키쿠치 패턴을 사용하는 방법도 있으나, 측정의 간편성에서 상기 FESEM/EBSP법이 유리하다.As a method of calculating the ratio of the corresponding grain boundary 3, there is, for example, an Electron Backscatter Diffraction Pattern (EBSP) method using a Field Emission Scanning Electron Microscope (FESEM). This method is a method of analyzing the crystal orientation based on the backscattered electron diffraction pattern (Kikuchi pattern) generated when an electron beam is projected obliquely on the sample surface. In this method, it is interpreted as the following procedure. First, the measurement area of the material to be measured is usually divided into areas such as hexagons, and the Kikuchi pattern obtained for each partitioned area is compared with data of known crystal structures to determine the crystal orientation at the measurement point. Similarly, the crystal orientation of the measurement point adjacent to the measurement point is determined, and if the orientation difference between the two crystals is 5 ° or more, the boundary (between the sides of both hexagons, etc.) is placed between them, and if the angle is less than 5 °, both are the same crystal. do. In this way, the distribution of grain boundaries on the sample surface is obtained. Next, it is determined whether or not each crystal grain is the corresponding grain boundary ∑3 by a predetermined method, and the ratio of the corresponding grain boundary ∑3 is multiplied by 100 by multiplying (the sum of the corresponding grain boundaries ∑3) / (the sum of the lengths of the grain boundaries). Obtain In addition, since a commercially available FESEM / EBSP apparatus has a mode for identifying the corresponding grain boundary? 3, this may be used. In addition, there is also a method of using a Kikuchi pattern by a TEM (transmission electron microscope), but the FESEM / EBSP method is advantageous from the simplicity of measurement.

대응 입계 ∑3 의 비율을 10% 이상으로 하기 위한 방법으로는, 예컨대 소둔 후의 재결정을 이용할 수 있다 (정적 재결정). 이 경우, 압연 후에 변형 제거 소둔을 하는 프로세스로 되어, 압연에 의해 일단 상승된 강도가 저하되거나 충분한 연성이 얻어지지 않는 경우가 있다. 따라서, 이와 같은 문제가 없고, 강도와 연성이 모두 우수한 재료가 얻어지는 동적 재결정을 이용하는 것이 보다 바람직하다. 일반적으로, 압연가공도를 상승시키면 가공경화에 의해 강도가 상승되는데, 가공도가 너무 높으면 그 이상의 가공경화가 일어나지 않고, 또 강도의 상승에 따라 연성이 저하된다. 그러나, 가공도를 더욱 크게 하면, 가공에 의해 재결정이 진행되는 동적 재결정이라 불리는 거동이 발생하고, 이에 의해 조직이 개선되어 연성이 회복된다. 따라서, 본 발명에 있어서는, 바람직하게는 대응 입계 ∑3 의 비율을 10% 이상으로 관리함과 동시에 동적 재결정법을 이용함으로써, 강도와 연성 (가공성) 을 높은 레벨로 동시에 향상시킬 수 있다.As a method for making the ratio of the corresponding grain boundary 3 to 10% or more, for example, recrystallization after annealing can be used (static recrystallization). In this case, it becomes the process of strain removal annealing after rolling, and the strength raised once by rolling may fall, or sufficient ductility may not be obtained. Therefore, it is more preferable to use the dynamic recrystallization which does not have such a problem and produces the material excellent in both strength and ductility. In general, when the rolling workability is increased, the strength is increased by work hardening. If the workability is too high, further work hardening does not occur, and the ductility decreases as the strength is increased. However, when the workability is further increased, a behavior called dynamic recrystallization in which recrystallization proceeds by processing occurs, whereby the structure is improved and ductility is restored. Therefore, in the present invention, the strength and ductility (processability) can be simultaneously improved to a high level by preferably managing the ratio of the corresponding grain boundary 3 to 10% or more and using the dynamic recrystallization method.

