KR20040087055A - Method of Polymer Addition for Particle Shape and Evaluation of Dispersion Stability of Precipitated Calcium Carbonate - Google Patents
Method of Polymer Addition for Particle Shape and Evaluation of Dispersion Stability of Precipitated Calcium Carbonate Download PDFInfo
- Publication number
- KR20040087055A KR20040087055A KR1020030021295A KR20030021295A KR20040087055A KR 20040087055 A KR20040087055 A KR 20040087055A KR 1020030021295 A KR1020030021295 A KR 1020030021295A KR 20030021295 A KR20030021295 A KR 20030021295A KR 20040087055 A KR20040087055 A KR 20040087055A
- Authority
- KR
- South Korea
- Prior art keywords
- calcium carbonate
- precipitated calcium
- polymer
- surfactant
- electrical conductivity
- Prior art date
Links
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims abstract description 64
- 229940088417 precipitated calcium carbonate Drugs 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000006185 dispersion Substances 0.000 title claims abstract description 24
- 229920000642 polymer Polymers 0.000 title claims abstract description 24
- 239000002245 particle Substances 0.000 title claims abstract description 22
- 238000011156 evaluation Methods 0.000 title 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims abstract description 34
- 239000004094 surface-active agent Substances 0.000 claims abstract description 28
- 239000000725 suspension Substances 0.000 claims abstract description 25
- -1 polyoxyethylene nonylphenyl ether Polymers 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 239000003945 anionic surfactant Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 4
- 239000000920 calcium hydroxide Substances 0.000 claims description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 4
- 229910021532 Calcite Inorganic materials 0.000 claims description 2
- 239000002563 ionic surfactant Substances 0.000 claims 2
- 239000002244 precipitate Substances 0.000 claims 1
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 2
- DHNCFAWJNPJGHS-UHFFFAOYSA-J [C+4].[O-]C([O-])=O.[O-]C([O-])=O Chemical compound [C+4].[O-]C([O-])=O.[O-]C([O-])=O DHNCFAWJNPJGHS-UHFFFAOYSA-J 0.000 abstract 1
- 239000000945 filler Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 6
- 239000002736 nonionic surfactant Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3228—Units having reflectors, e.g. coatings, baffles, plates, mirrors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/02—Temperature
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
본 발명은, 탄산화법으로 침강성 탄산칼슘 제조시 전기전도도가 변화되는 각 시점에서 음이온계 계면활성제인 PMAA(Poly(methacrylic Acid)을 첨가하고, Ethylene Oxide의 몰수가 큰 경우에는 비이온계 계면활성제인 Poly(oxyethylene) Nonylphenyl Ether를 첨가함으로서, 원료와의 계면특성 향상에 의한 충전제의 분산성을 향상시킴으로서 생산제품의 특성을 향상시키는 침강성 탄산칼슘 입자 형상 및 분산 안정성 향상을 위한 고분자 첨가방법에 관한 것이다.The present invention adds PMAA (Poly (methacrylic Acid), an anionic surfactant, at each time when electrical conductivity changes during the production of precipitated calcium carbonate by carbonation, and when the molar number of ethylene oxide is large, it is a nonionic surfactant. By adding Poly (oxyethylene) Nonylphenyl Ether, the present invention relates to a method for adding a polymer for improving the shape and dispersion stability of precipitated calcium carbonate particles which improves the properties of the produced product by improving the dispersibility of the filler by improving the interfacial properties with the raw materials.
일반적으로 제지공업에서 침강성 탄산칼슘은 제지, 고무, 의약, 식료품 및 제조분야에서 충전제 및, 코팅제의 두 용도로 많이 사용되고 있고, 특히, 충전제의경우 최종산물과 충전제 표면사이에 계면을 형성시키고, 이 계면의 특성이 최종재료의 물성에 직접적으로 영향을 주게 되므로 충전제의 최종산물에서의 분산성과 결합력이 상품의 품질, 수명 및 부가가치성 등에 큰 영향을 미치게 된다. 따라서 제지의 특성을 향상시키기 위해서는 충전제의 분산성 향상이 필수적이라 할 수 있다.In general, in the papermaking industry, precipitated calcium carbonate is widely used in papermaking, rubber, medicine, foodstuffs, and manufacturing for two purposes, fillers and coatings. In particular, fillers form an interface between the final product and the filler surface. Since the properties of the interface directly affect the physical properties of the final material, the dispersibility and bonding strength of the final product of the filler have a great influence on the product quality, life and added value. Therefore, it can be said that improving the dispersibility of the filler in order to improve the properties of the paper.
