KR20040084117A - Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte - Google Patents

Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte Download PDF

Info

Publication number
KR20040084117A
KR20040084117A KR1020030018945A KR20030018945A KR20040084117A KR 20040084117 A KR20040084117 A KR 20040084117A KR 1020030018945 A KR1020030018945 A KR 1020030018945A KR 20030018945 A KR20030018945 A KR 20030018945A KR 20040084117 A KR20040084117 A KR 20040084117A
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium ion
polymer battery
battery
gel
Prior art date
Application number
KR1020030018945A
Other languages
Korean (ko)
Other versions
KR100525278B1 (en
Inventor
김현수
신정한
나성환
문성인
최관영
김상필
Original Assignee
한국전기연구원
새한에너테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원, 새한에너테크 주식회사 filed Critical 한국전기연구원
Priority to KR10-2003-0018945A priority Critical patent/KR100525278B1/en
Publication of KR20040084117A publication Critical patent/KR20040084117A/en
Application granted granted Critical
Publication of KR100525278B1 publication Critical patent/KR100525278B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: Provided is a method for manufacturing a lithium ion polymer battery using a gel polymer electrolyte which has high voltage, high energy and excellent cycle characteristic, and can easily control the physical properties of gel. CONSTITUTION: The method for manufacturing a lithium ion polymer battery comprises injecting an electrolytic liquid-containing precursor into an electrode laminate and then, polymerizing it by heat to obtain a gel-phase electrolyte. The electrode laminate includes a cathode layer(2) comprising an active material capable of lithium ion-intercalation and deintercalation which is deposited on a cathode collector(1); an anode layer(4) comprising an active material capable of lithium ion-intercalation and deintercalation which is deposited on an anode collector(5); and a separator(3) interposed between the cathode layer(2) and the anode layer(4).

Description

겔폴리머전해질을 사용한 리튬이온폴리머전지의 제조방법 {Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte}Method for manufacturing lithium ion polymer battery using gel polymer electrolyte {Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte}

본 발명은 리튬이온폴리머전지의 제조방법에 관한 것으로, 보다 상세하게는 겔폴리머전해질을 사용한 리튬이온폴리머전지의 제조방법에 관한 것이다.The present invention relates to a method for producing a lithium ion polymer battery, and more particularly, to a method for producing a lithium ion polymer battery using a gel polymer electrolyte.

최근, 휴대전화, 노트북 컴퓨터 등 기기의 소형화 및 경량화에 따른 전지의 고성능화가 요구되고 있다. 특히, 기기 본체의 소형화에 대응하기 위하여 전지의 소형화와 용량의 동시 확보, 즉 고에너지밀도화가 요구된다. 리튬이온전지는 고에너지밀도가 실현가능하고, 고전압을 갖고 있어서 연구개발이 활발하게 진행되어 왔다. 특히, 겔폴리머전지는 전해액의 누액이 없을 뿐만 아니라 에너지밀도도 높은 2차전지로서, 다양한 휴대기기에서 에너지원으로 사용이 가능하다.In recent years, there has been a demand for higher performance of batteries due to miniaturization and weight reduction of devices such as mobile phones and notebook computers. In particular, in order to cope with the miniaturization of the main body of the apparatus, miniaturization of the battery and securing of capacity at the same time, that is, high energy density are required. Lithium ion batteries have high energy density and have high voltage, so that research and development has been actively conducted. In particular, the gel polymer battery is a secondary battery having high energy density as well as no electrolyte leakage, and can be used as an energy source in various portable devices.

이러한 리튬이온전지는 리튬이온을 삽입·탈삽입이 가능한 정극과 부극, 그리고 리튬염과 비수계 전해질로 구성되어 있다. 비수계 전해액질을 사용하는 이유는 리튬이 물에 대하여 반응성이 높아서 안정하게 존재할 수 없기 때문이다. 따라서, 리튬전지에는 비수계 전해액이 사용된다. 그러나, 비수계 전해액의 대부분은 유기화합물 액체로 가연성, 악취를 갖고 있는 것이 많고, 누액이나 발화의 위험성도 갖고 있다. 이 때문에 최근에는 안전성을 향상시키기 위하여 비수계 전해질을 겔상 전해질로 대체한 전지가 개발되고 있다. 겔상 전해질에서는 이온전도도 등의 전해액 특성을 유지하면서, 유동성은 현저하게 저하시켜 형상유지성이 있다. 또한, 휘발속도도 억제된다. 따라서 누액이나 발화의 위험성이 낮아진다.The lithium ion battery is composed of a positive electrode, a negative electrode, a lithium salt and a non-aqueous electrolyte capable of inserting and removing lithium ions. The reason why non-aqueous electrolyte is used is that lithium cannot be stably present because of its high reactivity with water. Therefore, a non-aqueous electrolyte is used for a lithium battery. However, most of the non-aqueous electrolytes are organic compound liquids, which are flammable and odorous, and have a risk of leakage and ignition. For this reason, in recent years, in order to improve safety, a battery in which a non-aqueous electrolyte is replaced with a gel electrolyte has been developed. In a gel electrolyte, fluidity | liquidity falls remarkably and maintains shape, maintaining electrolyte solution characteristics, such as ionic conductivity. In addition, the volatilization rate is also suppressed. Therefore, the risk of leakage or fire is lowered.