구체적으로는, 재료의 냉간압연의 압연가공도를 상승시키는 것, 예컨대 최종 냉간압연에 있어서의 전체 가공도를 95% 이상으로 함으로써, 상기 동적 재결정을발생시켜 대응 입계 ∑3 을 생성시킬 수 있다. 이 경우, 바람직하게는 최종 냉간압연에서의 각 패스의 평균 가공도 (각 패스의 가공도를 평균하여 1 패스 당의 가공도를 계산한 값) 를 20% 이상으로 하면, 대응 입계 ∑3 의 생성이 촉진된다. 더욱 바람직하게는, 각 패스의 평균 가공도의 차가 ±10% 이하이고, 가장 바람직하게는 상기 차가 ±5% 이하인 것이 좋다. 또, 상기한 각 패스의 가공도나 가공도의 차를 설정할 때, 압연가공도에 그다지 영향을 주지 않는 정도의 가공율이 낮은 패스 (예컨대, 가공율 0.5% 미만의 패스, 스킨패스) 를 압연의 처음이나 중간 패스, 혹은 최종 패스 뒤에 1회 이상 실시해도 되고, 이와 같은 패스 설정도 본 발명에 포함되는 것으로 한다.Specifically, by increasing the cold workability of the cold rolling of the material, for example, making the overall workability in the final cold rolling be 95% or more, the dynamic recrystallization can be generated to produce the corresponding grain boundary? 3. In this case, preferably, when the average workability of each pass (the calculated value of workability per one pass is calculated by averaging the workability of each pass) in the final cold rolling, the generation of the corresponding grain boundary? 3 Is promoted. More preferably, the difference in average workability of each pass is ± 10% or less, and most preferably, the difference is ± 5% or less. Also, when setting the difference between the degree of workability and the degree of workability of each of the above-mentioned paths, a pass with a low processing rate (for example, a pass less than 0.5% of a work rate and a skin pass) of a degree that does not affect the rolling workability so much as It may be performed one or more times after the initial, intermediate, or final pass, and such a pass setting is also included in the present invention.

또한, ∑3 의 비율을 높이는 방법으로는 상기한 가공에 의해 동적으로 재결정을 발생시키는 것 외에 열처리 (예컨대, 변형 제거 소둔) 에 의해 재결정을 발생시켜도 된다.In addition, as a method of increasing the ratio of 3, recrystallization may be generated by heat treatment (for example, strain removal annealing) in addition to generating recrystallization dynamically by the above processing.

본 발명의 구리합금은, 예컨대 다음과 같이 하여 제조할 수 있다. 먼저, 전기구리 또는 무산소구리에 대해 상기 조성의 원소를 배합하고, 불활성 분위기 또는 진공 중에서 잉곳을 주조하고, 적절하게 열처리한 후, 열간압연, 용체화처리, 냉간압연, 시효처리를 하여 원하는 두께의 합금 박대나 판재를 제조한다. 그리고, 이들 박대나 판재는 적절하게 가공되어 스프링재 등의 제품이 된다.The copper alloy of this invention can be manufactured as follows, for example. First, an element of the above composition is blended with copper or oxygen-free copper, an ingot is cast in an inert atmosphere or vacuum, and appropriately heat treated, followed by hot rolling, solution treatment, cold rolling, and aging treatment to obtain a desired thickness. Manufacture alloy foils or plates. And these thin ribbons and board | plate materials are processed suitably, and it becomes products, such as a spring material.