그러나, 현재 널리 쓰이고 있는 분말상태의 충전제인 경우, 생성물에 대한 여과 및 건조 등의 후처리 공정에서 분말의 응집에 의한 물성의 저하와 함께, 운송 및 공정 중에 많은 손실이 발생하고, 계면특성 또한 크게 저하되는 등의 많은 문제점이 발생하였다.However, in the case of powder fillers, which are widely used at present, in the post-treatment process such as filtration and drying of products, a large amount of loss occurs during transportation and processing, as well as deterioration of physical properties due to agglomeration of powder. Many problems have occurred such as deterioration.
이를 개선하기 위한 본 발명의 목적은, 탄산화법으로 침강성 탄산칼슘 제조시 전기전도도가 변화되는 각 시점에서 흡착층을 형성하여 정전기적 반발력을 가질 수 있도록 음이온계 계면활성제인 PMAA(Poly(methacrylic Acid)을 첨가하고, Ethylene Oxide의 몰수가 큰 경우에는 수용성으로 수용액법에서 이 계면활성제의 첨가로 새로운 상을 유도하는 비이온계 계면활성제인 Poly(oxyethylene) Nonylphenyl Ether를 첨가하여, 원료와의 계면특성 향상에 의한 충전제의 분산성이 향상되도록 하는데 있다.An object of the present invention for improving this, by forming the adsorption layer at each time when the electrical conductivity is changed during the production of precipitated calcium carbonate by the carbonation method, anionic surfactant PMAA (Poly (methacrylic Acid)) to have an electrostatic repulsion If the mole number of ethylene oxide is large, water-soluble method adds Poly (oxyethylene) Nonylphenyl Ether, a nonionic surfactant that induces a new phase by the addition of this surfactant in aqueous solution. It is to improve the dispersibility of the filler by.
또한, 탄산칼슘 제조시 물성이 증진되고, 후처리 공정이 생략됨에 따라 분체의 응집방지와 공정단순화되어 기술적, 경제적 이익을 얻을 수 있도록 하는 침강성 탄산칼슘 입자 형상 및 분산 안정성 향상을 위한 고분자 첨가방법을 제공하는데 있다.In addition, as the properties of the calcium carbonate is improved and the post-treatment process is omitted, the method of adding a polymer for improving the shape and dispersion stability of the precipitated calcium carbonate particles to obtain technical and economic benefits by preventing the agglomeration of the powder and simplifying the process. To provide.
도 1은 본 발명의 제조공정도.1 is a manufacturing process diagram of the present invention.
도 2는 탄산화법으로 합성된 침강성 탄산칼슘의 pH에 따른 제타전위 그래프.2 is a graph of zeta potential according to pH of precipitated calcium carbonate synthesized by carbonation.
도 3은 탄산화 반응종료 후 침강성 탄산칼슘 현탁액의 시간에 따른 pH도.Figure 3 is a pH diagram over time of the precipitated calcium carbonate suspension after the end of the carbonation reaction.
도 4a또는 4b는 탄산화 반응전에 Poly(oxyethylene) Nonylphenyl Ether와 소석회유 첨가 후 CO2와의 반응시간에 따른 전기전도도 및 전자현미경 사진.4a or 4b is an electrical conductivity and electron micrograph according to the reaction time of CO 2 after addition of Poly (oxyethylene) Nonylphenyl Ether and calcined oil before carbonation reaction.
도 5a 또는 5b는 탄산화 반응도중 전도도가 1차 상승시점에서의 Poly(oxyethylene) Nonylphenyl Ether를 투입한 후 전기전도도 및 전자현미경 사진.5a or 5b is an electrical conductivity and electron micrograph after the addition of Poly (oxyethylene) Nonylphenyl Ether at the first rise in conductivity during the carbonation reaction.
도 6a 또는 도6b는 탄산화 반응도중 전도도가 최종 하강시점에서의 Poly(oxyethylene) Nonylphenyl Ether를 투입한 후 전기전도도 및 전자현미경 사진.Figure 6a or Figure 6b is an electrical conductivity and electron micrograph after the conductivity of the poly (oxyethylene) Nonylphenyl Ether at the time of the last drop in the carbonation reaction.
도 7은 20℃에서 탄산화 반응이 종료된 후에 침강성 탄산칼슘 현탁액에PMAA 첨가량에 따른 분산특성을 나타낸 그래프.Figure 7 is a graph showing the dispersion characteristics according to the amount of PMAA added to the precipitated calcium carbonate suspension after the carbonation reaction is finished at 20 ℃.
도 8은 Ca(OH)2현탁액에 PMAA를 주입한 후 CO2를 불어 넣으면서 탄산화 반응시켰을 때의 분산특성을 나타낸 그래프.Figure 8 is a graph showing the dispersion characteristics when the carbonation reaction while injecting PMAA into the Ca (OH) 2 suspension and blowing the CO 2 .