일반적으로 리튬이온전지에서 정극 또는 부극은 알루미늄 포일(Al Foil) 또는 구리 포일(Cu Foil)과 같은 집전체 위에 정극활물질 또는 부극활물질, 전해질, 도전재료 및 결합제 등을 함유하는 혼합물을 도포하여 제조한다. 겔상 전해질은 전극과 분리막을 적층한 후에 액체전해액, 반응성 모노머 및 중합 개시제를 혼합한 전구체를 주입하고 열중합시키는 방법이 주로 사용되고 있다.In general, in a lithium ion battery, a positive electrode or a negative electrode is prepared by applying a mixture containing a positive electrode active material or a negative electrode active material, an electrolyte, a conductive material, and a binder on a current collector such as aluminum foil (Al foil) or copper foil (Cu Foil). . As the gel electrolyte, a method in which a precursor in which a liquid electrolyte, a reactive monomer, and a polymerization initiator are mixed and then thermally polymerized is laminated after the electrode and the separator are laminated.

그러나, 상기 종래 기술의 문제점은 겔폴리머전해질의 물성 조절이 용이하지 않다는 데에 있다. 즉, 겔폴리머전해질의 기계적 성질과 전기화학적 성질을 조절하려면, 반응성 모노머의 종류와 양을 최적화하고 적절한 중합조건을 설정하여야 한다. 그러나, 기계적 물성이 우수한 모노머는 대부분 전기화학적 특성이 낮고, 전기화학적 특성이 우수한 반응성 모노머는 기계적 특성이 낮기 때문에 그 물성 조절이 용이하지 않다.However, the problem with the prior art is that the physical properties of the gel polymer electrolyte are not easy to control. In other words, in order to control the mechanical and electrochemical properties of the gel polymer electrolyte, it is necessary to optimize the type and amount of the reactive monomer and to set appropriate polymerization conditions. However, since most monomers having excellent mechanical properties have low electrochemical properties, and reactive monomers having excellent electrochemical properties have low mechanical properties, their physical properties are not easily controlled.

본 발명은 상기한 종래의 문제점을 해결하기 위해 안출된 것으로, 고전압 및 고에너지를 가지며 사이클 특성이 우수하면서도 겔의 물성조절이 용이한 겔폴리머전해질을 사용한 리튬이온폴리머전지를 제조하는 방법을 제공하고자 함에 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, to provide a method for producing a lithium ion polymer battery using a gel polymer electrolyte having a high voltage and high energy, excellent cycle characteristics and easy control of the physical properties of the gel The purpose is to.

본 발명의 발명자들은 위에서 서술한 고전압, 고에너지밀도를 갖고, 사이클특성이 우수하고 누액 등의 문제를 최소화한 겔폴리머전해질을 이용한 리튬이온폴리머전지를 얻기 위하여 예의 검토한 결과, 미리 중합시킨 고분자와 반응성 단량체를 이용하여 그 혼합비율을 변화시킴에 의해 다양한 물성을 얻을 수 있다는 것을 발견하였다.The inventors of the present invention intensively studied to obtain a lithium ion polymer battery using a gel polymer electrolyte having the high voltage and high energy density described above, excellent cycle characteristics and minimizing leakage and other problems. It was found that various physical properties can be obtained by changing the mixing ratio by using a reactive monomer.

구체적으로는 정극 및 부극이 리튬이온의 삽입·탈삽입이 가능한 활물질을 함유하는 층을 집접체 위에 도포·압착되고, 양극, 분리막, 음극 순으로 적층한 후에 알루미늄 라미네이트 필름(Al laminate film)에 삽입한다. 그 후에는 액체 전해액, 중합시킨 고분자, 반응성 모노머 또는 매크로모노머, 중합 개시제 등을 혼합한 전구체를 주입하고 진공 봉입한다. 그 후에 60℃~80℃의 항온 챔버에서 최대 1시간 30분 정도까지 유지하여 중합시켜 겔폴리머전해질을 제조한다.Specifically, the positive electrode and the negative electrode are coated and pressed on the collector with a layer containing an active material capable of inserting and removing lithium ions, and laminated in the order of the positive electrode, the separator, and the negative electrode, and then inserted into an aluminum laminate film. do. Thereafter, a precursor mixed with a liquid electrolyte solution, a polymerized polymer, a reactive monomer or macromonomer, a polymerization initiator, and the like is injected and vacuum-sealed. Thereafter, the mixture is maintained in a constant temperature chamber of 60 ° C. to 80 ° C. for up to 1 hour 30 minutes to prepare a gel polymer electrolyte.