다음으로, 실시예를 들어 본 발명을 더욱 상세하게 설명하는데 본 발명은 이들에 한정되지 않는다.Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

실시예Example

1. 시료의 제조1. Preparation of Sample

전기구리에 대해 소정의 원소를 배합하여 표 1 에 나타내는 조성의 합금을 진공 유도 용해로 (VIM) 에서 용제(溶製)하고 불활성 분위기 또는 진공 중에서 잉곳을 주조하였다. 얻어진 잉곳을 900℃ 이상의 온도에서 300분 이상 균질화 소둔한 후, 열간압연을 하고, 계속해서 용체화처리하고 최종 냉간압연하여 판두께 0.15㎜ 의 재료를 작성하였다. 그 후, 소정의 시효처리를 실행하여 재결정을 발생시킨 후 시료를 잘라내었다. 냉간압연의 압연조건은 표 1 에 나타낸 바와 같다.The alloy of the composition shown in Table 1 was mix | blended with the predetermined | prescribed element with respect to copper, and the ingot was cast in an inert atmosphere or vacuum in a vacuum induction melting furnace (VIM). The obtained ingot was homogenized and annealed at a temperature of 900 ° C. or higher for at least 300 minutes, followed by hot rolling, followed by solution treatment, and finally cold rolling to prepare a material having a thickness of 0.15 mm. Thereafter, a predetermined aging treatment was performed to generate recrystallization, and then the sample was cut out. Cold rolling conditions are as shown in Table 1.

여기에서, 전체 가공도란 {(냉간압연 전의 판두께) - (전체 패스 압연 후의 판두께)} ×100/(냉간압연 전의 판두께) 로 표시되는 값이다. 또, 각 패스의 평균 가공도는 먼저 {(그 패스의 압연 전 판두께) - (그 패스의 압연 후 판두께)}/(그 패스의 압연 전 판두께) 로 표시되는 값에 의해 각 패스의 가공도를 구하고, 이것을 전체 패스에 대해 평균한 값이다.Here, the total workability is a value expressed by {(plate thickness before cold rolling)-(plate thickness after full pass rolling)} × 100 / (plate thickness before cold rolling). In addition, the average workability of each pass is first determined by the value expressed by {(plate thickness before rolling of the pass)-(plate thickness after rolling of the pass)} / (plate thickness before rolling of the pass). The workability was calculated | required and this value was averaged over the whole pass | pass.

2. ∑3 의 비율의 측정2. Measurement of the ratio of ∑3

각 실시예 및 비교예에 대해 쇼트키형 FESEM (닛폰전자주식회사 제조 JSM6500F) 을 사용한 EBSP법에 의해 결정방위를 측정하여, 결정립계에서의 대응 입계 ∑3 의 비율을 구하였다. 측정은 최저 0.01㎟ 이상의 영역을 육각형의 측정점으로 하고, 빔의 이송 간격 50㎚ 이하로 하여 실행하였다. 그리고, 인접하는 측정점의 방위차가 5°이상이면, 그 측정점의 사이 (각 육각형이 접하는 변) 를 결정립계로 간주하였다. 또, 상기 FESEM 의 모드를 「EBSP 시스템 텍셈 레버러토리즈 OIM 시스템」에 설정함으로써, 대응 입계 ∑3 의 동정을 실행하였다. 그리고, 측정 데이터로부터 {(대응 입계 ∑3 길이의 총합)/(결정립계의 길이의 총합)} ×100 으로 표시되는 값을 구함으로써 대응 입계 ∑3 의 비율을 구하였다.About each Example and the comparative example, the crystal orientation was measured by the EBSP method using Schottky-type FESEM (JSM6500F by Nippon Electronics Co., Ltd.), and the ratio of the corresponding grain boundary 3 in a grain boundary was calculated | required. The measurement was performed with a region of at least 0.01 mm 2 or more as a hexagonal measuring point and 50 nm or less in the beam feeding interval. And when the orientation difference of adjacent measuring points is 5 degrees or more, (the side which each hexagon contact | connects) between the measuring points was considered as a grain boundary. In addition, identification of the corresponding grain boundary 3 was performed by setting the mode of the FESEM to the "EBSP System Technology Laboratories OIM System". And the ratio of the corresponding grain boundary 3 was calculated | required by calculating | requiring the value represented by {(sum of the corresponding grain boundary 3 length) / (sum of the grain boundary length)} x100 from the measurement data.