도 9는 전기전도도 1차 상승시 PMAA 첨가량에 따른 분산특성을 나타낸 그래프.9 is a graph showing dispersion characteristics according to the amount of PMAA added at the first rise in conductivity.
도 10은 탄산화 반응중에 전기전도도 최종 하강시 PMAA 첨가량에 따른 분산특성을 나타낸 그래프.10 is a graph showing the dispersion characteristics according to the amount of PMAA added at the last drop in electrical conductivity during carbonation reaction.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 수산화 칼슘 현탁액을 상온에서 교반하면서 CO2가스를 주입하여 침강성 탄산칼슘 현탁액을 제조시, 침강성 탄산칼슘 현탁액의 전기전도도 변화 시점에 따라 고분자 계면활성제를 투입하고, 시료를 채취하여 여과 및 건조 후 분산안정성을 분석하는 침강성 탄산칼슘 입자 형상 및 분산 안정성 향상을 위한 고분자 첨가방법을 제공한다.The present invention for achieving the object as described above, when preparing a precipitated calcium carbonate suspension by injecting CO 2 gas while stirring the calcium hydroxide suspension at room temperature, the polymer surfactant according to the point of change in the electrical conductivity of the precipitated calcium carbonate suspension Provided is a method for adding a polymer for improving the shape and dispersion stability of precipitated calcium carbonate particles which are charged, sample collected, filtered and dried to analyze dispersion stability.
또한, 본 발명에 따른 침강성 탄산칼슘 현탁액을 제조는, 20℃의 반응온도에서 300rpm의 속도록 교반 하면서 CO2가스를 500㎖/min로 주입하여 3.5wt.% 농도의 침강성 탄산칼슘 현탁액을 제조하는 것을 특징으로 한다.In addition, the precipitated calcium carbonate suspension according to the present invention is prepared by injecting CO 2 gas at 500 ml / min while stirring at a rate of 300 rpm at a reaction temperature of 20 ° C. to prepare a precipitated calcium carbonate suspension having a concentration of 3.5 wt.%. It is characterized by.
또한, 본 발명에 따른 고분자 계면활성제의 투입은, 전기전도도의 1차 하강단계의 지연으로 연쇄형 칼사이트의 결정성장 구간이 단축되어 분산성이 좋은 50㎚ 이하의 콜로이드형 칼사이트의 제조가 이루어지도록 비이온계 계면활성제인 Poly(oxyethylene) Nonylphenyl Ether를 침강성 탄산칼슘의 탄산화 반응전과 전기전도도의 1차 상승 시기에 첨가하는 것을 특징으로 한다.In addition, the addition of the polymer surfactant according to the present invention, the crystal growth interval of the chain type calsite is shortened by the delay of the first falling step of the electrical conductivity is made to produce a colloidal calsite of 50 nm or less with good dispersibility Poly (oxyethylene) Nonylphenyl Ether, which is a nonionic surfactant, is added before the carbonation reaction of precipitated calcium carbonate and during the first rise of electrical conductivity.
또한, 본 발명에 따른 고분자 계면활성제의 투입은, 중간상인 연쇄형 칼사이트의 콜로이드형 칼사이트로의 전이를 억제하여 침상형 칼사이트가 생성되도록 침강성 탄산칼슘 탄산화 반응중 전기전도도의 1차 상승 시에 0.6wt.% ~ 0.8wt.% 농도의 음이온계 계면활성제인 PMAA를 첨가하는 것을 특징으로 한다.In addition, the addition of the polymer surfactant according to the present invention, during the first rise of the electrical conductivity during the precipitated calcium carbonate carbonation reaction to suppress the transition of the intermediate phase chain-calcite to the colloidal calsite to form a needle-like calsite PMAA, an anionic surfactant having a concentration of 0.6wt.% To 0.8wt.%, Is added thereto.
본 발명의 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Referring to the configuration of the present invention and its operation in detail with reference to the accompanying drawings as follows.
도 1에 도시된 바와 같이, 먼저, l℃의 비이커에 16.281g의 수산화 칼슘과 600㎖의 증류수에 투입하여 수산화 칼슘 현탁액을 제조한 후 상온에서 300rpm의 속도로 교반하면서 500㎖/min의 CO2가스를 주입하여 침강성 탄산칼슘 현탁액을 제조하고, 반응이 진행되는 동안 각각의 전기전도도가 변화되는 시점에서 고분자 분산제인 계면활성제를 투입하고 시료를 채취하여 여과 및 건조시킨 후에 제타전위, 입자크기, 점도, 침전경계높이, X선 회절분석 및 투과전자현미경 분석을 통해 분산안정성을 조사한다.As shown in FIG. 1, first, 16.281 g of calcium hydroxide and 600 ml of distilled water were prepared in a beaker at 1 ° C. to prepare a calcium hydroxide suspension, and then stirred at a speed of 300 rpm at room temperature with 500 ml / min of CO 2. Prepare a precipitated calcium carbonate suspension by injecting gas, add surfactant, a polymer dispersant, and collect, filter, and dry at the time when the electrical conductivity changes during the reaction, and then zeta potential, particle size, and viscosity. Dispersion stability is investigated by means of precipitation boundary height, X-ray diffraction analysis and transmission electron microscope analysis.
이때, 사용되는 계면활성제는, 수용성으로 수용액상태에서 안정하여 흡착층을 형성하고, 정전기적 반발력을 가질 수 있는 음이온계 계면활성제인 PMAA(Poly methacrylic Acid)와, Ethylene Oxide의 몰수가 큰 경우 수용성으로 수용액법에서 이 계면활성제의 첨가가 새로운 상을 유도하는 비이온계 계면활성제인 Poly(oxyethylene) Nonylphenyl Ether를 사용함으로서, 제조된 탄산칼슘이 약 80㎚의 콜로이드형 칼사이트이고, 8.3의 칼사이트의 등전점을 갖도록 한다.At this time, the surfactant used is water-soluble, stable in aqueous solution to form an adsorption layer, and when the molar number of PMAA (Poly methacrylic Acid) and Ethylene Oxide, which is an anionic surfactant that can have electrostatic repulsion, is water soluble In the aqueous solution method, by using the poly (oxyethylene) Nonylphenyl Ether, a nonionic surfactant in which the addition of the surfactant induces a new phase, the prepared calcium carbonate was a colloidal calsite of about 80 nm, Try to have an isoelectric point.
[실시예 1]Example 1
도 2는 탄산화법으로 합성된 침강성 탄산칼슘의 pH에 따른 제타전위를 측정한 것으로써 침강성 탄산칼슘의 등전점(IEP, Isoelectric Point)은 약 pH 8.3이고,pH 8.3 이상에서는 음전하, pH 8.3 이하에서는 양전하 임을 나타낸다.2 is a zeta potential measured according to the pH of the precipitated calcium carbonate synthesized by the carbonation method. Indicates that
도 3은 탄산화 반응이 종료된 직후 침강성 탄산칼슘 현탁액의 시간에 따른 pH를 측정한 결과로써 반응종료 후 pH는 6.3이었으나, 시간이 지남에 따라 pH가 높아져 약 4시간 이후에는 pH가 8.3으로 유지된다..FIG. 3 shows the pH of the precipitated calcium carbonate suspension after the completion of the carbonation reaction. As a result, the pH was 6.3 after the completion of the reaction, but the pH was increased over time, and the pH was maintained at 8.3 after about 4 hours. ..
도 4a 또는 도4b는 Poly(oxyethylene) Nonylphenyl Ether를 탄산화 반응전, 소석회유를 첨가한 후 CO2와 반응하는 과정에서 시간에 따른 전기전도도와 각 시기별 입자형태의 변화를 투과전자현미경으로 분석한 결과로써 탄산화 반응 전에 계면활성제를 첨가하면 전기전도도의 1차 하강단계가 약간 늦어지고, 2) 및 3) 구간이 짧아지게 되어 최종 하강단계(도 4중 4))에서의 연쇄형 칼사이트는 콜로이드형 칼사이트로 존재하고, Ca(OH)2입자에 계면활성제를 첨가함으로써 침강성 탄산칼슘의 입자크기는 약 50㎚로 작아진다.FIG. 4a or FIG. 4b shows the change in the electrical conductivity and the change of particle shape at each time by transmission electron microscope in the process of reacting CO (Poly (oxyethylene) Nonylphenyl Ether with CO 2 after adding slaked oil before carbonation reaction. As a result, if surfactant is added before carbonation reaction, the first falling step of electrical conductivity is slightly delayed, and 2) and 3) sections are shortened, so that the chain type calsite in the final falling step (4 in FIG. 4) is colloidal. The particle size of precipitated calcium carbonate is reduced to about 50 nm by being present as a type calsite and adding a surfactant to Ca (OH) 2 particles.