본 발명에서는 미리 중합시킨 고분자와 반응성 모노머를 혼합하여 반응성 혼합물로 사용하고 이를 전지에 주입한 후에 네트워크 구조의 겔폴리머를 얻고 있다. 이는 고분자와 반응성 모노머의 종류와 양, 그리고 나중에 추가하는 반응성 개질제의 종류와 양에 따라 그 특성을 자유롭게 조절할 수 있다.In the present invention, a polymer polymerized in advance and a reactive monomer are mixed to use as a reactive mixture and injected into a battery to obtain a gel polymer having a network structure. It can be freely controlled according to the type and amount of the polymer and the reactive monomer, and the type and amount of the reactive modifier to be added later.

도 1a 내지 도 1c는 본 발명에 따른 리튬이온폴리머전지의 제조공정을 설명하기 위한 공정 단면도,1A to 1C are cross-sectional views illustrating a manufacturing process of a lithium ion polymer battery according to the present invention;

도 2는 도 1c의 적층구조를 알루미늄 라미네이트 필름에 삽입한 상태를 도시한 도면,2 is a view showing a state in which the laminated structure of Figure 1c is inserted into an aluminum laminate film,

도 3은 전구체 내에 있는 PMMA IPN(Polymethyle Methacrylate Interpenetrating Polymer Network)의 양과 점도를 측정한 도면,3 is a view measuring the amount and viscosity of PMMA IPN (Polymethyle Methacrylate Interpenetrating Polymer Network) in the precursor,

도 4는 겔폴리머전해질의 교류임피던스를 측정한 도면,4 is a diagram measuring the alternating impedance of the gel polymer electrolyte,

도 5는 겔폴리머전해질의 이온전도도를 여러 온도에 측정한 도면,5 is a view measuring the ion conductivity of the gel polymer electrolyte at various temperatures,

도 6은 주사속도 5 mV/s에서 측정한 겔폴리머전해질의 전기화학적 전위창의 도면,6 is a diagram of an electrochemical potential window of a gel polymer electrolyte measured at a scanning rate of 5 mV / s.

도 7은 0.5 mAcm-2의 전류밀도에서 측정한 겔포리머전해질 채용 전지의 충전 및 방전곡선을 도시한 도면,7 is a diagram showing charge and discharge curves of a gel polymer electrolyte battery measured at a current density of 0.5 mA cm −2 ;

도 8은 20℃에서 측정한 LiCoO2/GPE/흑연 전지의 방전율에 따른 방전곡선을 도시한 도면,8 is a view showing a discharge curve according to a discharge rate of a LiCoO 2 / GPE / graphite battery measured at 20 ° C.

도 9는 1.1 mAcm-2의 전류밀도에 서 측정한 LiCoO2/GPE/흑연 전지의 온도에 따른 방전곡선을 도시한 도면,9 is a graph showing a discharge curve according to temperature of a LiCoO 2 / GPE / graphite battery measured at a current density of 1.1 mAcm −2 .

도 10은 1.1 mAcm-2의 전류밀도에 서 측정한 LiCoO2/GPE/흑연 전지의 사이클특성을 도시한 도면이다.FIG. 10 shows the cycle characteristics of a LiCoO 2 / GPE / graphite battery measured at a current density of 1.1 mAcm −2 .

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

1 : 양극집전체 2 : 양극1: positive electrode current collector 2: positive electrode

3 : 분리막 4 : 음극3: separator 4: cathode

5 : 음극집전체 6 : 외장재(알루미늄라미네이트 필름)5: negative electrode current collector 6: exterior material (aluminum laminate film)

7 : 밀봉부7: sealing part

이하, 본 발명의 바람직한 실시예에 따른 리튬이온폴리머전지의 제조방법에 대하여 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, a method of manufacturing a lithium ion polymer battery according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

먼저, 도 1a에 도시한 바와 같이, 양극활물질로는 LiCoO2, 도전재로는 수퍼 피 블랙(Super P black), 분산제로는 PVDF(PolyVinyliDeneFluoride)를 91 : 6 : 3 (wt%) 비율로 혼합하여, 알루미늄 포일(Al foil) 또는 구리 포일(Cu foil)로 이루어진 양극 집전체(1) 위에 도포한 후에 건조, 압착하여 양극(2)을 제조하였다. 상기 양극활물질은 리튬이온의 삽입·탈삽입이 가능한 천이금속산화물, 리튬과 천이금속의 복합산화물 등을 사용할 수 있다.First, as shown in FIG. 1A, LiCoO 2 as a cathode active material, Super P black as a conductive material, and PVDF (PolyVinyliDeneFluoride) as a dispersant are mixed at a ratio of 91: 6: 3 (wt%). Then, the positive electrode 2 was manufactured by coating on the positive electrode current collector 1 made of aluminum foil or copper foil, followed by drying and pressing. The positive electrode active material may be a transition metal oxide capable of inserting and deintercalating lithium ions, a composite oxide of lithium and a transition metal, and the like.