3. 평가3. Evaluation

(1) 연신율(1) elongation

JIS-Z 2241 에 규정된 인장시험법에 따라 각 시료로부터 5호 시험편을 제작하여 인장시험했을 때의 파단 연신율을 측정하였다.The elongation at break when the No. 5 test piece was produced from each sample and the tensile test was measured in accordance with the tensile test method prescribed | regulated to JIS-Z 2241.

(2) 가공성(2) processability

W 굽힘 시험기에 의해 시료를 굽힘 가공하여 굽힘부 외측을 광학현미경으로 50배의 배율로 관찰하여 균열의 유무를 육안으로 평가하였다.The sample was bent by a W bending tester, and the outside of the bend was observed at 50 times magnification with an optical microscope, and the presence of cracks was visually evaluated.

○: 균열이 보이지 않음○: no cracking

△ : 균열은 보이지 않지만 표면거침이 큼△: no cracking but high surface roughness

×: 균열이 현저하게 보임×: cracks are remarkable

(3) 인장강도(3) tensile strength

상기 인장시험에 있어서 인장강도를 측정하였다.Tensile strength was measured in the tensile test.

(4) 도전율(4) conductivity

4 단자법에 의해 시료의 도전율을 측정하였다.The conductivity of the sample was measured by the four-terminal method.

얻어진 결과를 표 1 에 나타낸다.The obtained results are shown in Table 1.

표 1 로부터 명확한 바와 같이, 각 실시예의 경우, ∑3 의 비율이 10% 이상이고, 8% 이상의 연신율을 나타내고, 가공성 및 인장강도가 모두 우수하다.또, 도전율도 높고 도전성이 우수하다. 특히, Cr 함유량을 0.6% 미만으로 한 실시예 1, 3, 5∼7 의 경우 모두 10%를 초과하는 높은 연신율을 나타내었다.As is clear from Table 1, in each of the examples, the ratio of Σ3 is 10% or more, shows an elongation of 8% or more, and is excellent in both workability and tensile strength. Moreover, the conductivity is high and the conductivity is excellent. In particular, in the case of Examples 1, 3, 5-7 which made Cr content less than 0.6%, all showed the high elongation exceeding 10%.

한편, ∑3 의 비율이 10% 미만인 비교예 1∼7 의 경우, 모두 연신율이 8% 미만이고, 각 실시예에 비하여 떨어지게 되었다. 특히, 비교예 2 및 4∼7 의 경우는 연신율 외에 가공성도 열화되었다. 또한, 비교예 1∼3 및 5∼7 의 경우, 전체 가공도는 95% 이상이지만 각 패스의 평균 가공도는 20% 미만이었다. 한편, 비교예 4 의 경우 각 패스의 평균 가공도는 20% 이상이지만, 전체 가공도는 95% 미만이었다. 이와 같은 점에서 ∑3 의 비율을 10% 이상으로 하기 위해서는, 전체 가공도를 95% 이상으로 하고 각 패스의 평균 가공도를 20% 이상으로 하는 것이 바람직한 것을 알 수 있다.On the other hand, in the case of Comparative Examples 1-7 in which the ratio of 3 was less than 10%, the elongation was less than 8% in all cases, and it fell compared with each Example. In particular, in Comparative Examples 2 and 4 to 7, the workability was deteriorated in addition to the elongation. In addition, in the case of Comparative Examples 1-3 and 5-7, although the total workability was 95% or more, the average workability of each path | pass was less than 20%. On the other hand, in the case of Comparative Example 4, the average workability of each pass was 20% or more, but the overall workability was less than 95%. In this regard, in order to make the ratio of 3 to 10% or more, it is understood that the overall workability is 95% or more and the average workability of each pass is preferably 20% or more.

