KR20040076658A - Low Pass filter using PBG Structure and microwave and millimeter - wave Package which contains Low Pass Filter - Google Patents
Low Pass filter using PBG Structure and microwave and millimeter - wave Package which contains Low Pass Filter Download PDFInfo
- Publication number
- KR20040076658A KR20040076658A KR1020030011969A KR20030011969A KR20040076658A KR 20040076658 A KR20040076658 A KR 20040076658A KR 1020030011969 A KR1020030011969 A KR 1020030011969A KR 20030011969 A KR20030011969 A KR 20030011969A KR 20040076658 A KR20040076658 A KR 20040076658A
- Authority
- KR
- South Korea
- Prior art keywords
- pass filter
- low pass
- package
- signal line
- pbg
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/075—Ladder networks, e.g. electric wave filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/212—Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/08—Microstrips; Strip lines
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
본 발명은 마이크로파 및 밀리미터파 회로 응용을 위한 다층의 소형 광대역 저지 여파기와 이러한 여파기를 내장한 초고주파 및 밀리미터파 대역 패키지에 관한 것이다.The present invention relates to a multi-layer, compact wideband jersey filter for microwave and millimeter wave circuit applications and to ultra-high and millimeter wave band packages incorporating such filters.
1) PBG 구조1) PBG structure
최근에 주목을 받고 있는 분야 중의 하나인 포토닉 밴드갭(PBG: Photonic Bandgap) 구조는 광학 분야에서 처음으로 연구가 시작되었으나, 최근에는 마이크로파 및 밀리미터파 응용 등 활용분야가 확대되고 있다. 최근에는 이러한 PBG 구조를 사용하여 고효율 안테나 및 전력증폭기, 여파기 등을 구현한 다양한 연구 결과들이 보고되고 있다.Photonic Bandgap (PBG) structure, one of the recently attracting attention, has been studied for the first time in the field of optics, but recently, applications such as microwave and millimeter wave applications are expanding. Recently, various research results have been reported that implement a high efficiency antenna, a power amplifier, and a filter using such a PBG structure.
최근에 대역저지 여파기로 제안된 PBG 구조는 신호선의 파동 임피던스를 주기적으로 변화시킨 구조, 유전체 기판에 구멍을 뚫어서 결함모드가 생성되도록 한 구조, 접지면 식각을 통한 마이크로 스트립 구조들이 제안되었다. 그러나 지금까지 제안된 이러한 PBG 구조들은 광대역 특성을 얻거나 실장(packaging) 할 때에 많은 단점을 지니고 있다. 첫째, 신호선의 파동 임피던스를 주기적으로 변화시킨 1차원 구조는 20 dB이상의 저지 대역 특성을 얻기 위하여 5차 이상의 셀수로 구현되어야 하기 때문에 크기가 커지는 문제점과 함께 광대역화의 어려움이 있다. 둘째, 접지면 식각을 통해 구현된 PBG 구조는 기구에 삽입될 경우 기구의 접지면 형성으로 인하여 실장시 접지면 식각의 효과가 유용하지 못하기 때문에 이러한 효과를 고려한 기구 설계가 필요한 단점이 있다. 마지막으로 지금까지 제안된 일반적인 PBG 구조들은 설계 주파수에 따라 주기가 결정되면서 큰 크기로 구현되며, 광대역을 위하여다른 주기의 PBG 구조들을 중첩시키는 경우에도 크기가 커지는 단점이 있다.Recently, the PBG structure proposed as a band-stop filter has been proposed in which a wave impedance of a signal line is periodically changed, a structure in which a defect mode is generated by drilling a hole in a dielectric substrate, and a microstrip structure through ground plane etching are proposed. However, these proposed PBG structures have many disadvantages when obtaining or packaging broadband characteristics. First, since the one-dimensional structure in which the wave impedance of the signal line is periodically changed has to be implemented by the number of cells of 5th order or more in order to obtain a stopband characteristic of 20 dB or more, there is a problem that the size becomes large and the bandwidth is difficult. Second, the PBG structure implemented through the ground plane etching has a disadvantage in that the design of the device in consideration of such an effect is necessary because the effect of the ground plane etching during mounting is not useful due to the formation of the ground plane of the device. Lastly, the conventional PBG structures proposed so far have a large size with periods determined according to the design frequency, and have a disadvantage in that the PBG structures overlap with PBG structures having different periods for wideband.
2) 저역 통과 여파기를 내장한 초고주파 및 밀리미터파 대역 패키지2) Ultra-high and millimeter-wave band packages with low pass filter
최근 초고주파 및 밀리미터파 시스템의 발달과 함께 MMIC (Monolithic Microwave Integrated Circuit)을 실장하기 위한 패키지 개발의 중요성이 증대되고 있다. 이러한 패키지는 칩과 시스템 사이의 전기적, 열적인 통로로서의 기능과 함께 외부환경으로부터 내부 회로를 보호해야 한다. 특히, 전기적인 특성에 있어서 패키지는 최소 간섭(minimum interference)을 위한 전자기적 차폐(electromagnetic shielding) 기능뿐만 아니라 적은 삽입손실과 반사손실 특성이 요구된다. 따라서 이러한 요구 조건들을 충족시키기 위하여 최근에 고주파에서 손실 특성이 우수한 LTCC(Low Temperature Co-fired Ceramic) 기술을 이용한 세라믹 패키지에 대한 연구 개발이 활발하게 진행되고 있다. 그러나 현재 상용화되고 있는 마이크로파 및 밀리미터파 대역 패키지는 범용의 칩을 위한 급전 구조를 지니고 있기 때문에 증폭기나 믹서와 같은 하모닉 성분이 발생하는 칩을 실장할 경우 외부의 출력단에 추가적인 필터를 구성해야 하며, 칩 자체에서 해결하기 위해서는 출력단 외부에 큰 커패시터를 필요로 하므로 칩 자체의 크기가 커지는 단점을 가지고 있다. 따라서 현재 상용화되어지고 있는 패키지를 증폭기나 믹서등에 적용할 경우 시스템에 여러개의 패키지와 수동소자들로 구현해야만 하기 때문에 시스템 자체의 크기가 커지는 단점을 가지고 있다.Recently, with the development of ultra-high frequency and millimeter wave systems, the importance of package development for mounting MMIC (Monolithic Microwave Integrated Circuit) is increasing. Such a package must protect the internal circuitry from the external environment as well as function as an electrical and thermal pathway between the chip and the system. In particular, in terms of electrical characteristics, packages require less insertion loss and return loss characteristics as well as electromagnetic shielding for minimum interference. Therefore, in order to satisfy these requirements, research and development of ceramic packages using LTCC (Low Temperature Co-fired Ceramic) technology, which has excellent loss characteristics at high frequencies, have been actively conducted. However, commercially available microwave and millimeter wave band packages have a feed structure for general purpose chips, so when mounting chips that generate harmonics such as amplifiers or mixers, additional filters must be configured at the external output stage. In order to solve the problem by itself, a large capacitor is required outside the output stage. Therefore, the current commercially available package applied to an amplifier or mixer, etc. has a disadvantage in that the size of the system itself becomes large because it must be implemented with several packages and passive elements in the system.
본 발명은 기존의 PBG 구조에서 발생하는 문제점을 해결하기 위하여 새로운 PBG 구조를 제안하고 이를 패키지의 급전부에 내장함으로써 증폭기나 믹서등에서 발생하는 광대역의 고조파 신호 성분을 효율적으로 제거하기 위한 패키지를 제공한다.The present invention proposes a new PBG structure to solve the problems occurring in the existing PBG structure, and provides a package for efficiently removing broadband harmonic signal components generated from an amplifier or a mixer by incorporating the new PBG structure into a feeding part of the package. .
1) PBG 구조1) PBG structure
기존에 제안된 PBG 구조들은 광대역화와 함께 패키징 및 열문제 그리고 넓은 전류 모드의 존재로 인한 소형화의 부적합한 특성들을 지니고 있다. 따라서 본 발명에서는 이러한 단점을 해결하기 위해 금속판과 비아 홀을 이용하여 직렬의 공진 PBG 셀을 유전체 기판 내에 삽입함으로써 접지면 식각을 통해 구현된 PBG 구조에서 발생하는 패키징 및 열문제에 효과적이며, 단위 PBG 셀간의 격자상수 길이를 줄임으로써 광대역의 저지 대역 여파기를 구현할 수 있고, 직렬의 공진 셀을 구현함으로써 병렬의 PBG 셀로부터 발생하는 넓은 전류 분포의 단점을 해결할 수 있다.The proposed PBG structures have inadequate characteristics of miniaturization due to the wideband, packaging and thermal problems, and the presence of a wide current mode. Therefore, in order to solve this disadvantage, the present invention is effective in packaging and thermal problems generated in the PBG structure implemented through the ground plane etching by inserting a series of resonant PBG cells into the dielectric substrate using a metal plate and via holes. By reducing the length of the lattice constant between cells, a wideband stop band filter can be realized, and by implementing a series resonant cell, the shortcomings of the wide current distribution generated from the parallel PBG cells can be solved.
상기 목적을 달성하기 위하여 직렬 LC공진 PBG 셀을 신호선 아래 기판 내부의 금속판과 접지면을 비아 홀로 연결한 EGP(Elevated Ground Plane) 구조와 신호선으로부터 기판 내부에 삽입된 금속판과 연결한 DSL(Descended Signal Line) 구조를 제안하였다. EGP 구조는 신호선과 금속판 사이에 커패시턴스가 형성되며 비아에 의하여 인덕턴스가 형성된다. 그리고 DSL 구조는 비아의 인덕턴스와 금속판과 접지면 사이에 커패시턴스가 형성된다. 이러한 제안된 구조들의 차이점은 직렬 LC 공진 셀에서 동일한 공진 주파수를 기준으로 EGP 구조가 DSL 구조에 비하여 인덕턴스가 더 크며 DSL 구조는 넓은 접지면과 커패시턴스가 형성되기 때문에 EGP 구조보다 커패시턴스가 상대적으로 크다.In order to achieve the above object, an EGP (Elevated Ground Plane) structure in which a serial LC resonant PBG cell is connected to a metal plate inside a substrate and a ground plane via a via hole, and a DSL (Descended Signal Line) is connected to a metal plate inserted into the substrate from a signal line. ) Proposed structure. In the EGP structure, capacitance is formed between the signal line and the metal plate, and inductance is formed by vias. In the DSL structure, capacitance is formed between the inductance of the via and the metal plate and the ground plane. The difference between the proposed structures is that the EGP structure has a larger inductance than the DSL structure based on the same resonant frequency in the series LC resonant cell.
2) 저역 통과 여파기를 내장한 패키지 구조2) Package structure with low pass filter
광대역의 고조파 신호를 효율적으로 제거하기 위하여 넓은 저지 대역 특성을 지닌 저역통과 여파기를 내장한 마이크로파 및 밀리미터파 대역 패키지를 제안하였다. 제안된 패키지는 상기의 PBG 구조를 패키지의 급전부에 삽입하여 구현하였으며 소형의 PBG 셀로도 넓은 저지 대역 특성을 얻을 수 있었다.In order to efficiently remove wideband harmonic signals, a microwave and millimeter wave band package with low pass filter with wide stopband characteristics is proposed. The proposed package is implemented by inserting the PBG structure into the feeding part of the package and can obtain wide stopband characteristics even with a small PBG cell.
도 1은 본 발명의 EGP실시예에 따른 정면도1 is a front view according to an EGP embodiment of the present invention
도 2는 본 발명의 EGP실시예에 따른 측면도2 is a side view according to an EGP embodiment of the present invention;
도 3은 본 발명의 EGP 실시예 13 is an EGP Embodiment 1 of the present invention.
도 4는 본 발명의 EGP 실시예 24 is an EGP Embodiment 2 of the present invention.
도 5는 본 발명의 DSL실시예에 따른 정면도5 is a front view according to a DSL embodiment of the present invention
도 6은 본 발명의 DSL실시예에 따른 측면도Figure 6 is a side view according to a DSL embodiment of the present invention
도 7은 본 발명의 DSL 실시예 17 is a DSL Embodiment 1 of the present invention.
도 8은 본 발명의 DSL 구조를 내장한 세라믹 패키지 급전구조에 적용한 실시예8 is an embodiment applied to a ceramic package feeding structure with a built-in DSL structure of the present invention
도 9와 10은 EGP를 이용한 PBG 구조의 해석 및 측정결과9 and 10 are the results of analysis and measurement of the PBG structure using EGP
첨부된 도면을 참조로 하여 본 발명을 상세히 설명하기로 한다. 도 1은 0.4 mm 두께의 세라믹 기판에 비아(via)와 금속판(EGP: Elevated Ground Plane)을 삽입하여 마이크로스트립 선로에 구현된 PBG 구조를 나타내고 있다. 도1 에서 신호선과 EGP의 간격은 0.05 mm이고, 삽입된 EGP의 두께와 비아의 직경은 각각 0.013 mm, 0.017 mm로 설정하였다. 그리고 EGP의 폭(WEGP)과 길이(LEGP)는 각각 1.16 mm, 0.5 mm이며, 접지면 식각 구조의 주기(a)를 1.16 mm로 설계하였다.The present invention will be described in detail with reference to the accompanying drawings. FIG. 1 illustrates a PBG structure implemented on a microstrip line by inserting vias and an Elevated Ground Plane (EGP) into a 0.4 mm thick ceramic substrate. In FIG. 1, the distance between the signal line and the EGP is 0.05 mm, and the thickness of the inserted EGP and the diameter of the via are set to 0.013 mm and 0.017 mm, respectively. The width (WEGP) and length (LEGP) of the EGP are 1.16 mm and 0.5 mm, respectively, and the period (a) of the ground plane etching structure is designed to be 1.16 mm.
도 5는 EGP 셀에서 커패시턴스를 증가 시키기위한 DSL 구조를 나타낸 그림이다. 단위 셀의 커패시턴스를 증가 시키기위하여 신호선과 삽입된 금속판 사이의 거리를 0.29mm로 설계하였다.5 illustrates a DSL structure for increasing capacitance in an EGP cell. In order to increase the capacitance of the unit cell, the distance between the signal line and the inserted metal plate was designed as 0.29mm.
도9 와 도10을 살펴보면 일반적인 평면형 PBG 구조와 3개의 EGP 셀로 구성된 PBG 구조의 특성결과를 비교 할 수 있다. Simulation 및 측정결과가 EGP구조를 사용할 때 저지대역의 특성이 더 우수함을 알 수 있다. 또한 도 7은 EGP 와 DSL 의 필터 특성을 나타낸다.9 and 10, the characteristics of the general planar PBG structure and the PBG structure composed of three EGP cells can be compared. Simulation and measurement results show better stopband characteristics when using EGP structure. 7 shows filter characteristics of the EGP and DSL.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030011969A KR20040076658A (en) | 2003-02-26 | 2003-02-26 | Low Pass filter using PBG Structure and microwave and millimeter - wave Package which contains Low Pass Filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030011969A KR20040076658A (en) | 2003-02-26 | 2003-02-26 | Low Pass filter using PBG Structure and microwave and millimeter - wave Package which contains Low Pass Filter |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040076658A true KR20040076658A (en) | 2004-09-03 |
Family
ID=37362761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030011969A KR20040076658A (en) | 2003-02-26 | 2003-02-26 | Low Pass filter using PBG Structure and microwave and millimeter - wave Package which contains Low Pass Filter |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040076658A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100693429B1 (en) * | 2006-02-13 | 2007-03-12 | 엘지전자 주식회사 | Structure for stability of supplying power using the photonic band gap structure |
KR100867150B1 (en) | 2007-09-28 | 2008-11-06 | 삼성전기주식회사 | Printed circuit board with embedded chip capacitor and method for embedding chip capacitor |
US7880567B2 (en) | 2007-10-10 | 2011-02-01 | Samsung Electronics Co., Ltd. | Overlay electromagnetic bandgap (EBG) structure and method of manufacturing the same |
KR101375660B1 (en) * | 2008-02-22 | 2014-03-19 | 삼성전자주식회사 | A resonator, bandpass filter and manufacturing method of resonator using overlay electromagnetic bandgap structure |
WO2023054633A1 (en) * | 2021-09-29 | 2023-04-06 | パナソニックIpマネジメント株式会社 | Multilayered device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0590894A (en) * | 1991-09-26 | 1993-04-09 | Murata Mfg Co Ltd | Piezoelectric filter |
JPH05275903A (en) * | 1992-03-27 | 1993-10-22 | Ngk Insulators Ltd | Lamination type dielectric filter |
JP2001332909A (en) * | 2000-05-19 | 2001-11-30 | Murata Mfg Co Ltd | Resonator, filter and high-frequency module |
-
2003
- 2003-02-26 KR KR1020030011969A patent/KR20040076658A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0590894A (en) * | 1991-09-26 | 1993-04-09 | Murata Mfg Co Ltd | Piezoelectric filter |
JPH05275903A (en) * | 1992-03-27 | 1993-10-22 | Ngk Insulators Ltd | Lamination type dielectric filter |
JP2001332909A (en) * | 2000-05-19 | 2001-11-30 | Murata Mfg Co Ltd | Resonator, filter and high-frequency module |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100693429B1 (en) * | 2006-02-13 | 2007-03-12 | 엘지전자 주식회사 | Structure for stability of supplying power using the photonic band gap structure |
KR100867150B1 (en) | 2007-09-28 | 2008-11-06 | 삼성전기주식회사 | Printed circuit board with embedded chip capacitor and method for embedding chip capacitor |
US7880567B2 (en) | 2007-10-10 | 2011-02-01 | Samsung Electronics Co., Ltd. | Overlay electromagnetic bandgap (EBG) structure and method of manufacturing the same |
KR101416061B1 (en) * | 2007-10-10 | 2014-07-09 | 삼성전자주식회사 | Overlay electromagnetic bandgap structure and a manufacturing method thereof |
KR101375660B1 (en) * | 2008-02-22 | 2014-03-19 | 삼성전자주식회사 | A resonator, bandpass filter and manufacturing method of resonator using overlay electromagnetic bandgap structure |
WO2023054633A1 (en) * | 2021-09-29 | 2023-04-06 | パナソニックIpマネジメント株式会社 | Multilayered device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2024142C (en) | Balun transformers | |
Casares-Miranda et al. | Vertical microstrip transition for multilayer microwave circuits with decoupled passive and active layers | |
US20180358677A1 (en) | Waveguide-to-microstrip transition | |
WO2008054324A1 (en) | Double-stacked ebg structure | |
KR101812490B1 (en) | Designs and methods to implement surface mounting structures of SIW | |
Zhang et al. | Gap waveguide PMC packaging for two-layer PEC surfaces | |
KR20040076658A (en) | Low Pass filter using PBG Structure and microwave and millimeter - wave Package which contains Low Pass Filter | |
JP2004201163A (en) | Connection structure of cavity waveguide and dielectric waveguide | |
KR100351330B1 (en) | The Varactor-Tuned Microstrip Ring Resonator with Harmonic Suppression and Its Manufacturing Method | |
KR100337168B1 (en) | Dielectric resonator device, dielectric filter, oscillator, sharing device, and electronic apparatus | |
CN114337546A (en) | Low-phase-noise oscillator based on substrate integrated waveguide filtering hybrid network | |
KR101838592B1 (en) | Circulator with lamination layers of multiple substrates | |
Menzel et al. | Miniaturized suspended stripline filters for integration into extended circuits | |
Wang et al. | A folded substrate integrated waveguide cavity filter using novel negative coupling | |
Qian et al. | Microwave applications of photonic band-gap (PBG) structures | |
EP3444891A1 (en) | Circuit board and communication device with side coupler | |
Cho et al. | Compact microwave waveguide limiter | |
JP4327876B2 (en) | Apparatus and method for split feed coupled ring resonator versus elliptic function filter | |
CN114267928B (en) | W-waveband waveguide band-pass filter | |
Yin et al. | Frequency‐dependent maximum average power‐handling capabilities of single and edge‐coupled microstrip lines on low‐temperature co‐fired ceramic (LTCC) substrates | |
CN214281331U (en) | W-band six-frequency multiplier | |
RU2332780C1 (en) | Superhigh frequency wide band random signal generator | |
Schulwitz et al. | Packaging method for increased isolation using a microstrip to waveguide transition | |
Qian et al. | Circuit applications of uniplanar compact PBG | |
Gao et al. | Electromagnetic radiation suppression of package lid based on CSRR and interdigital structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
E601 | Decision to refuse application |