또, 도 1b에 도시한 바와 같이, 음극활물질로는 MCF(Milled Carbon Fiber), 도전재로는 수퍼 피 블랙(Super P black), 분산제로는 PVDF를 90 : 2 : 8 (wt%) 비율로 혼합하여, 구리 포일(Cu foil)로 이루어진 음극 집전체(5) 위에 도포한 후에건조, 압착하여 음극(4)을 제조하였다. 상기 음극활물질은 리튬이온의 삽입·탈삽입이 가능한 흑연이나 탄소계를 사용한다.In addition, as shown in FIG. 1B, MCF (Milled Carbon Fiber) as a negative electrode active material, Super P black as a conductive material, and PVDF as a dispersant at a ratio of 90: 2: 8 (wt%). After mixing, after coating on the negative electrode current collector (5) made of a copper foil (Cu foil) was dried, pressed to prepare a negative electrode (4). As the negative electrode active material, graphite or carbon-based material capable of inserting and removing lithium ions is used.

그후, 상기 제조한 양극 집전체(1)와 양극(2)의 양극부와, 상기 제조한 음극 집전체(5)와 양극(4)의 음극부를, 도 1c에 도시한 바와 같이 양극(2)과 음극(4)이 마주보게 위치시키고 그 사이에 분리막(Polyethylene 또는 Polypropylene)(3)을 개재시키는 방식으로 적층한 후에, 도 2에 도시한 바와 같이 상기 적층구조를 전지의 외장재로서 알루미늄 라미네이트 필름(Al laminate film)(6)에 삽입한다. 여기서, 알루미늄 라미네이트 필름(6)은 PET 및 Nylon 등으로 된 플라스틱층과 알루미늄층 및 접착제층으로 이루어져 있다.After that, the positive electrode portions of the positive electrode current collector 1 and the positive electrode 2 prepared above, and the negative electrode portions of the negative electrode current collector 5 and the positive electrode 4 prepared above, are shown in FIG. 1C. After the cathode 4 and the cathode 4 face each other and are laminated in such a manner as to sandwich a separator (Polyethylene or Polypropylene) 3 therebetween, the laminated structure is used as an exterior material of a battery as shown in FIG. 2. Al laminate film) (6). Here, the aluminum laminate film 6 is composed of a plastic layer made of PET, Nylon, and the like, an aluminum layer, and an adhesive layer.

겔폴리머전해질을 제조하기 위한 전구체로는 액체전해액, PMMA IPN(Polymethyle Methacrylate Interpenetrating Polymer Network), 반응성 개질제, 중합 개시제로 구성되었다. PMMA IPN는 60℃에서 PMMA (polymethylmethacrylat, Mw = 56,000)에 MMA(methylmethacrylat)를 소량씩 적하시킨 후, 상온에서 24시간 동안 질소가스로 퍼지(purge)하면서 수분과 잔존산소를 제거하여 제조한다. 전해액으로는 1M LiPF6/ EC+DEC (5 + 5 vol%), 반응성 개질제로는 HDDA(Hexanediol diacrylate), 중합 개시제로는 BPO (Benzoyl Peroxide)를 사용하였다. 전구체에서 액체전해액과 경화성 혼합물(IPN + 반응성 개질제 + 중합 개시제)의 혼합비율은 95:5 (vol%)로 하였다.Precursors for preparing a gel polymer electrolyte were composed of a liquid electrolyte, a polymethyle methacrylate interpenetrating polymer network (PMMA IPN), a reactive modifier, and a polymerization initiator. PMMA IPN is prepared by dropping a small amount of MMA (methylmethacrylat) in PMMA (polymethylmethacrylat, Mw = 56,000) at 60 ℃, purge with nitrogen gas at room temperature for 24 hours to remove water and residual oxygen. 1M LiPF 6 / EC + DEC (5 + 5 vol%) as the electrolyte, HDDA (Hexanediol diacrylate) as the reactive modifier, BPO (Benzoyl Peroxide) was used as the polymerization initiator. The mixing ratio of the liquid electrolyte and the curable mixture (IPN + reactive modifier + polymerization initiator) in the precursor was 95: 5 (vol%).

전구체를 전극이 삽입된 알루미늄 라미네이트 필름(6) 내부로 일정액 주입한후에 진공상태에서 상기 알루미늄 라미네이트 필름(6)의 밀봉부(7)에 일정 압력과 열을 가하여 봉입한다. 그 후에 약 3일간 상온에서 보관하여 전구체가 분리막과 전극내부로 충분히 함침된 후에 중합을 실시한다. 중합은 온도가 일정하게 유지되는 항온 챔버를 이용하였고, 온도는 80℃에서 60분간 실시하였다.After the precursor is injected into the aluminum laminate film 6 into which the electrode is inserted, a predetermined pressure and heat are applied to the sealing portion 7 of the aluminum laminate film 6 under vacuum. After that, the mixture is stored at room temperature for about 3 days, and the polymerization is performed after the precursor is sufficiently impregnated into the separator and the electrode. The polymerization was performed using a constant temperature chamber in which the temperature was kept constant, and the temperature was performed at 80 ° C. for 60 minutes.

도 3은 전구체 내에 있는 PMMA IPN(Polymethyle Methacrylate Interpenetrating Polymer Network)의 양과 점도를 측정한 결과를 나타내는 것이다. 30 vol%의 반응성 혼함물을 함유한 전구체의 점도는 약 21mPas이었으며, 점도는 전해액 양이 증가하면 감소하였다. 전구체가 전극 내부와 분리막에 함침되려면 점도가 낮아야 한다. 5 vol%의 반응성 혼합물을 함유한 전구체의 점도는 5.6 mPas로써, 액체전해액의 점도와 거의 동등하였다.Figure 3 shows the results of measuring the amount and viscosity of PMMA IPN (Polymethyle Methacrylate Interpenetrating Polymer Network) in the precursor. The viscosity of the precursor containing 30 vol% of the reactive admixture was about 21 mPas, and the viscosity decreased as the amount of electrolyte increased. The precursor must be low in viscosity to be impregnated into the electrode and into the separator. The viscosity of the precursor containing 5 vol% of the reactive mixture was 5.6 mPas, which was almost equivalent to that of the liquid electrolyte.

도 4는 겔폴리머전해질의 교류임피던스를 측정한 결과를 나타내는 것이다. 스펙트라는 직선만이 관찰되고 있으며, 이는 저항과 커패시터가 직렬로 연결된 등가회로로 구성되어 있음을 의미한다. 실수축 교점은 겔폴리머전해질의 저항을 의미하며, 겔폴리머전해질의 두께와 단면적을 이용하여 구한 이온전도도는 5.8 x 10-3S/cm이었다.Figure 4 shows the results of measuring the alternating impedance of the gel polymer electrolyte. Spectra is only a straight line, which means that the resistor and capacitor consist of an equivalent circuit connected in series. The real axis intersection means the resistance of the gel polymer electrolyte, and the ion conductivity obtained using the thickness and the cross-sectional area of the gel polymer electrolyte was 5.8 x 10 -3 S / cm.

도 5는 겔폴리머전해질의 이온전도도와 온도와의 관계를 나타내는 것이다. 20℃에서의 이온전도도는 5.8 x 10-3S/cm이었으며, 온도가 높을수록 이온전도도는 증가하고, 온도가 낮을수록 이온전도도는 감소하였다. 그러나, -20℃에서도 1.4 x 10-3S/cm로 상당히 높은 이온전도도를 나타내었다. 이는 종래의 겔폴리머전해질보다 이온전도도가 높은 값으로, 고온 및 저온에서의 방전특성이 우수할 것이 예상된다.5 shows the relationship between the ion conductivity and the temperature of the gel polymer electrolyte. The ion conductivity at 20 ° C was 5.8 x 10 -3 S / cm, and the higher the temperature, the higher the ion conductivity, and the lower the temperature, the lower the ion conductivity. However, even at -20 ° C., 1.4 × 10 −3 S / cm showed considerably high ion conductivity. This value is higher than the conventional gel polymer electrolyte, and is expected to have excellent discharge characteristics at high and low temperatures.

도 6은 주사속도 5 mV/s에서 측정한 겔폴리머전해질의 사이클 전압전류측정분석(Cyclic voltammetry)의 결과를 나타내고 있다. 동 도면에서 알 수 있듯이 4.5 V vs. Li/Li+까지의 전압범위에서 전류피크가 관찰되지 않고 있다. 이는 전기화학적으로 안정함을 나타내는 것이다.FIG. 6 shows the results of cyclic voltammetry of the gel polymer electrolyte measured at a scanning speed of 5 mV / s. As can be seen from the figure, 4.5 V vs. No current peak is observed in the voltage range up to Li / Li + . This indicates that it is electrochemically stable.

도 7은 0.5 mAcm-2의 전류밀도에 서 측정한 겔포리머전해질 채용 전지의 충전 및 방전곡선을 나타내는 것이다. 충전은 4.2V까지 하였으며, 방전은 3V까지 전류밀도는 1.5 mA/cm2으로 하였다. 초충전에서는 부동태피막의 형성에 따른 비가역용량이 발생하였으나, 도 7에서와 같이 그 이후에는 충방전효율은 거의 100%였다. 또한 방전시에 약간의 전압강하만이 관찰되어 내부저항이 낮음을 알 수 있다.FIG. 7 shows the charge and discharge curves of a gel polymer electrolyte-applied battery measured at a current density of 0.5 mAcm −2 . Charge was up to 4.2V, discharge was up to 3V, and current density was 1.5 mA / cm 2 . In the super charge, irreversible capacity was generated due to the formation of the passivation film, but as shown in FIG. 7, the charge and discharge efficiency was almost 100%. In addition, only a slight voltage drop was observed during discharge, indicating that the internal resistance was low.

도 8은 20℃에서 측정한 LiCoO2/GPE/흑연 전지의 방전율에 따른 방전곡선을 나타내는 것이다. 약 5vol%의 반응성 혼합물을 함유한 리튬이온폴리머전지의 0.2C에서의 용량은 약 448mAh이다. 이를 기준으로 했을 때 1.0C 방전율에서의 용량은 약 366mAh로 약 82%를 나타내었다.8 shows a discharge curve according to the discharge rate of a LiCoO 2 / GPE / graphite battery measured at 20 ° C. The capacity at 0.2 C of a lithium ion polymer battery containing about 5 vol% of a reactive mixture is about 448 mAh. Based on this, the capacity at the 1.0C discharge rate was about 366mAh, representing about 82%.

도 9는 1.1 mAcm-2의 전류밀도에 서 측정한 LiCoO2/GPE/흑연 전지의 온도에 따른 방전곡선을 나타내는 것이다. 약 5vol%의 반응성 혼합물을 함유한 리튬2차전지의 20℃에서의 용량은 약 414mAh이다. 이를 기준으로 했을 때 -10℃에서의 용량은 약 355mAh로 약 86%를 나타내었다.Figure 9 shows the discharge curve according to the temperature of the LiCoO 2 / GPE / graphite battery measured at a current density of 1.1 mAcm -2 . The capacity at 20 ° C. of a lithium secondary battery containing about 5 vol% of a reactive mixture is about 414 mAh. Based on this, the capacity at −10 ° C. was about 355 mAh, representing about 86%.

도 10은 1.1 mAcm-2의 전류밀도에 서 측정한 LiCoO2/GPE/흑연 전지의 사이클특성을 나타내는 것이다. 60회 사이클이 경과하여도 초기 용량을 거의 유지하고 있을 정도로 사이클 특성은 양호하다. 이는 PMMA IPN을 채용한 겔폴리머전지가 종래 겔을 이용하는 전지 보다 특성이 우수하다는 것을 나타내고 있다.FIG. 10 shows cycle characteristics of a LiCoO 2 / GPE / graphite battery measured at a current density of 1.1 mAcm −2 . The cycle characteristics are good so that the initial capacity is almost maintained even after 60 cycles have elapsed. This shows that gel polymer batteries employing PMMA IPN have superior properties than batteries using conventional gels.

한편, 본 발명은 전술한 전형적인 바람직한 실시예들에만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 개량, 변경, 대체 또는 부가하여 실시할 수 있는 것임은 당해 기술분야에 통상의 지식을 가진 자라면 용이하게 이해할 수 있을 것이다. 이러한 개량, 변경, 대체 또는 부가에 의한 실시가 이하의 첨부된 특허청구범위의 범주에 속하는 것이라면 그 기술사상 역시 본 발명에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the above-described typical preferred embodiments, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions are common in the art Those who have knowledge will easily understand. If the implementation by such improvement, change, replacement or addition falls within the scope of the appended claims, the technical idea should also be regarded as belonging to the present invention.

이상 상세히 설명한 바와 같이 본 발명에 따르면, 겔폴리머전해질의 이온전도도는 약 10-3S/cm 대로 높으며, 전해액이 겔상으로 이루어져 누액의 염려가 없다는 특징을 갖는다. 또한, 반응성 마크로머와 반응성 개질제의 혼합비를 조절함으로써, 이온전도도나 기계적 특성 등의 물성을 변화시킬 수 있다. 뿐만 아니라 생산공정의 단순화로 생산성이 높다는 효과도 있다.As described in detail above, according to the present invention, the ion conductivity of the gel polymer electrolyte is as high as about 10 −3 S / cm, and the electrolyte solution is formed in a gel form, so that there is no fear of leakage. In addition, by adjusting the mixing ratio of the reactive macromer and the reactive modifier, physical properties such as ion conductivity and mechanical properties can be changed. In addition, the productivity is high due to the simplification of the production process.