본 발명의 고력 고도전성 구리합금에 의하면 강도와 가공성이 모두 우수한 구리합금이 얻어진다. 또 대응 입계 ∑3 의 측정은 간단하기 때문에 생산관리도 용이해진다.According to the high-strength highly conductive copper alloy of the present invention, a copper alloy excellent in both strength and workability is obtained. In addition, since the measurement of the corresponding grain boundary 3 is simple, production management becomes easy.

Claims (4)

질량% 로, Cr : 0.05 ∼ 1.0%, Zr : 0.05 ∼ 0.25%, 잔부 Cu 및 불가피한 불순물로 이루어지고, 인접하는 결정의 방위차가 5°이상일 때에 각 결정 사이를 결정립계로 간주한 경우에, 상기 결정립계에서의 대응 입계 ∑3 의 비율이 10% 이상인 것을 특징으로 하는 고력 고도전성 구리합금.The grain boundary is composed of Cr: 0.05 to 1.0%, Zr: 0.05 to 0.25%, residual Cu, and unavoidable impurities, and when the orientation difference between adjacent crystals is 5 ° or more, the grain boundaries are regarded as the grain boundaries. A high-strength highly conductive copper alloy, wherein the ratio of the corresponding grain boundary Σ3 at 10% or more. 제 1 항에 있어서, 또한, 질량% 로, Zn, P, Fe, Mg, Mn, Al, Co 및 Ni 의 군에서 선택되는 1종 이상을 합계로 0.01 ∼ 1.0% 함유하는 것을 특징으로 하는 고력 고도전성 구리합금.The high-strength altitude according to claim 1, further comprising 0.01 to 1.0% by mass of one or more selected from the group consisting of Zn, P, Fe, Mg, Mn, Al, Co, and Ni. Malleable copper alloy. 제 1 항 또는 제 2 항에 있어서, Cr 함유량을 0.6% 이하로 하고, 8% 이상의 연신율을 나타내는 것을 특징으로 하는 고력 고도전성 구리합금.The high-strength highly conductive copper alloy according to claim 1 or 2, wherein the Cr content is 0.6% or less and an elongation of 8% or more is shown. 제 1 항 또는 제 2 항에 있어서, Cr 함유량을 0.2% 이하로 하고, 10% 이상의 연신율을 나타내는 것을 특징으로 하는 고력 고도전성 구리합금.The high-strength highly conductive copper alloy according to claim 1 or 2, wherein the Cr content is 0.2% or less and an elongation of 10% or more is shown.
KR1020040052301A 2003-07-09 2004-07-06 High strength and electric conductivity copper alloy excellent in ductility KR100592205B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003272240A JP4087307B2 (en) 2003-07-09 2003-07-09 High strength and high conductivity copper alloy with excellent ductility
JPJP-P-2003-00272240 2003-07-09

Publications (2)

Publication Number Publication Date
KR20050007139A true KR20050007139A (en) 2005-01-17
KR100592205B1 KR100592205B1 (en) 2006-06-26

Family

ID=34209858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040052301A KR100592205B1 (en) 2003-07-09 2004-07-06 High strength and electric conductivity copper alloy excellent in ductility

Country Status (4)