도 5a 또는 도 5b는 탄산화 반응중 전기전도도가 1차 상승시 Poly(oxyethylene) Nonylphenyl Ether를 투입한 후 전기전도도와 시기별 입자형태의 변화를 투과전자현미경으로 분석한 결과로써 계면활성제의 투입이 탄산화 반응에서의 전기전도도의 1차 하강단계에서 1차 상승단계로의 전이를 일으키지 않고 오히려 더욱더 빠르게 전기전도도가 감소되는 것을 알 수 있다. 이러한 전기전도도 곡선의 하강은 조금 더 시간이 지체된 후에 급격히 상승한 후 바로 최종 하강단계를 거쳐서 콜로이트형 칼사이트를 형성하고, 입자크기에 있어서, 최종하강 단계인 3)시기에서의 연쇄형 칼사이트는 2)시기에 핵생성된 연쇄형 칼사이트와 큰 차이가없는 매우 얇은 침상형태를 띄게 되는데, 이는 연쇄형 칼사이트가 거의 결정성장을 하지 못하기 때문에 반응이 종료되어짐에 따라 입자크기가 매우 작은 대략 20㎚의 초미립자를 형성하게 된다.5A or 5B is a result of analyzing the change in the electrical conductivity and the particle shape of each time by the transmission electron microscope after the addition of Poly (oxyethylene) Nonylphenyl Ether when the electrical conductivity is first increased during the carbonation reaction, the surfactant is carbonated It can be seen that the electrical conductivity decreases more rapidly, without causing a transition from the first falling step to the first rising step of the electrical conductivity in the reaction. The descending of the conductivity curve rapidly rises after a little more time, and immediately passes through the final descending step to form a colloidal calsite, and in the particle size, the chain type calsite at the final descending step 3). 2) has a very thin needle-like shape with no significant difference from the nucleated chained calcitic at the time, which has a very small particle size as the reaction ends because the chained calcitic hardly undergoes crystal growth. Ultrafine particles of approximately 20 nm are formed.
도 6a 또는 도 6b는 탄산화 반응 도중 전기전도도의 최종 하강시 Poly(oxyethylene) Nonylphenyl Ether를 투입하였을 때, 반응시간에 따른 전기전도도와 입자형태의 변화를 투과전자현미경으로 관찰한 것으로써 계면활성제를 첨가하지 않은 경우와 비교하여 전기전도도와 종결상의 형태 및 크기에 있어서 큰 변화를 보이지 않는데, 이는 계면활성제의 투입시기가 연쇄형 칼사이트에서 콜로이드형 칼사이트로 전이된 이후 이므로 연쇄형 칼사이트가 콜로이드형 칼사이트로의 전이를 억제하지 못한 것이다.Figure 6a or 6b is when the poly (oxyethylene) Nonylphenyl Ether when the final drop in the electrical conductivity during the carbonation reaction, the change in the conductivity and particle shape according to the reaction time observed by transmission electron microscope to add a surfactant Compared with the case of not, the change in the shape and size of the electrical conductivity and the termination phase does not show a large change. Since the timing of the surfactant is transferred from the chain type calsite to the colloid type calsite, the chain type calsite is colloid type. It did not inhibit the transition to Calsite.
즉, 본 발명은, 탄산화법으로 침강성 탄산칼슘 제조 시 반응 현탁액의 총량은 600㎖로 하고, 침강성 탄산칼슘의 농도는 3.5wt.%, 반응온도는 20 , CO2가스 유속은 500㎖/min, 교반속도는 300rpm으로 하여 탄산화 반응전과 전기전도도의 1차 상승 시기에 비이온계 계면활성제인 Poly(oxyethylene) Nonylphenyl Ether를 첨가시, 전기전도도의 1차 하강단계의 지연으로 연쇄형 칼사이트의 결정성장 구간이 단축되어 분산성이 좋은 50㎚ 이하의 콜로이드형 칼사이트가 제조되는 것이다.That is, in the present invention, when the precipitated calcium carbonate is prepared by carbonation, the total amount of the reaction suspension is 600 ml, the concentration of the precipitated calcium carbonate is 3.5wt.%, The reaction temperature is 20, the CO 2 gas flow rate is 500ml / min, Stirring speed is 300rpm, and crystal growth of the chain type calsite is caused by delay of the first falling step of electrical conductivity when poly (oxyethylene) Nonylphenyl Ether, a nonionic surfactant, is added before the carbonation reaction and at the first rise of electrical conductivity. The interval is shortened to produce a colloidal calsite of 50 nm or less with good dispersibility.
[실시예 2]Example 2
도 7은 20℃에서 탄산화 반응이 종료된 후에 침강성 탄산칼슘 현탁액에 PMAA의 첨가량을 변화시킬 때의 침강성 탄산칼슘의 분산특성을 알아본 결과로써 이때의PMAA의 농도는 침강성 탄산칼슘 고형분 대비 0∼1.0wt.%까지 변화시키고, pH는 9로 조절한다. 이때 pH를 9로 조절한 것은 침강성 탄산칼슘의 등전점인 pH 8.3 부근에서 입자의 응집이 일어나며, 등전점 이상에서는 입자가 음의 하전을 띄게 되어 정전기적 효과에 의해 분산 되기 때문이다. 첫째 제타전위는 -10.5mV이지만 PMAA를 첨가함으로써 제타전위는 음의 값으로 증가되다가 PMAA를 0.8wt.% 이상 첨가한 경우, -17mV로 거의 일정하였고, 입자크기에서 다소의 차이가 있지만 점도도 확연히 감소하며, 침전경계면도 14㎝에서 12㎝로 약간 낮아진다.Figure 7 shows the dispersion characteristics of precipitated calcium carbonate when the amount of PMAA is added to the precipitated calcium carbonate suspension after the carbonation reaction is finished at 20 ° C. Change to wt.% and adjust pH to 9. At this time, the pH was adjusted to 9 because the aggregation of particles occurred near pH 8.3, which is the isoelectric point of precipitated calcium carbonate, and the particles became negatively charged and dispersed by the electrostatic effect. First, the zeta potential is -10.5 mV, but the zeta potential is increased to negative value by adding PMAA, but when 0.8 wt.% Or more of PMAA is added, it is almost constant at -17 mV, and the viscosity is clearly different. And the precipitation boundary surface is slightly lowered from 14 cm to 12 cm.
도 8은 Ca(OH)2에 CO2가스를 불어넣기 전인 Ca(OH)2현탁액에 PMAA를 주입한 후 CO2가스를 불어넣으면서 탄산화 반응을 시킬 때 생성물의 분산특성을 제타전위, 입자크기, 점도 및 침전경계높이로 측정한 것으로써 제타전위는 PMAA의 농도가 0wt.%에서 1wt.%로 증가됨에 따라 -10.5mV에서 -16.5mV로 감소하고, 입자크기는 PMAA 첨가량에 관계없이 150㎚로 일정하며, 전단속도에 따른 점도도 모두 변화가 없으나, 침전경계높이는 14㎝에서 3㎝로 낮아진다.8 is Ca (OH) Loading blowing CO 2 gas to the second before the Ca (OH) after injection of PMAA to the second suspension a dispersion property of the product when the carbonation reaction while blowing a CO 2 gas zeta potential, particle size, As measured by viscosity and precipitation boundary height, the zeta potential decreases from -10.5mV to -16.5mV as the concentration of PMAA increases from 0wt.% To 1wt.%, And the particle size is 150nm regardless of the amount of PMAA added. It is constant and the viscosity does not change according to the shear rate, but the precipitation boundary height is lowered from 14cm to 3cm.
도 9는 전기전도도의 1차 상승 시 PMAA 첨가량에 따른 분산특성의 결과로써 PMAA의 농도가 0wt.%에서 1wt.%로 증가됨에 따라 제타전위는 -10.5mV에서 -22mV로 낮아지고, 입자크기는 550㎚에서 200㎚로 작아진다. 침전경계 높이의 경우 PMAA 농도가 0.6wt.% 이하에서는 2㎝ 정도의 낮은 경계높이를 보이다가 0.6wt.%에서는 12.5㎝를 유지하지만, 그 이상의 농도에서는 다시 2㎝ 정도로 경계높이가 낮아지며, 점도도 PMAA 농도가 0.6wt.%에서 갑자기 낮아진다. 따라서 탄산화 반응전에 계면활성제를 투입한 경우와는 반대로 PMAA 농도가 0.6wt.%에서 침강성 탄산칼슘이 안정하게 분산됨이 확인된다.9 shows that the zeta potential decreases from -10.5 mV to -22 mV as the concentration of PMAA increases from 0 wt.% To 1 wt.% As a result of dispersion characteristics depending on the amount of PMAA added at the first rise in electrical conductivity. It becomes small from 550 nm to 200 nm. In case of the precipitation boundary height, the boundary height of PMAA concentration of 0.6wt.% Or less is about 2cm, and it is maintained at 12.5cm at 0.6wt.%. PMAA concentration suddenly drops at 0.6 wt.%. Therefore, it is confirmed that the precipitated calcium carbonate is stably dispersed at the concentration of 0.6 wt.% PMAA as opposed to the case where the surfactant is added before the carbonation reaction.
도 10은 탄산화 반응중에 전기전도도의 최종하강 시 PMAA의 첨가량에 따른 분산특성의 결과로써 PMAA의 농도가 0wt.%에서 1wt.%로 증가됨에 따라 제타전위는 -10.5mV에서 -15mV로 낮아지고, PMAA 농도에 관계없이 침강성 탄산칼슘의 입자크기 및 침전경계높이는 각각 500㎚ 및 3㎝로 일정하며, 전단속도에 따라 측정한 점도도 거의 일정하다.10 shows that the zeta potential decreases from -10.5mV to -15mV as the concentration of PMAA increases from 0wt.% To 1wt.% As a result of the dispersion characteristics according to the amount of PMAA added during the final drop in electrical conductivity during the carbonation reaction. Regardless of the PMAA concentration, the particle size and precipitation boundary height of the precipitated calcium carbonate were constant at 500 nm and 3 cm, respectively, and the viscosity measured according to the shear rate was also almost constant.
즉, 본 발명은, 탄산화법으로 침강성 탄산칼슘 제조 시 현탁액의 총량은 600㎖로 하고, 침강성 탄산칼슘의 농도 3.5wt.%, 반응온도 20℃, CO2유속 500㎖/ min, 교반속도 300rpm으로 하여 탄산화 반응중 전기전도도의 1차 상승 시 음이온계 계면활성제인 PMAA를 투입하고, 반응초기에 투입된 계면활성제는 Ca(OH)2의 1차 입자를 깨고, 종결상은 입자가 작은 콜로이드형 칼사이트가 합성됨으로서, 반응도중에 투입된 계면활성제는 중간상인 연쇄형 칼사이트에서 콜로이드형 칼사이트로의 전이를 억제하여 침상형 칼사이트가 생성되는 것이다.That is, the present invention, the total amount of the suspension when preparing precipitated calcium carbonate by carbonation method is 600ml, the concentration of precipitated calcium carbonate 3.5wt.%, Reaction temperature 20 ℃, CO 2 flow rate 500ml / min, stirring speed 300rpm The first increase of the electrical conductivity during the carbonation reaction was added PMAA, an anionic surfactant, and the surfactant added at the beginning of the reaction breaks the primary particles of Ca (OH) 2, the final phase is a colloidal calsite with small particles By synthesizing, the surfactant added during the reaction inhibits the transition from the intermediate phase chainsite to colloidal calsite, thereby producing needle-like calsite.
이상에서 설명한 바와 같이, 탄산화 반응중에 비이온계 계면활성제인 Poly(oxyethylene) Nonylphenyl Ether를 투입한 경우, 침강성 탄산칼슘 표면에 계면활성제가 흡착되어 탄산칼슘의 성장을 억제하므로 초미립자의 칼사이트가 생성되나, 음이온 계면활성제인 PMAA를 탄산화 반응중에 투입한 경우, PMAA가 탄산칼슘 종결상의 형상을 콜로이드형에서 침상으로 변화시켜 탄산칼슘의 비표면적을 작게함으로써 분산 최적구간이 달라지게 된다. 따라서, PMAA를 전기전도도의 1차상승시 투입한 경우 탄산칼슘의 비표면적이 계면활성제를 첨가하지 않을 때 보다 상대적으로 작게되어 PMAA의 첨가량을 적게 함으로써 분산 최적조건이 0.8wt.%에서 0.6wt.%로 되게 된다.As described above, when the poly (oxyethylene) Nonylphenyl Ether, which is a nonionic surfactant, is added during the carbonation reaction, since the surfactant is adsorbed on the surface of the precipitated calcium carbonate, the growth of calcium carbonate is suppressed. In the case where PMAA, an anionic surfactant, is added during the carbonation reaction, PMAA changes the shape of the calcium carbonate-terminated phase from colloidal to needle-shaped, so that the specific surface area of calcium carbonate is reduced, thereby making the dispersion optimum interval different. Therefore, when PMAA was added during the first rise in electrical conductivity, the specific surface area of calcium carbonate was relatively smaller than that without adding a surfactant, so that the addition amount of PMAA was decreased so that the optimum dispersion condition was 0.8wt.% To 0.6wt. Will be%.
본 발명은 특정한 실시예에 관련하여 도시하고 설명 하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 정신이나 분야를 벗어나지 않는 한도내에서 본 발명이 다양하게 개량 및 변화될수 있다는 것을 당업계에서 통상의 지식을 가진 자는 용이하게 알수 있음을 밝혀 두고자 한다.While the invention has been shown and described with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention as provided by the following claims. I would like to know that those who have knowledge of this can easily know.
본 발명은 침강성 탄산칼슘(Precipitated Calcium Carbonate)의 제조 시 Poly(oxyethylene) Nonylphenyl Ether 및 PMAA를 탄산화 반응 중에 첨가함으로서 유동성과 분산성의 향상으로 물성증진과 더불어 후처리 공정이 생략함에 따라 분체의 응집방지는 물론 공정단순화로 경제적 및 기술적 이익이 증대되는 효과가 있는 것이다.In the present invention, poly (oxyethylene) Nonylphenyl Ether and PMAA are added during the carbonation reaction in the preparation of precipitated calcium carbonate, thereby improving the fluidity and dispersibility, and thus preventing the agglomeration of powder as the post-treatment process is omitted. Of course, economic and technical benefits are increased by the process simplification.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0021295A KR100500733B1 (en) | 2003-04-04 | 2003-04-04 | Method of Polymer Addition for Particle Shape and Evaluation of Dispersion Stability of Precipitated Calcium Carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0021295A KR100500733B1 (en) | 2003-04-04 | 2003-04-04 | Method of Polymer Addition for Particle Shape and Evaluation of Dispersion Stability of Precipitated Calcium Carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040087055A true KR20040087055A (en) | 2004-10-13 |
KR100500733B1 KR100500733B1 (en) | 2005-07-18 |
Family
ID=37369285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0021295A KR100500733B1 (en) | 2003-04-04 | 2003-04-04 | Method of Polymer Addition for Particle Shape and Evaluation of Dispersion Stability of Precipitated Calcium Carbonate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100500733B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101466225B1 (en) * | 2013-04-24 | 2014-12-10 | 한국지질자원연구원 | Surface Modification of Calcite |
KR20210040616A (en) * | 2019-10-04 | 2021-04-14 | 주식회사 엘지화학 | Manufacturing method of calcite nano particle, manufacturing method of calcite nano particle dispersion, calcite nano particle and calcite nano particle dispersion |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100630390B1 (en) | 2005-08-05 | 2006-10-02 | (주)재인바이오텍 | Water-dispersible pellet feeds and preparation method thereof |
-
2003
- 2003-04-04 KR KR10-2003-0021295A patent/KR100500733B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101466225B1 (en) * | 2013-04-24 | 2014-12-10 | 한국지질자원연구원 | Surface Modification of Calcite |
US9683104B2 (en) | 2013-04-24 | 2017-06-20 | Korea Institute of Geosciences and Mineral Resources (KIGAM) | Surface modification method of calcite |
KR20210040616A (en) * | 2019-10-04 | 2021-04-14 | 주식회사 엘지화학 | Manufacturing method of calcite nano particle, manufacturing method of calcite nano particle dispersion, calcite nano particle and calcite nano particle dispersion |
Also Published As
Publication number | Publication date |
---|---|
KR100500733B1 (en) | 2005-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109456740B (en) | Hydrophobic association polymer modified magnetic nano thickener and preparation method thereof | |
CA2844541C (en) | Process for preparing self-binding pigment particle suspensions | |
US6592837B2 (en) | Narrow size distribution ground calcium carbonate compositions | |
CN1128199C (en) | Preparation process of magnesium hydroxide fire-retarding nanomaterial | |
FI105545B (en) | Precipitated calcium carbonate | |
KR100500733B1 (en) | Method of Polymer Addition for Particle Shape and Evaluation of Dispersion Stability of Precipitated Calcium Carbonate | |
KR20020023213A (en) | Process for the preparation of discrete particles of calcium carbonate | |
WO2011056151A1 (en) | Rutile nanoparticles and synthesis method for obtaining rutile nanoparticles | |
CN108190935B (en) | Preparation method of strip-shaped and sheet-shaped calcium carbonate ultrafine particles | |
CN112239656A (en) | High-temperature-resistant tackifier for drilling fluid of nanofiber-nano calcium carbonate compound and preparation method thereof | |
CN114436305A (en) | Method for controlling thickness of plate-shaped boehmite | |
CN110563015B (en) | Preparation method of light calcium carbonate for food | |
CN116002743B (en) | Hollow tubular nano barium sulfate and preparation method and application thereof | |
CN114523123B (en) | Nanocellulose-based fluorescent silver nanocluster and preparation method and application thereof | |
CN109455750A (en) | A kind of modified abrasive light calcium and preparation method thereof | |
KR100508436B1 (en) | Method of Dispersion Stabilization for Precipitated Calcium Carbonate Suspensions | |
CN118026257B (en) | Preparation method of nano zirconia powder and prepared nano zirconia powder | |
US20220388857A1 (en) | Moderately dispersed nano dy2o3 | |
KR102683897B1 (en) | Manufacturing method of calcite nano particle, manufacturing method of calcite nano particle dispersion, calcite nano particle and calcite nano particle dispersion | |
KR101328495B1 (en) | Anionic polymer surface-treated ceramic particle and method thereof | |
CN116479539B (en) | Preparation method of zinc oxide antibacterial dispersion liquid for high-dispersity polyester fiber | |
CN115028202B (en) | Preparation of high saturation magnetization Mn 3 O 4 Method for magnetic nano rod | |
KR20220097181A (en) | Method for manufacturing zirconium diboride powder having excellent dispersibility and zirconium diboride powder manufactured thereby | |
Gao et al. | Influence of some parameters on the synthesis of ZrO2 nanoparticles by heating of alcohol–aqueous salt solutions | |
CN111742104A (en) | Bimodal precipitated calcium carbonate slurries suitable for paper and board applications, method for their preparation and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130628 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140630 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150619 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160629 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170626 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20180625 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20181226 Year of fee payment: 18 |