Claims (6)

리튬이온을 삽입·탈삽입할 수 있는 활물질을 함유하는 양극층 및 음극층이 각각 양극집전체 및 음극집전체 위에 놓여 있고 상기 양측층과 음극층 사이에 분리막이 개재되어 있는 전극 적층구조에, 전해액을 포함하는 전구체를 주입한 후에 열중합시켜 겔상 전해질로 만드는 것을 특징으로 하는 리튬이온폴리머전지의 제조방법.An electrolyte solution in an electrode laminated structure in which a positive electrode layer and a negative electrode layer containing an active material capable of inserting and removing lithium ions are placed on a positive electrode current collector and a negative electrode current collector, respectively, and a separator is interposed between the both side layers and the negative electrode layer. Method of producing a lithium ion polymer battery, characterized in that the injection into a precursor comprising a thermal electrolyte to make a gel electrolyte. 제 1항에 있어서,The method of claim 1, 상기 전극 적층구조를 알루미늄 라미네이트 필름에 삽입하고, 이미 중합시킨 고분자와 반응성 모노머를 혼합한 IPN(Interpenetrating Polymer Network)과 전해액를 포함한 전구체를 주입한 후, 가열하고 중합시켜 고분자화하여 겔폴리머전해질을 만드는 것을 특징으로 하는 리튬이온폴리머전지의 제조방법.Inserting the electrode laminated structure into an aluminum laminate film, injecting a precursor including an IPN (Interpenetrating Polymer Network) mixed with a polymer and a reactive monomer already polymerized and an electrolyte solution, followed by heating, polymerization to polymerize to make a gel polymer electrolyte. Method for producing a lithium ion polymer battery characterized by. 제 2항에 있어서,The method of claim 2, 상기 전구체에는 IPN(Interpenetrating Polymer Network), 그리고 반응성 개질제를 첨가하여, 이들의 조성비를 변화시켜 상기 겔폴리머전해질의 물성을 변화시키는 것을 특징으로 하는 리튬이온폴리머전지의 제조방법.IPN (Interpenetrating Polymer Network), and a reactive modifier is added to the precursor, the method of manufacturing a lithium ion polymer battery, characterized in that by changing their composition ratio to change the physical properties of the gel polymer electrolyte. 제 3항에 있어서,The method of claim 3, wherein 상기 IPN(Interpenetrating Polymer Network)에는 중합이 된 아크릴레이트기를 갖는 고분자와 반응이 가능한 아크릴레이트(acrylate) 모노머를 하나 또는 2개 이상 사용하며, 상기 반응성 개질제로는 HDDA(Hexanediol diacrylate)와 트리에틸렌글리콜디메타크릴레이트(Triethyleneglycoldimehtacrylate), 테트라에틸렌글리콜디아크릴레이트(Tetraethyleneglycoldiacrylate) 등 반응기를 2개 이상 갖는 아크릴레이트를 적어도 1개 사용하는 것을 특징으로 하는 리튬이온폴리머전지의 제조방법.In the IPN (Interpenetrating Polymer Network), one or two or more acrylate (acrylate) monomers capable of reacting with a polymer having a polymerized acrylate group are used. The reactive modifiers include HDDA (Hexanediol diacrylate) and triethylene glycol di. A method for producing a lithium ion polymer battery, characterized in that at least one acrylate having two or more reactors is used, such as methacrylate (Triethyleneglycoldimehtacrylate) and tetraethyleneglycoldiacrylate. 제 3항에 있어서,The method of claim 3, wherein 상기 전구체는 액체전해액과 경화성 혼합물로 이루어지며, 그 비율이 80:20 (vol%)에서 99:1 (vol%)까지의 범위에 있는 것을 특징으로 하는 리튬이온폴리머전지의 제조방법.The precursor is composed of a liquid electrolyte and a curable mixture, the ratio of the method of producing a lithium ion polymer battery, characterized in that in the range of 80:20 (vol%) to 99: 1 (vol%). 제 5항에 있어서,The method of claim 5, 상기 경화성 혼합물은 고분자, 반응성 모노머, 반응성 개질제 및 중합 개시제를 포함하는 것을 특징으로 하는 리튬이온폴리머전지의 제조방법.The curable mixture is a method for producing a lithium ion polymer battery, characterized in that it comprises a polymer, a reactive monomer, a reactive modifier and a polymerization initiator.
KR10-2003-0018945A 2003-03-26 2003-03-26 Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte KR100525278B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0018945A KR100525278B1 (en) 2003-03-26 2003-03-26 Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0018945A KR100525278B1 (en) 2003-03-26 2003-03-26 Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte

Publications (2)

Publication Number Publication Date
KR20040084117A true KR20040084117A (en) 2004-10-06
KR100525278B1 KR100525278B1 (en) 2005-11-02

Family

ID=37367731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0018945A KR100525278B1 (en) 2003-03-26 2003-03-26 Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte

Country Status (1)