Country Link
JP (1) JP4087307B2 (en)
KR (1) KR100592205B1 (en)
CN (1) CN100363518C (en)
TW (1) TWI263685B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1803829B1 (en) 2004-08-17 2013-05-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electric and electronic parts having bendability
CN101899587B (en) 2006-07-21 2012-07-04 株式会社神户制钢所 Copper alloy sheets for electrical/electronic part
KR101227315B1 (en) 2007-08-07 2013-01-28 가부시키가이샤 고베 세이코쇼 Copper alloy sheet
WO2009022484A1 (en) * 2007-08-14 2009-02-19 Sumitomo Electric Industries, Ltd. Superconductive tape and method of manufacturing the same
JP2008088558A (en) * 2007-10-17 2008-04-17 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy with excellent ductility
JP4630323B2 (en) 2007-10-23 2011-02-09 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchangers with excellent fracture strength
JP4968533B2 (en) * 2007-11-30 2012-07-04 日立電線株式会社 Copper alloy material for electrical and electronic parts
CN101981212A (en) * 2008-03-31 2011-02-23 Jx日矿日石金属株式会社 Cu-Ni-Si alloy to be used in electrically conductive spring material
US8876990B2 (en) 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks
JP4563508B1 (en) * 2010-02-24 2010-10-13 三菱伸銅株式会社 Cu-Mg-P-based copper alloy strip and method for producing the same
CN101818283B (en) * 2010-02-25 2011-12-14 长沙中工新材料有限公司 Copper alloy conducting bar and end ring for high-power frequency-adjustable speed-adjustable asynchronous traction motor and preparation method thereof
CN103502485B (en) * 2011-03-31 2015-11-25 国立大学法人东北大学 The preparation method of copper alloy and copper alloy
WO2013031841A1 (en) 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP5869288B2 (en) * 2011-10-14 2016-02-24 三菱伸銅株式会社 Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
JP5802150B2 (en) 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
JP6736869B2 (en) * 2015-11-09 2020-08-05 三菱マテリアル株式会社 Copper alloy material
CN107046768B (en) * 2016-02-05 2019-12-31 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN107828985A (en) * 2017-11-30 2018-03-23 江西理工大学 Cu Cr Zr Ni Al copper alloys, wire rod and preparation method thereof
JP6900137B1 (en) * 2020-01-14 2021-07-07 古河電気工業株式会社 Copper alloy plate material and its manufacturing method, and members for electrical and electronic parts
CN111621666B (en) * 2020-06-22 2021-05-07 陕西斯瑞新材料股份有限公司 Rolling method of Cu-Cr series alloy plate strip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122108B2 (en) * 1991-08-21 1995-12-25 日鉱金属株式会社 High-strength and high-conductivity copper alloy for electronic devices with excellent bendability and stress relaxation properties
KR0175968B1 (en) * 1994-03-22 1999-02-18 코오노 히로노리 Copper alloy suited for electrical components and high strength electric conductivity
KR100513943B1 (en) * 2001-03-27 2005-09-09 닛꼬 긴조꾸 가꼬 가부시키가이샤 Copper and copper alloy, and method for production of the same

Also Published As

Publication number Publication date
TWI263685B (en) 2006-10-11
KR100592205B1 (en) 2006-06-26
TW200504229A (en) 2005-02-01
CN100363518C (en) 2008-01-23
JP2005029857A (en) 2005-02-03
CN1598021A (en) 2005-03-23
JP4087307B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
KR100592205B1 (en) High strength and electric conductivity copper alloy excellent in ductility
KR100876051B1 (en) Copper alloy sheet for electric and electronic parts with bending workability
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
KR102590058B1 (en) Copper alloy sheet and its manufacturing method
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
TW201525161A (en) Copper-titanium alloy for electronic component
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
KR20120130342A (en) Cu-ni-si alloy for electronic material
KR102363597B1 (en) Copper alloy plate and its manufacturing method, heat dissipation parts and shield case for electric and electronic devices
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
EP2706125A1 (en) Copper alloy sheet material and process for producing same
JP2012193408A (en) Cu-Ni-Si ALLOY HAVING EXCELLENT BENDABILITY
JP2012207254A (en) Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP2008088558A (en) High-strength and high-conductivity copper alloy with excellent ductility
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP7145847B2 (en) Copper alloy sheet material and manufacturing method thereof
JP5325178B2 (en) Cu-Co-Si based copper alloy excellent in strength, electrical conductivity and bending workability and method for producing the same
KR20040068007A (en) High strength and high electrical conductivity copper alloy having excellent fatigue property and intermediate temperature property
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150515

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee