KR20040069842A - Formation method of anti-reflection film - Google Patents

Formation method of anti-reflection film Download PDF

Info

Publication number
KR20040069842A
KR20040069842A KR1020030006395A KR20030006395A KR20040069842A KR 20040069842 A KR20040069842 A KR 20040069842A KR 1020030006395 A KR1020030006395 A KR 1020030006395A KR 20030006395 A KR20030006395 A KR 20030006395A KR 20040069842 A KR20040069842 A KR 20040069842A
Authority
KR
South Korea
Prior art keywords
film
silicon
sccm
flow rate
thickness
Prior art date
Application number
KR1020030006395A
Other languages
Korean (ko)
Inventor
조경수
Original Assignee
아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아남반도체 주식회사 filed Critical 아남반도체 주식회사
Priority to KR1020030006395A priority Critical patent/KR20040069842A/en
Publication of KR20040069842A publication Critical patent/KR20040069842A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE: A method for forming an anti-reflective layer is provided to prevent a standing wave of a photoresist pattern by optimizing process conditions and thickness of a silicon-oxynitride layer as the anti-reflective layer. CONSTITUTION: An anti-reflective layer is formed on an upper surface of a predetermined layer in order to form a pattern in a photo-etching process. The anti-reflective layer is formed by laminating sequentially a silicon-oxynitride layer(13) and an oxide layer(14). In the process for forming the silicon-oxynitride layer, a flow rate of SiH4 is 20 to 100 sccm, the flow rate of helium is 1000 to 3000 sccm, the flow rate of N2O is 50 to 150 sccm, and the pressure is 2 to 10 Torr. The thickness of the silicon-oxynitride layer is about 200 to 500 angstrom.

Description

반사방지막 형성 방법 {Formation method of anti-reflection film}Formation method of anti-reflection film

본 발명은 반도체 소자에 관한 것으로, 더욱 상세하게는 반사방지막을 형성하는 방법에 관한 것이다.The present invention relates to a semiconductor device, and more particularly to a method of forming an antireflection film.

일반적으로 반도체 소자를 제조하기 위한 공정 중에는 특정용도의 페턴을 형성하기 위하여 감광막을 도포하고 노광 및 현상하는 사진식각 공정을 많이 이용하고 있다.In general, a photolithography process of coating, exposing and developing a photosensitive film is commonly used in the process for manufacturing a semiconductor device.

사진식각 공정 중에서 노광작업시 빛의 난반사가 심할 경우는 감광막의 측벽이 직선으로 깨끗하게 형성되지 못하고 굴곡이 생기는 현상이 발생한다.In the photolithography process, if the diffuse reflection of the light is severe during the exposure operation, the sidewalls of the photoresist film may not be formed cleanly in a straight line, and a phenomenon may occur.

즉, 도 1에 도시된 바와 같이, 반도체 기판의 구조물(1) 상에 특정용도의 패턴을 형성하고자 하는 막(2)을 형성하고, 막(2)의 상부에 감광막을 도포한 후 원하는 패턴이 형성된 마스크를 이용하여 노광 및 현상함으로써 감광막 패턴(3)을 형성하였을 때, 감광막 패턴(3)의 측벽에 굴곡이 발생하였다. 이와 같이 굴곡이 형성된감광막 패턴의 측벽을 스텐딩웨이브(standing wave)라고 부르기도 한다.That is, as shown in FIG. 1, a film 2 for forming a pattern for a specific use is formed on the structure 1 of the semiconductor substrate, and a desired pattern is formed after applying a photoresist film on the film 2. When the photosensitive film pattern 3 was formed by exposing and developing using the formed mask, bending occurred in the sidewall of the photosensitive film pattern 3. As described above, the sidewalls of the photoresist pattern having the bending may be referred to as standing waves.

이러한 스텐딩 웨이브가 발생하면 감광막 패턴(3)의 하부에 위치하는 막(2)의 식각시 측벽이 거의 일직선으로 깨끗하게 식각되지 못하는 문제점이 발생한다.When the standing wave is generated, the sidewalls are hardly etched cleanly in a straight line during the etching of the film 2 positioned below the photoresist pattern 3.

따라서 포토마스킹 공정에서 빛의 난반사를 줄이는 기술이 상당히 중요한데 이러한 반사를 최소화하기 위하여 막의 상부에 빛의 반사를 줄이기 위한 반사방지막을 추가로 형성한다. 이러한 반사방지막으로는 실리콘옥시나이트라이드막을 사용하고 있다.Therefore, the technique of reducing the diffuse reflection of light is very important in the photomasking process. To minimize the reflection, an anti-reflection film is further formed on the top of the film to reduce the reflection of light. As the anti-reflection film, a silicon oxynitride film is used.

한편, 금속박막의 형성을 위한 포토마스킹 공정에서 금속박막의 회로 선폭이 매우 미세할 경우, 감광막의 두께가 두꺼우면 노광 작업후 깨끗한 측벽을 갖는 감광막 패턴의 형성이 어렵기 때문에, 감광막의 두께를 최대한 감소시켜야 한다. 그러나, 감광막의 두께가 어느 한계치 이하가 되면, 기존의 반사방지막으로 사용되는 실리콘옥시나이트라이드막을 사용할 경우 반사가 심하여 스텐딩웨이브가 발생하는 문제점이 있다.On the other hand, when the circuit line width of the metal thin film is very fine in the photomasking process for forming the metal thin film, if the thickness of the photosensitive film is thick, it is difficult to form a photosensitive film pattern having a clean sidewall after the exposure operation. Should be reduced. However, when the thickness of the photoresist film is below a certain limit, when the silicon oxynitride film used as an existing anti-reflection film is used, there is a problem in that a standing wave occurs due to severe reflection.

현재 감광막의 두께가 약 0.7㎛ 이하인 경우에는 종래 사용되던 실리콘옥시나이트라이드막으로는 스텐딩웨이브를 방지할 수 없는 실정이다.If the thickness of the current photosensitive film is about 0.7 μm or less, a standing wave cannot be prevented by a silicon oxynitride film that has been conventionally used.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 그 목적은 두께가 약 0.7㎛ 이하로 얇은 감광막 패턴을 스텐딩웨이브 없이 깨끗하게 형성하는 것이다.The present invention is to solve the problems as described above, the object is to form a thin photosensitive film pattern to a thickness of about 0.7㎛ or less without a standing wave clean.

도 1은 종래 반사방지막 형성 방법을 도시한 단면도이다.1 is a cross-sectional view showing a conventional anti-reflection film forming method.

도 2는 본 발명에 따른 반사방지막 형성 방법을 도시한 단면도이다.2 is a cross-sectional view showing a method of forming an anti-reflection film according to the present invention.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에서는 반사방지막으로 실리콘옥시나이트라이드막을 형성할 때, 사일렌(SiH4)의 유량을 약 50 sccm으로, 헬륨 유량을 약 2000 sccm으로, N2O의 유량을 약 110 sccm으로 하고, 압력은 약 5 Torr, 온도는 약 350℃인 조건으로 형성하는 것을 특징으로 한다.In order to achieve the object as described above, in the present invention, when forming a silicon oxynitride film as an anti-reflection film, the flow rate of silene (SiH 4 ) to about 50 sccm, helium flow rate to about 2000 sccm, N 2 O The flow rate is about 110 sccm, the pressure is about 5 Torr, the temperature is characterized in that it is formed under the condition of about 350 ℃.

이하, 본 발명에 따른 반사방지막 형성 방법에 대해 상세히 설명한다.Hereinafter, a method of forming an antireflection film according to the present invention will be described in detail.

일반적으로 반도체 소자 제조 공정 중에는 특정용도의 페턴을 형성하기 위하여 감광막을 도포하고 노광 및 현상하는 사진식각 공정을 많이 이용하고 있다.In general, a photolithography process of coating, exposing and developing a photosensitive film is used in the semiconductor device manufacturing process to form a pattern for a specific use.

즉, 도 2에 도시된 바와 같이, 반도체 기판의 구조물(11) 상에 패턴을 형성하고자 하는 막(12)을 형성하고, 해당 막(12)의 상면에 반사방지막으로서 실리콘옥시나이트라이드막(13) 및 산화막(14)을 순차적으로 형성한다.That is, as shown in FIG. 2, a film 12 for forming a pattern is formed on the structure 11 of the semiconductor substrate, and the silicon oxynitride film 13 as an anti-reflection film on the upper surface of the film 12. ) And the oxide film 14 are sequentially formed.

이 때 실리콘나이트라이드막(13)의 형성 전에, 막(12)의 상면에 하부방지막(11)을 추가로 형성할 수도 있다.At this time, before the silicon nitride film 13 is formed, the lower barrier film 11 may be further formed on the top surface of the film 12.

하부방지막(11)으로는 실리콘 또는 티타늄나이트라이드막으로 이루어진 단일층을 형성할 수도 있고, 실리콘과 티타늄나이트라이드막이 적층된 이중층으로 형성할 수도 있으며, 결과적인 하부방지막(11)의 총 두께는 200-500Å의 두께로 형성하는 것이 바람직하다. 가장 바람직하게는 하부방지막(11)을 300Å의 두께로 형성할 수 있다.The lower barrier layer 11 may be formed of a single layer made of silicon or titanium nitride, or may be formed of a double layer in which silicon and titanium nitride are laminated. The total thickness of the lower barrier layer 11 is 200. It is preferable to form in thickness of -500 kPa. Most preferably, the lower barrier layer 11 may be formed to a thickness of 300 kPa.

실리콘옥시나이트라이드막(13)을 형성할 때에는 사일렌의 유량을 20-100 sccm으로 하고, 헬륨의 유량을 1000-3000 sccm으로 하며, N2O의 유량을 50-150 sccm으로 하고, 압력을 2-10 Torr로 하는 것이 바람직하다.When the silicon oxynitride film 13 is formed, the flow rate of xylene is 20-100 sccm, the flow rate of helium is 1000-3000 sccm, the flow rate of N 2 O is 50-150 sccm, and the pressure is reduced. It is preferable to set it as 2-10 Torr.

가장 바람직하게는 사일렌의 유량을 50 sccm으로, 헬륨 유량을 2000 sccm으로, N2O의 유량을 110 sccm으로 하고, 압력은 5 Torr, 온도는 350℃인 조건으로 실리콘옥시나이트라이드막(13)을 형성한다.Most preferably, the silicon oxynitride film (13) has a flow rate of 50 sccm, a helium flow rate of 2000 sccm, a flow rate of N 2 O of 110 sccm, a pressure of 5 Torr, and a temperature of 350 ° C. ).

이러한 실리콘옥시나이트라이드막(13)은 200-500Å의 두께로 형성하는 것이 바람직하며, 가장 바람직하게는 350Å의 두께로 형성할 수 있다.The silicon oxynitride film 13 is preferably formed to a thickness of 200-500 kPa, most preferably 350 kPa.

산화막(14)은 30-100Å의 두께로 형성하는 것이 바람직하다.The oxide film 14 is preferably formed to a thickness of 30-100 kPa.

이 때, 실리콘나이트라이드막(13) 및 산화막(14)은 동일 챔버 내에서 형성할 수 있다.At this time, the silicon nitride film 13 and the oxide film 14 can be formed in the same chamber.

다음으로, 산화막(14) 상에 감광막을 도포하고 원하는 패턴을 마스크로 사용하여 노광 및 현상하여 감광막 패턴(15)를 형성한다.Next, a photosensitive film is coated on the oxide film 14 and exposed and developed using a desired pattern as a mask to form the photosensitive film pattern 15.

이 때 본원 발명에 따르면 반사방지막의 증착조건 및 두께를 최적화하였으므로 감광막 패턴(15)의 스텐딩웨이브 형성이 방지되어, 측벽이 깨끗하게 식각된다.In this case, according to the present invention, since the deposition conditions and thickness of the anti-reflection film are optimized, the formation of the standing wave of the photosensitive film pattern 15 is prevented and the sidewalls are etched cleanly.

상술한 바와 같이, 본 발명에서는 반사방지막으로서 실리콘옥시나이트라이드막을 형성할 때 공정조건 및 두께를 최적화하여 감광막 패턴의 스텐딩웨이브를 방지하는 효과가 있다.As described above, in the present invention, when forming the silicon oxynitride film as the anti-reflection film, there is an effect of preventing the standing wave of the photosensitive film pattern by optimizing the process conditions and thickness.

따라서, 미세 선폭의 소자 제조시 쉽게 적용하여 스텐딩웨이브 없이 사진식각공정을 수행하는 효과가 있다.Therefore, there is an effect of performing a photolithography process without a standing wave by easily applying when manufacturing a device having a fine line width.

Claims (6)

반도체 소자 제조를 위한 사진식각공정에서, 패턴을 형성하고자 하는 막의 상면에 반사방지막으로서 실리콘옥시나이트라이드막 및 산화막을 순차적으로 형성함에 있어서,In the photolithography process for manufacturing a semiconductor device, in order to sequentially form a silicon oxynitride film and an oxide film as an anti-reflection film on the upper surface of the film to be patterned, 상기 실리콘옥시나이트라이드막을 형성할 때에는 사일렌(SiH4)의 유량을 20-100 sccm으로 하고, 헬륨의 유량을 1000-3000 sccm으로 하며, N2O의 유량을 50-150 sccm으로 하고, 압력을 2-10 Torr로 하는 것을 특징으로 하는 반사방지막 형성 방법.When forming the silicon oxynitride film, the flow rate of xylene (SiH 4 ) is 20-100 sccm, the flow rate of helium is 1000-3000 sccm, the flow rate of N 2 O is 50-150 sccm, and the pressure The anti-reflection film forming method, characterized in that 2-10 Torr. 제 1 항에 있어서,The method of claim 1, 상기 실리콘옥시나이트라이드막을 200-500Å의 두께로 형성하는 것을 특징으로 하는 반사방지막 형성 방법.And forming the silicon oxynitride film at a thickness of 200-500 kPa. 제 2 항에 있어서,The method of claim 2, 상기 실리콘옥시나이트라이드막의 형성 전에, 상기 패턴을 형성하고자 하는 막의 상면에 하부방지막으로서 실리콘 또는 티타늄나이트라이드막으로 이루어진 단일층과, 실리콘과 티타늄나이트라이드막이 적층된 이중층 중의 어느 하나를 추가로 형성하는 것을 특징으로 하는 반사방지막 형성 방법.Before the silicon oxynitride film is formed, any one of a single layer made of silicon or titanium nitride film and a double layer of silicon and titanium nitride film are further formed on the upper surface of the film on which the pattern is to be formed. Anti-reflection film forming method, characterized in that. 제 3 항에 있어서,The method of claim 3, wherein 상기 하부방지막은 200-500Å의 두께로 형성하는 것을 특징으로 하는 반사방지막 형성 방법.The lower layer is anti-reflection film forming method characterized in that formed to a thickness of 200-500Å. 제 4 항에 있어서,The method of claim 4, wherein 상기 산화막은 30-100Å의 두께로 형성하는 것을 특징으로 하는 반사방지막 형성 방법.The oxide film is an anti-reflection film forming method, characterized in that formed in a thickness of 30-100 30. 제 1 항 내지 제 5 항 중의 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 실리콘나이트라이드막 및 산화막은 동일 챔버 내에서 형성하는 것을 특징으로 하는 반사방지막 형성 방법.And the silicon nitride film and the oxide film are formed in the same chamber.
KR1020030006395A 2003-01-30 2003-01-30 Formation method of anti-reflection film KR20040069842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030006395A KR20040069842A (en) 2003-01-30 2003-01-30 Formation method of anti-reflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030006395A KR20040069842A (en) 2003-01-30 2003-01-30 Formation method of anti-reflection film

Publications (1)

Publication Number Publication Date
KR20040069842A true KR20040069842A (en) 2004-08-06

Family

ID=37358512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030006395A KR20040069842A (en) 2003-01-30 2003-01-30 Formation method of anti-reflection film

Country Status (1)

Country Link
KR (1) KR20040069842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513697A (en) * 2017-08-31 2017-12-26 长江存储科技有限责任公司 A kind of antireflective coating and preparation method thereof, a kind of photo mask board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513697A (en) * 2017-08-31 2017-12-26 长江存储科技有限责任公司 A kind of antireflective coating and preparation method thereof, a kind of photo mask board
CN107513697B (en) * 2017-08-31 2019-06-04 长江存储科技有限责任公司 A kind of antireflective coating and preparation method thereof, a kind of photo mask board

Similar Documents

Publication Publication Date Title
US6057587A (en) Semiconductor device with anti-reflective structure
JP2000040671A (en) Method for forming metallic wiring of semiconductor element using titanium aluminum nitride anti-reflection film
JPS596540A (en) Manufacture of semiconductor device
KR100744005B1 (en) Method for forming of metal pattern in semiconductor device
US20020052127A1 (en) Method of manufacturing anti-reflection layer
US6133613A (en) Anti-reflection oxynitride film for tungsten-silicide substrates
JPH0774170A (en) Manufacture of wiring pattern
US5948598A (en) Anti-reflective silicon nitride film using in-situ deposition
KR100219550B1 (en) Anti-reflective coating layer and pattern forming method using the same
US6171764B1 (en) Method for reducing intensity of reflected rays encountered during process of photolithography
US6479401B1 (en) Method of forming a dual-layer anti-reflective coating
KR20040069842A (en) Formation method of anti-reflection film
KR20030040030A (en) Method for fabrication of semiconductor device
US6924196B1 (en) Anti-reflective coating and process using an anti-reflective coating
KR100562323B1 (en) Semiconductor device and method of manufacturing the same
US6221558B1 (en) Anti-reflection oxynitride film for polysilicon substrates
KR100253589B1 (en) Method of forming fine pattern of semiconductor device
US20030073041A1 (en) Partial photoresist etching
KR100532737B1 (en) Method for forming a anti reflective coating in a semiconductor manufacturing procedure
US6451706B1 (en) Attenuation of reflecting lights by surface treatment
TW200421440A (en) Method for increasing adhesion of rework photoresist on oxynitride film
KR0144140B1 (en) Metal wiring method
KR100563819B1 (en) Method for fabricating antireflection in semiconductor device
JPH07201704A (en) Manufacture of fine pattern and manufacture of semiconductor device
KR100423914B1 (en) Method of fabricating a semiconductor device with a silicon nitride having a high extinction coefficient

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application