WO2013094929A1 - Apparatus for manufacturing positive active material precursors for lithium secondary battery - Google Patents

Apparatus for manufacturing positive active material precursors for lithium secondary battery Download PDF

Info

Publication number
WO2013094929A1
WO2013094929A1 PCT/KR2012/010822 KR2012010822W WO2013094929A1 WO 2013094929 A1 WO2013094929 A1 WO 2013094929A1 KR 2012010822 W KR2012010822 W KR 2012010822W WO 2013094929 A1 WO2013094929 A1 WO 2013094929A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
active material
lithium secondary
secondary battery
outlets
Prior art date
Application number
PCT/KR2012/010822
Other languages
French (fr)
Korean (ko)
Inventor
강동현
노환철
Original Assignee
(주)이엠티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이엠티 filed Critical (주)이엠티
Publication of WO2013094929A1 publication Critical patent/WO2013094929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus for producing a precursor of a cathode active material for a lithium secondary battery, and more particularly to an apparatus for producing a precursor of a cathode active material by a coprecipitation method from a mixed metal salt solution of a multicomponent.
  • Lithium secondary batteries are being divided into two markets: portable devices such as mobile phones and laptops, and high capacity and high performance devices.
  • the performance of the lithium secondary battery depends, among other things, on the performance of the material for the positive electrode and the negative electrode.
  • the performance of the positive electrode material in order to improve the performance of the positive electrode material, a study of a new positive electrode active material and a method of manufacturing the positive electrode active material have been conducted.
  • the positive electrode active material examples include LiCoO 2 , LiNiO 2 , LiMnO 2, and LiNi x Mn y Co z O 2 .
  • LiNi x Mn y Co z O 2 is a cathode active material that is most recently used because it can almost compensate for the disadvantages of the other three materials.
  • a method for producing a positive electrode active material for a lithium secondary battery there are a solid phase synthesis method, a sol gel synthesis method, and a coprecipitation method.
  • the coprecipitation method is a representative synthesis method of the wet manufacturing method, similar to the sol gel synthesis method, and the final positive electrode active material powder is prepared by precipitating chlorides and nitrides containing raw materials as hydrates in a basic coprecipitation solution and calcining. .
  • the fundamental problem is the reduction of energy density in the application of secondary batteries due to the decrease in the tap density. Is needed.
  • the particle size is distributed too wide, which has a bad effect on the yield of the final secondary battery product.
  • the present invention has an object of solving the above technical problem, and an object thereof is to provide a precursor manufacturing apparatus capable of separating precursors of a cathode active material for lithium secondary batteries according to particle size.
  • An apparatus for preparing a precursor of a cathode active material for a lithium secondary battery includes a reaction tank for generating a precursor by reacting a mixed metal salt solution with a chelating agent and an aqueous basic solution; And a separation tank for separating the precursor generated from the reaction tank according to the size of the particles.
  • the separation tank the inlet for receiving the precursor generated and introduced from the reaction tank; And a plurality of outlets for separating and discharging the precursor according to the size of the particles.
  • the inlet is preferably located at the bottom of the separation tank.
  • each of the plurality of outlets are disposed at a position higher than the inlet, the precursor of the largest particles are discharged from the outlet disposed in the lowest, the precursor of the smallest particles are discharged from the outlet disposed in the highest It is done.
  • each of the plurality of outlets according to the precursor supply rate from the inlet, opening and closing regulator that can adjust the opening and closing degree of the plurality of outlets; characterized in that it comprises a.
  • the precursor of the positive electrode active material for lithium secondary batteries can be separated according to the size of the particles.
  • FIG. 1 is a conceptual view of a precursor manufacturing apparatus of a conventional cathode active material for lithium secondary batteries.
  • FIG. 2 is a conceptual diagram of a precursor manufacturing apparatus of a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
  • LiNi x Mn y Co z O 2 which is an example of the positive electrode active material for a lithium (Li) secondary battery, using the coprecipitation method. That is, a method of synthesizing a precursor to which lithium salt is added before the calcination process by adding lithium salt in the liquid phase reaction process and a method of synthesizing by further mixing lithium salt in the calcination process to obtain a precursor except lithium.
  • the precursor of the cathode active material for a rechargeable lithium battery according to one embodiment of the present invention means a precursor other than lithium.
  • FIG. 1 shows the precursor manufacturing apparatus of the conventional positive electrode active material for lithium secondary batteries.
  • nickel (Ni), cobalt (Co), and manganese (Mn) are supplied from a supply pump (not shown) through a supply pipe (not shown).
  • the ternary mixed liquid containing) is introduced into the reaction tank 10 containing the chelating agent and the basic aqueous solution, and stirred by the stirrer 11.
  • the chelating agent any one selected from the group consisting of an aqueous ammonia solution, an aqueous ammonium sulfate solution and a mixture thereof can be used.
  • examples of the basic aqueous solution may be any one selected from the group consisting of NaOH, KOH and mixtures thereof.
  • the mixed metal salt solution and the chelating agent reacts at the top of the reactor (10) to produce primary particles
  • the produced primary particles of the reactor (10) At the bottom, it reacts with the basic aqueous solution to produce secondary particles.
  • the generated secondary particles are finally raised to the upper portion of the reaction vessel 10 by vortexing, and are extracted from the outlet 12 provided in the reaction vessel 10 by overflow.
  • the precursor extracted from the reactor 10 is in a form in which a solution component and a particle (powder) component by coprecipitation reaction are mixed.
  • the precursor thus extracted is stored and used in the reservoir 20.
  • the storage tank 20 is present with precursors of various particle sizes together with the solution component. That is, the dispersion of the precursor particles in the fluid state is large in size. Particularly, fine particles of 3 ⁇ m or less are present in the precursor particles of the storage tank 20, and when such fine particles are finally produced by firing, the cathode active material acts as a large inhibitory factor in the production yield.
  • Figure 2 shows a precursor manufacturing apparatus of a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
  • the reaction tank 10 for producing a product by reacting a mixed metal salt solution with a chelating agent and a basic aqueous solution
  • Separation tank 30 is further included between the storage tank 20 for storing the precursor particles containing the solution component generated from the reaction tank (10).
  • Separation tank 30 in the present invention is capable of separating the precursor generated from the reaction tank 10 according to the size of the particles.
  • the separation tank includes an inlet 31 for receiving the precursor generated and introduced from the reactor 10 and a plurality of outlets 32a and 32b for separating and discharging the precursor according to the particle size.
  • the inlet 31 is characterized in that located in the lower portion of the separation tank (30). More preferably, the inlet 31 is located on the bottom surface of the separation tank (30).
  • the movement of the precursor in the fluid state from the reaction tank 10 to the separation tank 30 will be described in more detail.
  • the solution including the precursor having completed the reaction by the flow of the liquid described above in the description of FIG. 1 is continuously placed in the upper portion of the reaction vessel 10.
  • the position where the solution containing the precursor of the reaction is placed in the reaction vessel 10 is placed in a very shallow depth of 10 ⁇ 30mm from the surface of the solution.
  • the reaction is continuously completed by overflow.
  • the solution containing the precursor is to be introduced into the separation tank (30).
  • the height of the solution containing the precursor in the separation tank 30 can be seen by the principle of the pressure is equal to or lower than the height of the solution in the separation tank (30).
  • the plurality of outlets 32a and 32b of the separation tank 30 are disposed at a higher position than the inlet 31 and have the largest particles at the outlet 32a disposed at the lowest point. It is characterized in that the precursor of is discharged, the precursor of the smallest particles is discharged from the outlet 32b disposed at the highest point. That is, the precursor containing the solution introduced from the lower portion of the separation tank 30 has different heights in the separation tank 30 according to its specific gravity, and by installing outlets 32a and 32b for each height The precursor containing the solution for each particle size can be separated. Although only two outlets 32a and 32b are exemplarily illustrated in FIG. 2, a larger number of outlets may be installed.
  • the precursor of the small particles in the upper outlet 32b of the separation tank 30, the precursor of the large particles are discharged in the lower outlet 32a.
  • each of the plurality of outlets 32a and 32b includes an opening and closing regulator (not shown) that can adjust the opening and closing degree of the plurality of outlets 32a and 32b according to the precursor supply speed from the inlet 31 and the like. It is done. Specifically, the supply speed can be known by measuring the flow rate by installing a flow rate meter (not shown) in the inlet. In addition, a measuring instrument (not shown) may be installed in the separation vessel 30 so that the precursor of the appropriate height is maintained in the separation vessel 30. A ruler is displayed on the lower surface of 30), an image is acquired by a camera installed on the opposite surface, and the height of the precursor in the infusion state can be easily measured by image processing. By measuring the precursor feed rate from the inlet 31 and the precursor height in the separation vessel 30, the opening and closing regulator can be opened and closed appropriately to obtain a precursor having a desired particle size for each outlet 32a, 32b.
  • each of the plurality of outlets 32a and 32b is connected to the reservoirs 20a and 20b to finally produce precursors for each particle size.
  • the precursor of the sap state can be separated by particle size, and only particles having a predetermined size or more among the separated particles can be used for the production of the positive electrode active material, and the yield and cost of the positive electrode active material can be expected.
  • different types of secondary batteries may be supplied according to precursor particle sizes, and in the case of precursors having a predetermined size or less, re-precipitation may be performed by re-supplying to the reaction tank 10 to allow reuse.
  • the precursor manufacturing apparatus of the cathode active material for a lithium secondary battery according to the preferred embodiment of the present invention, it can be seen that the precursors can be efficiently and simply separated by particle size.
  • the present invention can be used in the precursor manufacturing apparatus of the positive electrode active material for lithium secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An apparatus for manufacturing positive active material precursors for a lithium secondary battery according to an embodiment of the present invention comprises: a reactor in which a mixed metal salt solution is reacted with a chelating agent and an alkaline aqueous solution to form precursors; and a separator which is capable of separating the precursors generated in the reactor by particle size. The separator comprises: an inlet to which the precursors that are generated by and flow from the reactor are supplied; and multiple outlets which discharge the precursors separately by particle size. According to the embodiment of the present invention, positive active material precursors for a lithium secondary battery can be separated by particle size.

Description

리튬 이차 전지용 양극 활물질의 전구체 제조 장치Precursor manufacturing apparatus of the positive electrode active material for lithium secondary batteries
본 발명은 리튬 이차 전지용 양극 활물질의 전구체 제조 장치에 관한 것으로, 더욱 상세하게는 다성분의 혼합 금속염 용액으로부터 공침법에 의해 양극 활물질의 전구체를 제조하기 위한 장치에 관한 것이다.The present invention relates to an apparatus for producing a precursor of a cathode active material for a lithium secondary battery, and more particularly to an apparatus for producing a precursor of a cathode active material by a coprecipitation method from a mixed metal salt solution of a multicomponent.
리튬 이차 전지는 휴대폰 및 노트북과 같은 휴대용 기기용 시장과 고용량 및 고성능 기기용 시장으로 양분되어 개발되고 있다.Lithium secondary batteries are being divided into two markets: portable devices such as mobile phones and laptops, and high capacity and high performance devices.
이러한, 리튬 이차 전지의 성능은 무엇보다도 양극 및 음극용 물질의 성능에 의해 좌우된다. 특히 양극 물질의 성능 향상을 위해 새로운 양극 활물질의 연구 및 양극 활물질의 제조 방법에 대한 연구가 행해져 오고 있다.The performance of the lithium secondary battery depends, among other things, on the performance of the material for the positive electrode and the negative electrode. In particular, in order to improve the performance of the positive electrode material, a study of a new positive electrode active material and a method of manufacturing the positive electrode active material have been conducted.
양극 활물질로는 LiCoO2, LiNiO2, LiMnO2 및 LiNixMnyCozO2 등을 예로 들 수 있을 것이다. 이 중 LiNixMnyCozO2는 다른 세가지 물질의 단점을 거의 보완할 수 있어 최근에 가장 많이 이용되고 있는 양극 활물질이다.Examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2, and LiNi x Mn y Co z O 2 . Among them, LiNi x Mn y Co z O 2 is a cathode active material that is most recently used because it can almost compensate for the disadvantages of the other three materials.
리튬 이차 전지용 양극 활물질의 제조 방법으로는 고상합성법, 졸겔합성법, 공침법이 있다. 이 중 공침법은 졸겔 합성법과 마찬가지로 습식 제조법의 대표적인 합성법으로, 원료 물질을 함유한 염화물, 질화물 등을 염기성의 공침액 내에서 수화물로 침전시키고, 하소하는 것에 의해 최종적인 양극 활물질 분말을 제조하게 된다. 공침법에 의해 LiNixMnyCozO2를 제조할 경우, 근본적인 문제점으로 탭 밀도 저하에 따라 이차 전지 적용시 에너지 밀도 감소를 들 수 있는 데, 이 문제의 개선을 위해 입자 크기 및 형상의 제어가 필요하다.As a method for producing a positive electrode active material for a lithium secondary battery, there are a solid phase synthesis method, a sol gel synthesis method, and a coprecipitation method. The coprecipitation method is a representative synthesis method of the wet manufacturing method, similar to the sol gel synthesis method, and the final positive electrode active material powder is prepared by precipitating chlorides and nitrides containing raw materials as hydrates in a basic coprecipitation solution and calcining. . In the case of manufacturing LiNi x Mn y Co z O 2 by coprecipitation, the fundamental problem is the reduction of energy density in the application of secondary batteries due to the decrease in the tap density. Is needed.
그러나, 종래의 공침법에 의해 제조된 전구체의 경우, 입자 크기가 너무 넓게 분포되어 있어, 최종적인 이차 전지 제품의 수율에도 나쁜 영향을 초래하였다.However, in the case of the precursor prepared by the conventional coprecipitation method, the particle size is distributed too wide, which has a bad effect on the yield of the final secondary battery product.
본 발명은 전술한 바와 같은 기술적 과제를 해결하는 데 목적이 있는 발명으로서, 리튬 이차 전지용 양극 활물질의 전구체를 입자의 크기에 따라 분리 가능한전구체 제조 장치를 제공하는 것에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has an object of solving the above technical problem, and an object thereof is to provide a precursor manufacturing apparatus capable of separating precursors of a cathode active material for lithium secondary batteries according to particle size.
본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치는, 혼합 금속염 용액을 킬레이팅제 및 염기성 수용액과 반응시켜 전구체를 생성하는 반응조; 및 상기 반응조로부터 생성된 전구체를 입자의 크기에 따라 분리하는 분리조;를 포함한다. An apparatus for preparing a precursor of a cathode active material for a lithium secondary battery according to an exemplary embodiment of the present invention includes a reaction tank for generating a precursor by reacting a mixed metal salt solution with a chelating agent and an aqueous basic solution; And a separation tank for separating the precursor generated from the reaction tank according to the size of the particles.
구체적으로 상기 분리조는, 상기 반응조로부터 생성되어 유입되는 전구체를 공급받는 유입구; 및 전구체를 입자의 크기에 따라 분리 배출하는 다수의 배출구;를 포함하는 것을 특징으로 한다. 또한, 상기 유입구는, 상기 분리조의 하부에 위치하는 것이 바람직하다.Specifically, the separation tank, the inlet for receiving the precursor generated and introduced from the reaction tank; And a plurality of outlets for separating and discharging the precursor according to the size of the particles. In addition, the inlet is preferably located at the bottom of the separation tank.
아울러 상기 다수의 배출구는, 상기 유입구 보다는 높은 위치에 배치되어 있고, 가장 낮은 곳에 배치된 배출구에서 가장 큰 입자의 전구체가 배출되고, 가장 높은 곳에 배치된 배출구에서 가장 작은 입자의 전구체가 배출되는 것을 특징으로 한다. 또한, 상기 다수의 배출구 각각은, 상기 유입구로부터의 전구체 공급 속도에 따라, 상기 다수의 배출구의 개폐 정도를 조절 가능한 개폐 조절기;를 포함하는 것을 특징으로 한다.In addition, the plurality of outlets are disposed at a position higher than the inlet, the precursor of the largest particles are discharged from the outlet disposed in the lowest, the precursor of the smallest particles are discharged from the outlet disposed in the highest It is done. In addition, each of the plurality of outlets, according to the precursor supply rate from the inlet, opening and closing regulator that can adjust the opening and closing degree of the plurality of outlets; characterized in that it comprises a.
본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치에 따르면, 리튬 이차 전지용 양극 활물질의 전구체를 입자의 크기에 따라 분리 가능하다.According to the precursor manufacturing apparatus of the positive electrode active material for lithium secondary batteries according to the preferred embodiment of the present invention, the precursor of the positive electrode active material for lithium secondary batteries can be separated according to the size of the particles.
도 1은 종래의 리튬 이차 전지용 양극 활물질의 전구체 제조 장치의 개념도.1 is a conceptual view of a precursor manufacturing apparatus of a conventional cathode active material for lithium secondary batteries.
도 2는 본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치의 개념도.2 is a conceptual diagram of a precursor manufacturing apparatus of a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명의 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치에 대해 상세히 설명하기로 한다.Hereinafter, a precursor manufacturing apparatus of a cathode active material for a rechargeable lithium battery according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 하기의 실시예는 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리 범위를 제한하거나 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술 분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리 범위에 속하는 것으로 해석된다.The following examples of the present invention are intended to embody the present invention, but not to limit or limit the scope of the present invention. From the detailed description and examples of the present invention, those skilled in the art to which the present invention pertains can easily be interpreted as belonging to the scope of the present invention.
공침법을 사용하여 리튬(Li) 이차 전지용 양극 활물질의 일실시예인 LiNixMnyCozO2을 합성하는 방법에는 크게 두 가지가 있다. 즉, 액상 반응 공정 중에 리튬염을 첨가하여 소성 공정 전에 리튬염이 첨가된 전구체를 합성하는 방법과 리튬을 제외한 전구체를 얻어 소성 공정시 리튬염을 추가로 혼합하여 합성하는 방법이다. 본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체는 리튬을 제외한 전구체를 의미한다.There are two main methods for synthesizing LiNi x Mn y Co z O 2 , which is an example of the positive electrode active material for a lithium (Li) secondary battery, using the coprecipitation method. That is, a method of synthesizing a precursor to which lithium salt is added before the calcination process by adding lithium salt in the liquid phase reaction process and a method of synthesizing by further mixing lithium salt in the calcination process to obtain a precursor except lithium. The precursor of the cathode active material for a rechargeable lithium battery according to one embodiment of the present invention means a precursor other than lithium.
먼저, 도 1은 종래의 리튬 이차 전지용 양극 활물질의 전구체 제조 장치를 나타낸다. First, FIG. 1 shows the precursor manufacturing apparatus of the conventional positive electrode active material for lithium secondary batteries.
도 1로부터 알 수 있는 바와 같이, 종래의 리튬 이차 전지용 양극 활물질의 전구체 제조 장치의 경우, 공급 펌프(미도시)로부터 공급관(미도시)을 통해 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 삼원계 혼합액이 킬레이팅제 및 염기성 수용액을 포함하고 있는 반응조(10)로 투입되어, 교반기(11)에 의해 교반되게 된다. 킬레이팅제로는 암모니아 수용액, 황산 암모늄 수용액 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다. 또한, 염기성 수용액의 예로는 NaOH, KOH 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다.As can be seen from FIG. 1, in the case of a precursor manufacturing apparatus of a conventional cathode active material for a lithium secondary battery, nickel (Ni), cobalt (Co), and manganese (Mn) are supplied from a supply pump (not shown) through a supply pipe (not shown). The ternary mixed liquid containing) is introduced into the reaction tank 10 containing the chelating agent and the basic aqueous solution, and stirred by the stirrer 11. As the chelating agent, any one selected from the group consisting of an aqueous ammonia solution, an aqueous ammonium sulfate solution and a mixture thereof can be used. In addition, examples of the basic aqueous solution may be any one selected from the group consisting of NaOH, KOH and mixtures thereof.
반응조(10) 내에서의 공침 반응의 메커니즘을 살펴 보면, 반응조(10)의 상부에서 혼합 금속염 용액과 킬레이팅제가 반응하여 1차 입자를 생성하게 되고, 생성된 1차 입자는 반응조(10)의 하부에서 염기성 수용액과 반응하여 2차 입자를 생성하게 된다. 생성된 2차 입자는 와류에 의해 최종적으로 반응조(10)의 상부로 올라오게 되고, 오버플로우(Overflow)에 의해 반응조(10)에 구비된 출구(12)로부터 추출되게 된다. 반응조(10)로부터 추출된 전구체는 용액 성분과 공침 반응에 의한 입자(파우더) 성분이 섞여 있는 형태가 된다. 이렇게 추출된 전구체는 저장조(20)에 저장되어 사용되게 된다.Looking at the mechanism of the coprecipitation reaction in the reactor (10), the mixed metal salt solution and the chelating agent reacts at the top of the reactor (10) to produce primary particles, the produced primary particles of the reactor (10) At the bottom, it reacts with the basic aqueous solution to produce secondary particles. The generated secondary particles are finally raised to the upper portion of the reaction vessel 10 by vortexing, and are extracted from the outlet 12 provided in the reaction vessel 10 by overflow. The precursor extracted from the reactor 10 is in a form in which a solution component and a particle (powder) component by coprecipitation reaction are mixed. The precursor thus extracted is stored and used in the reservoir 20.
종래의 리튬 이차 전지용 양극 활물질의 전구체 제조 장치의 경우, 저장조(20)에는 용액 성분과 더불어 다양한 입자 크기의 전구체가 존재하게 된다. 즉, 수액 상태의 전구체 입자가 크기 면에서 분산이 크다. 특히, 저장조(20)의 전구체 입자 중에는 3㎛ 이하의 미립자도 존재하고, 이러한 미립자의 경우 최종적으로 소성에 의해 양극 활물질을 제조하게 될 경우, 생산 수율에 커다란 저해 요소로 작용하게 된다.In the case of a precursor manufacturing apparatus of a conventional cathode active material for a lithium secondary battery, the storage tank 20 is present with precursors of various particle sizes together with the solution component. That is, the dispersion of the precursor particles in the fluid state is large in size. Particularly, fine particles of 3 μm or less are present in the precursor particles of the storage tank 20, and when such fine particles are finally produced by firing, the cathode active material acts as a large inhibitory factor in the production yield.
도 2는 본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치를 나타낸다.Figure 2 shows a precursor manufacturing apparatus of a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
도 2로부터 알 수 있는 바와 같이 본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치는, 혼합 금속염 용액을 킬레이팅제 및 염기성 수용액과 반응시켜 생성물을 생성하는 반응조(10)와 반응조(10)로부터 생성된 용액 성분을 포함한 전구체 입자를 저장하는 저장조(20)와의 사이에 분리조(30)를 더 포함하는 것을 특징으로 한다. 본 발명에서의 분리조(30)는 반응조(10)로부터 생성된 전구체를 입자의 크기에 따라 분리 가능하다.As can be seen from Figure 2 the precursor manufacturing apparatus of the positive electrode active material for a lithium secondary battery according to a preferred embodiment of the present invention, the reaction tank 10 for producing a product by reacting a mixed metal salt solution with a chelating agent and a basic aqueous solution and Separation tank 30 is further included between the storage tank 20 for storing the precursor particles containing the solution component generated from the reaction tank (10). Separation tank 30 in the present invention is capable of separating the precursor generated from the reaction tank 10 according to the size of the particles.
바람직한 일실시예에 따른 분리조는, 반응조(10)로부터 생성되어 유입되는 전구체를 공급받는 유입구(31) 및 전구체를 입자의 크기에 따라 분리 배출하는 다수의 배출구(32a, 32b)를 구비한다. 구체적으로, 유입구(31)는 분리조(30)의 하부에 위치한 것을 특징으로 한다. 더욱 바람직하게는 유입구(31)는 분리조(30)의 바닥면에 위치하는 것을 특징으로 한다.The separation tank according to the preferred embodiment includes an inlet 31 for receiving the precursor generated and introduced from the reactor 10 and a plurality of outlets 32a and 32b for separating and discharging the precursor according to the particle size. Specifically, the inlet 31 is characterized in that located in the lower portion of the separation tank (30). More preferably, the inlet 31 is located on the bottom surface of the separation tank (30).
본 발명의 바람직한 일실시예에 따른 리튬 이차 전지용 양극 활물질의 전구체 제조 장치에 있어, 반응조(10)로부터 분리조(30)로의 수액 상태의 전구체의 이동에 대해 좀 더 상세하게 설명하기로 한다. 양극 활물질용 전구체의 공침 반응의 경우, 도 1의 설명시 상술한 액체의 흐름에 의해 반응이 완료된 전구체를 포함한 용액이 반응조(10) 내의 윗부분에 연속적으로 놓이게 된다. 구체적으로, 반응이 완료된 전구체를 포함한 용액이 반응조(10) 내에 놓이는 위치는 반응조(10)의 크기 등에 의해 달라지기는 하지만, 용액의 수면으로부터 10~30mm의 아주 얕은 깊이에 놓이게 된다. 이러한 위치, 예를 들면 용액의 수면으로부터 20mm 깊이에 출구(12)를 두고, 출구(12)로부터 낮은 위치로 연결관(40)을 설치하게 되면, 오버플로우(overflow)에 의해 연속적으로 반응이 완료된 전구체를 포함한 용액이 분리조(30)로 유입되게 되는 것이다. 이때 분리조(30)에서의 전구체를 포함한 용액의 높이는 분리조(30)에서의 용액의 높이와 같거나 낮은 것을 압력의 원리에 의해 알 수 있다.In the precursor manufacturing apparatus of the positive electrode active material for a lithium secondary battery according to an embodiment of the present invention, the movement of the precursor in the fluid state from the reaction tank 10 to the separation tank 30 will be described in more detail. In the case of the coprecipitation reaction of the precursor for the positive electrode active material, the solution including the precursor having completed the reaction by the flow of the liquid described above in the description of FIG. 1 is continuously placed in the upper portion of the reaction vessel 10. Specifically, the position where the solution containing the precursor of the reaction is placed in the reaction vessel 10, but varies depending on the size of the reaction vessel 10, etc., is placed in a very shallow depth of 10 ~ 30mm from the surface of the solution. In this position, for example, having the outlet 12 at a depth of 20 mm from the surface of the solution and installing the connecting pipe 40 from the outlet 12 to a lower position, the reaction is continuously completed by overflow. The solution containing the precursor is to be introduced into the separation tank (30). At this time, the height of the solution containing the precursor in the separation tank 30 can be seen by the principle of the pressure is equal to or lower than the height of the solution in the separation tank (30).
본 발명의 바람직한 일실시예에 따른 분리조(30)의 다수의 배출구(32a, 32b)는, 유입구(31) 보다는 높은 위치에 배치되어 있고, 가장 낮은 곳에 배치된 배출구(32a)에서 가장 큰 입자의 전구체가 배출되고, 가장 높은 곳에 배치된 배출구(32b)에서 가장 작은 입자의 전구체가 배출되는 것을 특징으로 한다. 즉, 분리조(30)의 하부로부터 유입된 용액이 포함된 전구체는 그 비중에 따라 분리조(30) 내의 각기 다른 높이를 점하게 되고, 각 높이별로 배출구(32a, 32b)를 설치하는 것에 의해 입자 크기별로 용액이 포함된 전구체를 분리 가능하게 되는 것이다. 비록 도 2에서는 각 높이별로 배출구(32a, 32b)를 두개만 예시적으로 도시했을 지라도 보다 많은 수량의 배출구를 설치할 수 있음은 물론이다.The plurality of outlets 32a and 32b of the separation tank 30 according to the preferred embodiment of the present invention are disposed at a higher position than the inlet 31 and have the largest particles at the outlet 32a disposed at the lowest point. It is characterized in that the precursor of is discharged, the precursor of the smallest particles is discharged from the outlet 32b disposed at the highest point. That is, the precursor containing the solution introduced from the lower portion of the separation tank 30 has different heights in the separation tank 30 according to its specific gravity, and by installing outlets 32a and 32b for each height The precursor containing the solution for each particle size can be separated. Although only two outlets 32a and 32b are exemplarily illustrated in FIG. 2, a larger number of outlets may be installed.
즉, 본 발명의 바람직한 일실시예에 따르면, 분리조(30)의 위쪽 배출구(32b)에서는 작은 입자의 전구체가, 아래쪽 배출구(32a)에서는 큰 입자의 전구체가 배출되게 된다. That is, according to one preferred embodiment of the present invention, the precursor of the small particles in the upper outlet 32b of the separation tank 30, the precursor of the large particles are discharged in the lower outlet 32a.
아울러, 다수의 배출구 각각(32a, 32b)은, 유입구(31)로부터의 전구체 공급 속도 등에 따라, 다수의 배출구(32a, 32b)의 개폐 정도를 조절 가능한 개폐 조절기(미도시)를 포함하는 것을 특징으로 한다. 구체적으로 유입구 내에 유속 측정기(미도시)를 설치하여 유속을 측정하는 것에 의해 공급 속도를 알 수 있다. 또한 적절한 높이의 전구체가 분리조(30) 내에 유지되도록, 수액 상태의 전구체의 높이를 측정기(미도시)를 분리조(30) 내에 설치할 수 있다, 높이 측정기의 일실시예로는, 분리조(30)의 하면에 눈금자를 표시하고, 반대면에 설치된 카메라에 의해 영상을 획득하고, 영상 처리에 의해 수액 상태의 전구체의 높이를 용이하게 측정 가능하다. 유입구(31)로부터의 전구체 공급 속도 및 분리조(30)내의 전구체 높이를 측정하여, 개폐 조절기를 적절하게 개폐하여 각 배출구(32a, 32b)별로 희망하는 입자 크기의 전구체를 얻을 수 있게 된다. In addition, each of the plurality of outlets 32a and 32b includes an opening and closing regulator (not shown) that can adjust the opening and closing degree of the plurality of outlets 32a and 32b according to the precursor supply speed from the inlet 31 and the like. It is done. Specifically, the supply speed can be known by measuring the flow rate by installing a flow rate meter (not shown) in the inlet. In addition, a measuring instrument (not shown) may be installed in the separation vessel 30 so that the precursor of the appropriate height is maintained in the separation vessel 30. A ruler is displayed on the lower surface of 30), an image is acquired by a camera installed on the opposite surface, and the height of the precursor in the infusion state can be easily measured by image processing. By measuring the precursor feed rate from the inlet 31 and the precursor height in the separation vessel 30, the opening and closing regulator can be opened and closed appropriately to obtain a precursor having a desired particle size for each outlet 32a, 32b.
또한, 다수의 배출구 각각(32a, 32b)은 저장조(20a, 20b)에 연결되어, 최종적으로 입자 크기별로 전구체를 생산할 수 있게 되는 것이다. 이렇게 수액 상태의 전구체를 입자 크기별로 분리하고, 분리된 입자 중 일정 크기 이상의 입자만을 양극 활물질의 제조에 사용할 수 있게 되어, 양극 활물질의 수율 및 비용의 절감을 기대할 수 있다. 그리고, 전구체 입자 크기별로 이차 전지의 종류를 달리해 공급할 수 있어, 일정 크기 이하의 전구체의 경우, 반응조(10)로 재공급하여 재공침 반응을 시키는 것에 의해 재사용을 도모할 수도 있다.In addition, each of the plurality of outlets 32a and 32b is connected to the reservoirs 20a and 20b to finally produce precursors for each particle size. Thus, the precursor of the sap state can be separated by particle size, and only particles having a predetermined size or more among the separated particles can be used for the production of the positive electrode active material, and the yield and cost of the positive electrode active material can be expected. In addition, different types of secondary batteries may be supplied according to precursor particle sizes, and in the case of precursors having a predetermined size or less, re-precipitation may be performed by re-supplying to the reaction tank 10 to allow reuse.
상술한 바와 같이 본 발명의 바람직한 일실시예의 리튬 이차 전지용 양극 활물질의 전구체 제조 장치에 따르면, 전구체를 입자 크기별로 효율적이고, 간단하게 분리 가능함을 알 수 있다.As described above, according to the precursor manufacturing apparatus of the cathode active material for a lithium secondary battery according to the preferred embodiment of the present invention, it can be seen that the precursors can be efficiently and simply separated by particle size.
본 발명은 리튬 이차 전지용 양극 활물질의 전구체 제조 장치에 사용될 수 있다.The present invention can be used in the precursor manufacturing apparatus of the positive electrode active material for lithium secondary batteries.

Claims (5)

  1. 혼합 금속염 용액을 킬레이팅제 및 염기성 수용액과 반응시켜 전구체를 생성하는 반응조; 및A reactor for reacting the mixed metal salt solution with the chelating agent and the basic aqueous solution to generate a precursor; And
    상기 반응조로부터 생성된 전구체를 입자의 크기에 따라 분리하는 분리조;를 포함하는 리튬 이차 전지용 양극 활물질의 전구체 제조 장치.Preparatory apparatus for a cathode active material for a lithium secondary battery comprising a; separation tank for separating the precursor generated from the reaction vessel according to the size of the particle.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 분리조는,The separation tank,
    상기 반응조로부터 생성되어 유입되는 전구체를 공급받는 유입구; 및An inlet receiving the precursor generated and introduced from the reactor; And
    전구체를 입자의 크기에 따라 분리 배출하는 다수의 배출구;를 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 전구체 제조 장치.And a plurality of outlets for separating and discharging the precursor according to the size of the particles.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 유입구는, 상기 분리조의 하부에 위치한 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 전구체 제조 장치.The inlet is a precursor manufacturing apparatus of a cathode active material for a lithium secondary battery, characterized in that located below the separation tank.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 다수의 배출구는,The plurality of outlets,
    상기 유입구 보다는 높은 위치에 배치되어 있고, 가장 낮은 곳에 배치된 배출구에서 가장 큰 입자의 전구체가 배출되고, 가장 높은 곳에 배치된 배출구에서 가장 작은 입자의 전구체가 배출되는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 전구체 제조 장치.It is disposed at a position higher than the inlet, the precursor of the largest particles are discharged from the outlet disposed in the lowest, the precursor of the smallest particles is discharged from the outlet disposed in the highest discharged Precursor production apparatus.
  5. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 다수의 배출구 각각은,Each of the plurality of outlets,
    상기 유입구로부터의 전구체 공급 속도에 따라, 상기 다수의 배출구의 개폐 정도를 조절 가능한 개폐 조절기;를 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 전구체 제조 장치.According to the precursor supply rate from the inlet, the opening and closing regulator that can adjust the opening and closing degree of the plurality of outlets; precursor manufacturing apparatus of a positive electrode active material for a lithium secondary battery comprising a.
PCT/KR2012/010822 2011-12-19 2012-12-13 Apparatus for manufacturing positive active material precursors for lithium secondary battery WO2013094929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0137593 2011-12-19
KR1020110137593A KR101355185B1 (en) 2011-12-19 2011-12-19 Apparatus for preparing precursor of cathode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2013094929A1 true WO2013094929A1 (en) 2013-06-27

Family

ID=48668762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010822 WO2013094929A1 (en) 2011-12-19 2012-12-13 Apparatus for manufacturing positive active material precursors for lithium secondary battery

Country Status (2)

Country Link
KR (1) KR101355185B1 (en)
WO (1) WO2013094929A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220289591A1 (en) * 2019-12-20 2022-09-15 Lg Chem, Ltd. Precursor for Positive Electrode Active Material, Manufacturing Method Thereof, And Manufacturing Apparatus Thereof
KR102474563B1 (en) * 2020-11-19 2022-12-06 (주)에코프로머티리얼즈 Manufacturing apparatus of positive electrode active agent precursor for lithium secondary battery and method for preparing using the same
KR20240129935A (en) * 2023-02-21 2024-08-28 (주)포스코퓨처엠 Apparatus and method of preparing precursor of cathode material for lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182512A (en) * 1990-12-21 1993-07-23 Imperial Chem Ind Plc <Ici> Solid electrolyte, manufacture thereof and electric apparatus containing solid electrolyte
KR20040084117A (en) * 2003-03-26 2004-10-06 한국전기연구원 Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
KR100887186B1 (en) * 2007-09-18 2009-03-10 한국화학연구원 Apparatus and method for preparing precursor of cathode material for lithium secondary battery
KR20110063388A (en) * 2009-12-04 2011-06-10 주식회사 루트제이제이 Active material precursor, active material for secondary lithium battery cathode including nanotube-shaped carbon, manufacturing method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182512A (en) * 1990-12-21 1993-07-23 Imperial Chem Ind Plc <Ici> Solid electrolyte, manufacture thereof and electric apparatus containing solid electrolyte
KR20040084117A (en) * 2003-03-26 2004-10-06 한국전기연구원 Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
KR100887186B1 (en) * 2007-09-18 2009-03-10 한국화학연구원 Apparatus and method for preparing precursor of cathode material for lithium secondary battery
KR20110063388A (en) * 2009-12-04 2011-06-10 주식회사 루트제이제이 Active material precursor, active material for secondary lithium battery cathode including nanotube-shaped carbon, manufacturing method for the same

Also Published As

Publication number Publication date
KR101355185B1 (en) 2014-01-28
KR20130070328A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP7018077B2 (en) Reaction device and method
CN104201367B (en) High density small particle nickel cobalt manganese hydroxide and preparation method thereof
KR101275845B1 (en) Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
CN107293689B (en) Positive electrode active material precursor for lithium secondary battery, positive electrode active material produced therefrom, and lithium secondary battery comprising same
CN103943847A (en) Method for preparing nickel-cobalt-manganese ternary material precursor
CN108269970A (en) A kind of new type lithium ion battery gradient anode material and preparation method thereof
CN103098271B (en) For the anode active material and preparation method thereof of lithium secondary battery
KR20120098631A (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
CN110462895A (en) Lithium metal composite oxide power with suppressed production gas
CN111087031B (en) Preparation method of coated positive electrode material
CN109962237B (en) Nickel composite hydroxide and preparation method thereof
JP7127036B2 (en) Method for producing cathode material and reactor suitable for carrying out said method
CN110402507B (en) Method for coating oxide material
WO2013094929A1 (en) Apparatus for manufacturing positive active material precursors for lithium secondary battery
CN110112386B (en) Preparation method of high-nickel ternary positive electrode precursor
JP2006265086A (en) Method and apparatus for manufacturing nickel hydroxide particles
KR20090084762A (en) Carbonate composite and process for porducing thereof
CA2927350A1 (en) Improved lithium metal oxide cathode materials and method to make them
CN109411749B (en) Large-particle cobaltosic oxide doped with Al and preparation method thereof
CN105304865A (en) Preparation method of spherical nickel, cobalt and aluminum hydroxide precursor
CN110364727A (en) A kind of nickel cobalt aluminium ternary material precursor of spherical superficial multi-channel and its preparation method and application
CN109354077A (en) A kind of ternary precursor and preparation method thereof of polycrystalline form
WO2013094928A1 (en) Apparatus for manufacturing precursor of cathode active material for lithium secondary battery
CN102070179B (en) Method for preparing spherical carbonate ternary precursor
KR102149491B1 (en) Method for producing lithium ion cell active material particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858944

Country of ref document: EP

Kind code of ref document: A1