Country Link
KR (1) KR100525278B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332406C (en) * 2005-06-30 2007-08-15 天津大学 Electrolyte for liquid Ta electrolytic condenser and producing method thereof
WO2013094929A1 (en) * 2011-12-19 2013-06-27 (주)이엠티 Apparatus for manufacturing positive active material precursors for lithium secondary battery
KR20140092158A (en) 2013-01-15 2014-07-23 주식회사 아모그린텍 Polymer Electrolyte, Lithium Secondary Battery Using the Same and Manufacturing Method thereof
WO2014116085A1 (en) * 2013-01-28 2014-07-31 주식회사 엘지화학 Lithium secondary battery
US9882239B2 (en) 2013-01-28 2018-01-30 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including the same
US10135092B2 (en) 2013-01-15 2018-11-20 Amogreentech Co., Ltd. Polymer electrolyte, lithium secondary battery using same, and method for manufacturing lithium secondary battery
CN114300737A (en) * 2021-12-29 2022-04-08 惠州亿纬锂能股份有限公司 Preparation method of in-situ curing battery and lithium ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640937B1 (en) 2009-11-13 2016-07-20 삼성에스디아이 주식회사 Rechargeable lithium battery
KR101576151B1 (en) 2013-07-12 2015-12-09 주식회사 아모그린텍 Complex fibrous separator, manufacturing method thereof and secondary battery using the same
WO2014112776A1 (en) * 2013-01-15 2014-07-24 주식회사 아모그린텍 Polymer electrolyte, lithium secondary battery using same, and method for manufacturing lithium secondary battery
CN109119694A (en) * 2018-07-26 2019-01-01 上海大学 Lithium battery containing Multi-network
KR20200099822A (en) 2019-02-15 2020-08-25 주식회사 유뱃 Electrochemical device and manufacturing method thereof
KR20200099891A (en) 2019-02-15 2020-08-25 주식회사 유뱃 Electrochemical device and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332406C (en) * 2005-06-30 2007-08-15 天津大学 Electrolyte for liquid Ta electrolytic condenser and producing method thereof
WO2013094929A1 (en) * 2011-12-19 2013-06-27 (주)이엠티 Apparatus for manufacturing positive active material precursors for lithium secondary battery
KR101355185B1 (en) * 2011-12-19 2014-01-28 (주)이엠티 Apparatus for preparing precursor of cathode material for lithium secondary battery
KR20140092158A (en) 2013-01-15 2014-07-23 주식회사 아모그린텍 Polymer Electrolyte, Lithium Secondary Battery Using the Same and Manufacturing Method thereof
US10135092B2 (en) 2013-01-15 2018-11-20 Amogreentech Co., Ltd. Polymer electrolyte, lithium secondary battery using same, and method for manufacturing lithium secondary battery
WO2014116085A1 (en) * 2013-01-28 2014-07-31 주식회사 엘지화학 Lithium secondary battery
US9882239B2 (en) 2013-01-28 2018-01-30 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including the same
US10297860B2 (en) 2013-01-28 2019-05-21 Lg Chem, Ltd. Lithium secondary battery
CN114300737A (en) * 2021-12-29 2022-04-08 惠州亿纬锂能股份有限公司 Preparation method of in-situ curing battery and lithium ion battery

Also Published As

Publication number Publication date
KR100525278B1 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
CN110380111B (en) Dual in-situ polymerization preparation method of solid-state battery containing solid-state electrolyte
JP5262175B2 (en) Negative electrode and secondary battery
KR100833808B1 (en) Polymer electrolyte battery and method of producing same
JP5000408B2 (en) Gel polymer electrolyte containing diacrylamide-based polymerizable substance and electrochemical element containing the same
KR101322694B1 (en) Electrolyte for electrochemical device, the preparation method thereof and electrochemical device comprising the same
KR20180083272A (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
CN110994015A (en) Polycarbonate cross-linked solid polymer electrolyte and application thereof
JP4193481B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
KR20190065157A (en) Electrolyte composition for lithium secondary battery and lithium secondary battery comprising the same
KR100525278B1 (en) Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
CN114292484B (en) Interpenetrating network structure layer, in-situ preparation method and application thereof
CN114335716A (en) In-situ polymerization solid-state battery with electrolyte of multilayer structure and preparation method thereof
CN114122512B (en) Solid electrolyte, method for preparing the same, and solid secondary battery comprising the same
JP2001357883A (en) Gel-like electrolytic solution and lithium battery using the same
KR20140097025A (en) High voltage lithium secondary battery
CN113161608A (en) Polymer solid electrolyte with excellent performance at room temperature and application thereof in lithium ion battery
CN112563563A (en) Composite solid electrolyte, solid battery and preparation method thereof
CN107851845B (en) Battery cell including gel electrolyte component in hole of separator constituting electrode assembly
KR20030002072A (en) Lithium battery and process for preparing the same
CN110611120A (en) Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same
JP2002305031A (en) Gelatinous polyelectrolyte, lithium battery adopting the same and their manufacturing methods
WO2023108322A1 (en) Solid electrolyte having mechanical gradient and preparation method therefor and application thereof
JP2023512820A (en) Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
JP2013152849A (en) Lithium-ion secondary battery subjected to aging treatment and method for manufacturing the same
KR20230018141A (en) Composition for solid electrolyte and methods for manufacturing all-solid state secondary battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120926

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131002

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151006

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee