KR20040061551A - Purification Method of 2,6-Naphthalenedicarboxylic Acid - Google Patents
Purification Method of 2,6-Naphthalenedicarboxylic Acid Download PDFInfo
- Publication number
- KR20040061551A KR20040061551A KR1020020087822A KR20020087822A KR20040061551A KR 20040061551 A KR20040061551 A KR 20040061551A KR 1020020087822 A KR1020020087822 A KR 1020020087822A KR 20020087822 A KR20020087822 A KR 20020087822A KR 20040061551 A KR20040061551 A KR 20040061551A
- Authority
- KR
- South Korea
- Prior art keywords
- naphthalenedicarboxylic acid
- nda
- cnda
- present
- impurities
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 238000000746 purification Methods 0.000 title description 15
- 239000012535 impurity Substances 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002002 slurry Substances 0.000 claims abstract description 15
- 239000008346 aqueous phase Substances 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000005984 hydrogenation reaction Methods 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000010828 elution Methods 0.000 claims 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 abstract description 9
- 239000011112 polyethylene naphthalate Substances 0.000 abstract description 9
- 238000006116 polymerization reaction Methods 0.000 abstract description 9
- -1 polyethylene naphthalate Polymers 0.000 abstract description 7
- 238000004090 dissolution Methods 0.000 description 28
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 239000007787 solid Substances 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 7
- WQFZWQFTPVEXQQ-UHFFFAOYSA-N 2-formylnaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=O)C=CC2=C1 WQFZWQFTPVEXQQ-UHFFFAOYSA-N 0.000 description 7
- YGYNBBAUIYTWBF-UHFFFAOYSA-N 2,6-dimethylnaphthalene Chemical compound C1=C(C)C=CC2=CC(C)=CC=C21 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 6
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- ZSPDYGICHBLYSD-UHFFFAOYSA-N 2-methylnaphthalene-1-carboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C)=CC=C21 ZSPDYGICHBLYSD-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229940071125 manganese acetate Drugs 0.000 description 2
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- OKOVWJWMMWWIQQ-UHFFFAOYSA-N naphthalene-1,2-dicarbonyl bromide Chemical compound C1=CC=CC2=C(C(Br)=O)C(C(=O)Br)=CC=C21 OKOVWJWMMWWIQQ-UHFFFAOYSA-N 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- BNIWTJAVDJYTIJ-UHFFFAOYSA-N 1,3-dimethylnaphthalene-2,6-dicarboxylic acid Chemical compound OC(=O)C1=CC=C2C(C)=C(C(O)=O)C(C)=CC2=C1 BNIWTJAVDJYTIJ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C63/00—Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
- C07C63/33—Polycyclic acids
- C07C63/337—Polycyclic acids with carboxyl groups bound to condensed ring systems
- C07C63/34—Polycyclic acids with carboxyl groups bound to condensed ring systems containing two condensed rings
- C07C63/38—Polycyclic acids with carboxyl groups bound to condensed ring systems containing two condensed rings containing two carboxyl groups both bound to carbon atoms of the condensed ring system
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 조 2,6-나프탈렌디카르복실산과 물을 1:5 내지 1:300의 중량비로 혼합하여 제조된 슬러리를 불활성 기체 분위기에서 260~340℃로 승온시켜 포화수증기압이 680~1700 psig에 이르도록 한 후 10~3600초간 체류시켜 불순물을 수성상으로 용출시키는 과정을 포함하는 2,6-나프탈렌디카르복실산의 정제방법에 관한 것으로, 본 발명에 의하면 폴리에틸렌나프탈레이트 중합에 사용될 수 있는 고순도, 고색도의 2,6-나프탈렌디카르복실산을 경제적으로 생산할 수 있다.In the present invention, a slurry prepared by mixing crude 2,6-naphthalenedicarboxylic acid and water in a weight ratio of 1: 5 to 1: 300 is heated to 260 to 340 ° C in an inert gas atmosphere, so that the saturated steam pressure is 680 to 1700 psig. The present invention relates to a method for purifying 2,6-naphthalenedicarboxylic acid, which comprises eluting impurities to an aqueous phase by allowing it to remain for 10 to 3600 seconds, and according to the present invention, high purity that can be used for polyethylene naphthalate polymerization. , 2,6-naphthalenedicarboxylic acid of high color can be produced economically.
Description
본 발명은 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid, 이하 NDA라 함)의 정제방법에 관한 것으로, 보다 상세하게는 2,6-디메틸나프탈렌(2,6-dimethylnaphthalene, 이하 DMN이라 함)의 산화반응으로부터 생성된 조 2,6-나프탈렌디카르복실산(crude NDA, 이하 cNDA라 함)을 고온고압의 수증기와 반응시킴으로써 cNDA 내의 각종 유기 불순물들을 수성상으로 용출시켜 제거하는 과정을 포함하는 2,6-나프탈렌디카르복실산의 정제방법에 관한 것이다.The present invention relates to a method for purifying 2,6-naphthalenedicarboxylic acid (hereinafter referred to as NDA), and more particularly to 2,6-dimethylnaphthalene (hereinafter referred to as 2,6-dimethylnaphthalene) Crude 2,6-naphthalenedicarboxylic acid (crude NDA, hereinafter cNDA) generated from oxidation of DMN is reacted with steam at high temperature and high pressure to elute and remove various organic impurities in cNDA into aqueous phase. It relates to a method for purifying 2,6-naphthalenedicarboxylic acid comprising the step.
NDA는 에틸렌글리콜과의 중합반응을 통해 폴리에틸렌나프탈레이트(polyethylenenaphthalate, 이하 PEN이라 함)를 제조하는데 사용되는 유용한 화합물이다. 현재, NDA는 DMN을 초산 용매중에서 코발트, 망간 등의 중금속과 브롬 화합물의 존재하에 O2와 고온, 고압의 조건으로 반응시키는 방법에 의하여 생산되고 있다. 그러나, 이 방법에 의해 생성된 cNDA에는, 촉매금속인 코발트, 망간 외에 산화반응의 중간생성물인 포르밀나프토산(이하 FNA라 함)과 메틸나프토산(이하 MNA라 함), 분해생성물인 트리멜리트산(이하 TMLA라 함), 브롬 부가생성물인 나프탈렌디카르복실산브로마이드(이하 Br-NDA라 함), 그리고 원료인 DMN에 함유되어 있던 불순물로부터 유래된 나프토산(이하 NA라 함) 등의 각종 불순물이 다량 포함되어 있어서, cNDA를 에틸렌글리콜과 바로 중합시키면 중합생성물인 PEN의 내열성과 연화점이 저하되고 착색이 발생하는 등 심각한 품질저하가 초래된다. 특히, FNA가 특정치 이상 포함되어 있으면, 중합도는 향상되지 않고 겔화나 착색이 발생하게 된다. 따라서, 고품질의 PEN을 얻기 위해서는 순도가 99.9%에 가까운 고순도의 NDA가 요구된다.NDA is a useful compound used to prepare polyethylenenaphthalate (hereinafter referred to as PEN) through polymerization with ethylene glycol. Currently, NDA is produced by a method of reacting DMN with O 2 at high temperature and high pressure in the presence of heavy metals such as cobalt and manganese and bromine compounds in an acetic acid solvent. However, cNDA produced by this method includes, for example, cobalt, manganese, and manganese, formylnaphthoic acid (hereinafter referred to as FNA) and methylnaphthoic acid (hereinafter referred to as MNA) as an intermediate of the oxidation reaction, and trimellim, which is a decomposition product. Naphthoic acid (hereinafter referred to as TMLA), naphthalenedicarboxylic acid bromide (hereinafter referred to as Br-NDA), a bromine adduct, and naphthoic acid (hereinafter referred to as NA) derived from impurities contained in the raw material DMN Since a large amount of impurities are included, cNDA is directly polymerized with ethylene glycol, causing severe degradation of quality such as lowering of heat resistance and softening point of the polymerization product PEN and coloring. In particular, when the FNA is contained at a specific value or more, the degree of polymerization does not improve and gelation or coloring occurs. Therefore, in order to obtain high quality PEN, a high purity NDA close to 99.9% is required.
이러한 순도를 얻기 위해서는 cNDA 내의 불순물 제거가 필수적이지만, 범용용매에 거의 녹지 않는 NDA의 특성으로 인해 직접적인 NDA의 정제방법은 아직까지 상업화되지 못하고 있는 실정이다. 따라서, 지금까지는 DMN의 산화반응으로부터 생성된 cNDA를 에스테르화시켜 생성된 디메틸-2,6-나프탈렌디카르복실산(이하 NDC라 함)을 증류 또는 재결정 등의 방법으로 정제하여 PEN 중합에 사용하여 왔다. 그러나, NDC는 NDA에 비하여 생산공정이 복잡하고, 중합과정에서 NDA의 경우에는 물이 생성되는데 반하여 NDC의 경우에는 알콜이 부산물로 생성되어 폭발의 위험이 있으며, 기존 폴리에스터 제조설비를 활용하지 못하는 등의 여러가지 단점이 있다. 이러한 이유로 NDA의 직접적인 정제기술에 대한 많은 연구가 수행되어지고 있으며, 다음과 같이 NDA를 직접 용매에 용해시켜 정제하는 방법들이 다수 제안되어 왔다.In order to obtain such purity, it is necessary to remove impurities in the cNDA, but due to the characteristics of NDA which is almost insoluble in a general solvent, a direct NDA purification method has not been commercialized yet. Thus, until now, dimethyl-2,6-naphthalenedicarboxylic acid (hereinafter referred to as NDC) produced by esterifying cNDA generated from oxidation of DMN was purified by distillation or recrystallization and then used in PEN polymerization. come. However, NDC has a more complicated production process than NDA, and NDA produces water in the polymerization process, whereas NDC generates alcohol as a by-product, and there is a risk of explosion, and existing polyester manufacturing equipment cannot be utilized. There are various disadvantages. For this reason, many studies on the direct purification technology of NDA have been conducted, and a number of methods for dissolving NDA directly in a solvent and purifying it have been proposed as follows.
일본특허공개 소62-230747호는 디메틸설폭사이드(DMSO),디메틸포름아미드(DMF) 등의 용매에 NDA를 용해시키고 재결정하여 정제하는 방법을 개시하고 있다. 그러나, 이 방법은 NDA의 상기 용매에 대한 용해도가 낮고, 불순물을 수소화시켜 제거하려 하면 용매도 함께 수소화되기 때문에 수소화 처리가 불가능하며, FNA의 완전한 제거도 어렵다는 단점이 있다.Japanese Patent Application Laid-Open No. 62-230747 discloses a method for dissolving NDA in a solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), recrystallization and purification. However, this method has a disadvantage in that the solubility of NDA in the solvent is low, and when the hydrogenation of impurities is removed, the solvent is also hydrogenated, so that the hydrogenation treatment is impossible and the complete removal of FNA is difficult.
일본특허공개 평5-32586호는 NDA를 피리딘류의 용매에 용해시키고 재결정하는 정제방법에 관한 것인데, NDA의 피리딘류에 대한 용해도의 온도의존성이 낮기 때문에 회수율이 낮은 단점이 있다.Japanese Patent Laid-Open No. 5-32586 relates to a purification method of dissolving and recrystallizing NDA in a solvent of pyridines, but has a disadvantage in that the recovery rate is low because NDA has a low temperature dependency of solubility in pyridines.
미국특허 제5,859,294호는 지방족 아민, 환형 지방족 아민 또는 아세토니트릴을 함유하는 수용액에 2,6-나프탈렌디카르복실산을 용해하여 아민염으로 전환하고, 이 아민염을 가열, 분해하여 2,6-나프탈렌디카르복실산을 정제하는 방법을 제시하고 있다. 그러나 이 방법은 아민염의 형성 및 분해 과정을 거치면서 상당량의 수율 감소가 발생할 소지가 있다. 또한 염 형태로의 전환 과정에서 과량의 아민이 필요하며, 이로 인해 아민의 회수 공정이 필요할 수도 있어 경제성이 낮아질 수 있는 단점을 가지고 있다.U.S. Patent No. 5,859,294 dissolves 2,6-naphthalenedicarboxylic acid in an aqueous solution containing aliphatic amines, cyclic aliphatic amines or acetonitrile and converts them into amine salts. A method for purifying naphthalenedicarboxylic acid is provided. However, this method may cause a considerable amount of yield reduction during the formation and decomposition of amine salts. In addition, an excessive amount of amine is required during the conversion to the salt form, which may require a recovery process of the amine, which may have a disadvantage of lowering economic efficiency.
미국특허 제5,256,817호는 물 또는 초산 수용액을 용매로 하여 300℃이상의 고온에서 NDA를 용해시키고 수소첨가 반응을 이용하여 정제하는 방법을 제시하고 있다. 이 방법은 과정이 단순하기는 하나, 정제된 NDA의 순도가 93% 밖에 되지 않아 PEN 중합용 원료로 사용하기에는 적합하지 않다.US Pat. No. 5,256,817 discloses a method of dissolving NDA at a high temperature of 300 ° C. or higher using water or an acetic acid aqueous solution and purifying by using a hydrogenation reaction. Although the process is simple, the purity of purified NDA is only 93%, making it unsuitable for use as a raw material for PEN polymerization.
미국특허 제6,255,525호에서는 보다 개선된 수소화 정제방법을 제안하고 있다. 그러나, 이 방법에서는 수소화 반응에 의한 불순물의 전환 외에 원치않는 부반응으로 인해 NDA의 수율이 현격히 저하될 수 있는 소지가 있다.U.S. Patent No. 6,255,525 proposes an improved hydrogenation purification method. However, in this method, there is a possibility that the yield of NDA can be significantly reduced due to unwanted side reactions besides conversion of impurities by hydrogenation.
이와 같이 현재의 기술로는 PEN 중합에 요구되는 수준의 고순도 NDA를 제조하는데 한계가 있으며, 따라서 DMN의 산화반응물 자체의 순도향상 및 NDA의 정제방법 개선이 지속적으로 요구되고 있는 실정이다.As such, current technologies have limitations in producing high-purity NDAs required for PEN polymerization, and thus, there is a continuous need for improving the purity of DMN oxidation reactants and improving NDA purification methods.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 조 2,6-나프탈렌디카르복실산 내의 불용성 불순물들을 수성상으로 용출시킨 후 액상과 고상을 분리하여 고순도의 2,6-나프탈렌디카르복실산을 얻는 방법을 제공함을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, eluting insoluble impurities in crude 2,6-naphthalenedicarboxylic acid into an aqueous phase and then separating the liquid phase and the solid phase of high purity 2,6-naphthalenedicica It is an object of the present invention to provide a method for obtaining a carboxylic acid.
즉, 본 발명은 조 2,6-나프탈렌디카르복실산과 물을 1:5 내지 1:300의 중량비로 혼합하여 제조된 슬러리를 불활성 기체 분위기에서 260~340℃로 승온시켜 포화수증기압이 680~1700 psig에 이르도록 한 후 10~3600초간 체류시켜 불순물을 수성상으로 용출시키는 과정을 포함하는 2,6-나프탈렌디카르복실산의 정제방법을 제공한다.That is, in the present invention, a slurry prepared by mixing crude 2,6-naphthalenedicarboxylic acid and water in a weight ratio of 1: 5 to 1: 300 is heated to 260 to 340 ° C. in an inert gas atmosphere, thereby providing a saturated steam pressure of 680 to 1700. It provides a method for purifying 2,6-naphthalenedicarboxylic acid comprising the step of eluting the impurities to the aqueous phase by reaching for psig for 10 to 3600 seconds.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에서는 2,6-디메틸나프탈렌(2,6-dimethylnaphthalene, 이하 DMN이라함)의 산화반응으로부터 생성된 조 2,6-나프탈렌디카르복실산(crude NDA, 이하 cNDA라 함)을 불활성 기체 분위기에서 고온고압의 수증기와 접촉시킴으로써 cNDA 내의 불순물을 수성상에 용해시킨 후, 불순물을 함유하는 액상과 고상을 분리하여 잔류 고형분 내의 2,6-나프탈렌디카르복실산의 비율을 높이는 방법으로 2,6-나프탈렌디카르복실산의 순도를 증가시킨다.In the present invention, crude 2,6-naphthalenedicarboxylic acid (crude NDA, hereinafter cNDA) generated from oxidation of 2,6-dimethylnaphthalene (hereinafter referred to as DMN) is referred to as an inert gas atmosphere. By dissolving the impurities in the cNDA in the aqueous phase by contacting with high temperature and high pressure steam at, and then separating the liquid phase and the solid phase containing the impurities to increase the ratio of 2,6-naphthalenedicarboxylic acid in the residual solids. -Increase the purity of naphthalenedicarboxylic acid.
본 발명의 원료로 사용되는 2,6-나프탈렌디카르복실산(이하 NDA라 함)은 통상적으로 브롬/코발트/망간으로 구성된 촉매계의 존재 하에 초산 용매에 용해된 DMN에 산소 함유 기체를 연속적으로 공급하면서 180~220℃에서 산화반응을 진행시킴으로써 생성된다. 이와 같이 DMN을 산화시켜 NDA를 생산하는 방법은 당업계에 공지된 기술로서, 본 발명의 원료가 되는 NDA를 생산하는 방식에 관해서 특별한 제약이 있는 것은 아니다.2,6-naphthalenedicarboxylic acid (hereinafter referred to as NDA) used as a raw material of the present invention continuously supplies oxygen-containing gas to DMN dissolved in acetic acid solvent in the presence of a catalyst system composed of bromine / cobalt / manganese. It is produced by proceeding the oxidation reaction at 180 ~ 220 ℃. As such, a method of oxidizing DMN to produce NDA is a technique known in the art, and there is no particular limitation regarding a method of producing NDA, which is a raw material of the present invention.
이렇게 DMN의 산화반응으로부터 생성된 NDA는 대체로 90% 이상의 순도를 가지며, 포르밀나프토산(FNA), 나프탈렌디카르복실산브로마이드(Br-NDA), 메틸나프토산(MNA), 트리멜리트산(TMLA), 나프토산(NA) 등의 불순물을 함유하는데, 각 불순물의 개별 함량은 0.001~4.000중량% 수준인 것으로 알려져 있다. 이들 불순물의 물에 대한 용해도는 본 발명의 방법에 따라 NDA를 정제하기 위한 최적의 조건을 설정하는데 있어 매우 중요한 사항으로, 각각의 용해도는 하기 표 1과 같다.Thus, NDA produced from the oxidation of DMN has a purity of 90% or more, and formylnaphthoic acid (FNA), naphthalenedicarboxylic acid bromide (Br-NDA), methylnaphthoic acid (MNA) and trimellitic acid (TMLA). Impurity, such as naphthoic acid (NA), the individual content of each impurity is known to be 0.001 ~ 4.000% by weight. Solubility of these impurities in water is very important in setting optimum conditions for purifying NDA according to the method of the present invention, and each solubility is shown in Table 1 below.
*예비 가열기를 사용하여 용해조 내의 cNDA 슬러리(cNDA:물=1:10(w/w))를 표제의 온도까지 승온시킨 후, 해당 온도에서의 포화수증기압 조건에서의 용해도를 측정함 * The cNDA slurry (cNDA: water = 1: 10 (w / w)) in the dissolution tank was heated to the title temperature using a preheater, and the solubility under saturated steam pressure conditions at that temperature was measured.
**나프탈렌 디카르복실 테트라린 ** naphthalene dicarboxyl tetralin
상기 표 1에서 보는 바와 같이, 고온·고압의 조건으로 갈수록 cNDA에 함유된 불순물의 용해도가 증가되지만, 불가피하게 정제 대상물인 NDA의 용해도도 증가된다. 따라서, 본 발명에서는 불순물의 용해도 증가와 NDA의 손실 사이의 균형을 고려하여, cNDA 1중량부에 대하여 5~300 중량부의 물을 가하여 슬러리 상태로 만들고, 상기 cNDA 슬러리의 온도를 260~340℃, 바람직하게는 280~320℃로 승온시켜, 상기 온도 범위에 해당하는 압력 범위(즉, 680~1700 psig)를 가진 포화수증기 상태를 만들어 준다. 이때 상기 포화수증기 상태에서의 체류시간 또한 중요한데, 본 발명에서는 NDA의 용해에 의한 손실을 최소화하기 위해 체류시간을 10~3600초로 제한한다.As shown in Table 1, the solubility of impurities contained in cNDA increases as the conditions of high temperature and high pressure increase, but inevitably the solubility of NDA, which is a purification target, also increases. Therefore, in the present invention, in consideration of the balance between increase in solubility of impurities and loss of NDA, 5 to 300 parts by weight of water is added to 1 part by weight of cNDA to make a slurry, and the temperature of the cNDA slurry is 260 to 340 ° C., Preferably the temperature is raised to 280 ~ 320 ℃, to create a saturated steam state having a pressure range (ie 680 ~ 1700 psig) corresponding to the temperature range. At this time, the residence time in the saturated steam state is also important, in the present invention, the residence time is limited to 10 to 3600 seconds to minimize the loss by dissolution of NDA.
본 발명의 방법은 또한 이와 같은 용해과정을 거친 후, NDA의 순도가 높아진 고형분과 불순물이 용해된 액상을 분리하는 과정을 포함한다. 액상을 분리하는 동안 온도 및 압력 조건은 상기 용해과정에서의 조건과 동일하게 유지된다.The method of the present invention also includes a process of separating the liquid phase in which the solid content and the impurity in which the purity of NDA is increased after this dissolution process is included. The temperature and pressure conditions during the separation of the liquid phase remain the same as in the dissolution process.
상술한 과정에 따라 NDA를 정제하는 데에는 예를 들어 슬러리 조제부, 가열기, 용해조 및 포집부(crystallizer 혹은 receiver)로 구성된 장치를 사용할 수 있는데, 여기서 용해조는 교반장치, 기체 주입부, 압력조절기, 용해조 저면의 여과장치 및 최하부의 배출용 밸브(flushing valve)를 구비한 오토클레이브(auroclave)일 수 있다. 상기 용해조로부터 배출되는 유출수는 용해조 하부의 배출용 밸브에 연결된 포집부에 포집되며, 용해조 내부에 잔류된 고형분은 회수 후 건조된다. 건조된 고형 NDA는 원하는 경우 추가의 세정과정을 거칠 수도 있다.In order to purify NDA according to the above-described process, for example, an apparatus consisting of a slurry preparation unit, a heater, a dissolution tank, and a crystallizer or a receiver may be used, wherein the dissolution tank may be a stirring device, a gas injection unit, a pressure regulator, a dissolution tank, and the like. It may be an autoclave with a bottom filtration device and a bottom flushing valve. The effluent discharged from the dissolution tank is collected in a collecting part connected to the discharging valve under the dissolution tank, and the solid content remaining in the dissolution tank is dried after recovery. The dried solid NDA may be subjected to further cleaning if desired.
본 발명의 방법은 상술한 용해 및 분리 과정 이외에, 정제효율을 더 높이기 위해, 불순물의 수소화 과정을 추가로 포함할 수 있다. 수소화 과정은 용해과정 이전에 별개의 과정으로 진행되거나 또는 용해과정과 동시에 진행될 수 있다. 수소화 과정이 추가되는 경우, cNDA의 조성이 원래 시료에 비해 다소 변화될 수 있는데, 그 대표적인 예가 나프탈렌 디카르복실 테트라린(DCT)의 생성이다. DCT의 물(혹은 수증기)에 대한 용해도는 상기 표 1에 기재되어 있다.In addition to the dissolution and separation processes described above, the process of the present invention may further include a hydrogenation process of impurities to further increase the purification efficiency. The hydrogenation process can proceed as a separate process prior to the dissolution process or can be carried out simultaneously with the dissolution process. When the hydrogenation process is added, the composition of the cNDA may change slightly compared to the original sample, a representative example being the production of naphthalene dicarboxyl tetralin (DCT). The solubility of DCT in water (or water vapor) is listed in Table 1 above.
본 발명의 방법에 따라 NDA를 정제하는데 있어 특히 수소화 과정이 필요한 경우는 Br-NDA의 함량이 높은 경우이다. cNDA에 함유된 여러 불순물 중에서도 Br-NDA는 용해도가 상대적으로 매우 낮아 제거하기가 가장 어려운 물질이나, DMN의 산화조건, 특히 Br 촉매의 사용량에 따라 Br-NDA의 함량이 높아질 수 있다. 본 발명에서 목적하는 수준의 순도 향상을 기대하려면, cNDA 내의 Br-NDA 함량이 0.5중량% 미만인 것이 유리하다. 따라서, cNDA 내의 Br-NDA 함량이 0.5중량% 이상일 경우에는 수소화 처리를 하여 Br-NDA를 NDA, 또는 MNA나 NA 형태로 전환한 후, 본 발명의 정제과정을 거치는 것이 바람직하다. 또한, 본 발명자들은 수소화 처리가 올리고머 등의 미확인 불순물의 제거에도 매우 유리한 효과를 가짐을 확인하였다.In the case of purifying NDA according to the method of the present invention, in particular, a hydrogenation process is required when the content of Br-NDA is high. Among various impurities contained in cNDA, Br-NDA is the most difficult to remove because of its relatively low solubility, but the content of Br-NDA may be increased depending on the oxidation conditions of DMN, especially the amount of Br catalyst used. In order to expect the desired level of purity improvement in the present invention, it is advantageous that the Br-NDA content in the cNDA is less than 0.5% by weight. Therefore, when the content of Br-NDA in cNDA is 0.5% by weight or more, it is preferable to convert the Br-NDA into NDA, MNA or NA form by hydrogenation, and then undergo the purification process of the present invention. In addition, the present inventors have confirmed that the hydrogenation treatment has a very beneficial effect on the removal of unidentified impurities such as oligomers.
상기 수소화 처리는 소량의 수소 기체의 투입에 의해서 이루어질 수 있으며, 투입되는 수소 기체의 양은 NDA 1몰당 0.0002~0.2몰인 것이 바람직하다. 그리고 반응의 효율성을 더욱 높이기 위해 팔라듐이 담지된 통상의 카본 촉매를 사용할 수도 있다.The hydrogenation may be performed by the addition of a small amount of hydrogen gas, the amount of hydrogen gas is preferably 0.0002 ~ 0.2 mol per mol of NDA. And in order to further increase the efficiency of the reaction it is also possible to use a conventional carbon catalyst loaded with palladium.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
제조예 1: 2,6-나프탈렌디카르복실산의 제조Preparation Example 1: Preparation of 2,6-naphthalenedicarboxylic acid
환류콘덴서, 교반기, 가열기 및 기체 주입부를 구비한 2 리터의 티타늄 반응기에, 디메틸나프탈렌을 10중량%의 농도로 초산에 용해시켜 제조된 반응용액을 12.5g/min의 속도로, 순수한 산소를 1600 ml/min의 속도로, 그리고 하기 표 2의 조성을 갖는 촉매용액을 2g/min의 속도로 공급하며 격렬하게 교반하면서 45분간 반응을 진행하였다. 이때 반응온도는 200℃이었고, 반응압력은 전단압력조절기에 의해 20㎏/㎠로 유지하였다. 반응이 완료된 다음, 고체 성분을 여과 후 건조하여 cNDA를 얻었으며, cNDA 성분의 정량분석 결과는 하기 표 3과 같다.In a 2-liter titanium reactor equipped with a reflux condenser, a stirrer, a heater, and a gas inlet, a reaction solution prepared by dissolving dimethylnaphthalene in acetic acid at a concentration of 10% by weight at a rate of 12.5 g / min and 1600 ml of pure oxygen The reaction was carried out for 45 minutes with vigorous stirring while supplying a catalyst solution having a composition of Table 2 and a composition of Table 2 at a rate of 2 g / min. At this time, the reaction temperature was 200 ℃, the reaction pressure was maintained at 20kg / ㎠ by a shear pressure regulator. After the reaction was completed, the solid component was filtered and dried to obtain cNDA, and the results of quantitative analysis of the cNDA component are shown in Table 3 below.
실시예 1: 2,6-나프탈렌디카르복실산의 정제Example 1: Purification of 2,6-naphthalenedicarboxylic acid
본 실시예에서는 슬러리 조제부, 가열기, 용해조 및 포집부로 구성된 장치를 사용하였으며, 상기 용해조는 교반장치, 기체 주입부, 압력조절기, 용해조 저면의 1 미크론 티타늄 여과장치 및 최하부의 배출밸브를 장착하고 있는 2리터 용량의 티타늄 오토클레이브이었다.In this embodiment, an apparatus consisting of a slurry preparation part, a heater, a dissolution tank, and a collecting part was used, and the dissolution tank was equipped with a stirring device, a gas injection part, a pressure regulator, a 1 micron titanium filter at the bottom of the dissolution tank, and a discharge valve at the bottom thereof. Titanium autoclave with a capacity of 2 liters.
상기 제조예 1에서 수득한 cNDA 10.0g을 물과 함께 용해조에 투입하고 교반하여 슬러리 상태로 만들었다. 이때 물과 cNDA의 혼합비는 60:1(w/w)이었다. 상기 슬러리를 상온에서 10분 정도 교반하면서, 질소 기체를 흘려서 용해조 내의 압력을 20 psig로 유지하면서 용해조 내의 공기를 배기시켜 불활성 기체 분위기로 만들었다. 이 상태에서 상기 슬러리를 지속적으로 교반하면서 가열기를 이용해 285℃까지 급속 승온시켰다. 285℃에서 10분간 체류시킨 후, 이 조건에서 용해조 하부의 여과장치와 배출밸브를 이용하여 액상과 고형분을 분리하였다. 분리된 고형분을 상온까지 서냉시킨 후 용해조에서 배출시켜 건조하였다. 건조된 고형분을 정량하고, 액체크로마토그래피와 기체크로마토그래피에 의해 상기 고형분의 성분들을 정량분석하였다. 결과는 하기 표 3과 같다.10.0 g of cNDA obtained in Preparation Example 1 was added to a dissolution tank with water and stirred to make a slurry. The mixing ratio of water and cNDA was 60: 1 (w / w). While stirring the slurry at room temperature for about 10 minutes, while flowing nitrogen gas to maintain the pressure in the dissolution tank at 20 psig, the air in the dissolution tank was evacuated to an inert gas atmosphere. In this state, the slurry was rapidly heated to 285 ° C. using a heater while continuously stirring the slurry. After staying at 285 ° C for 10 minutes, the liquid phase and the solids were separated using the filtration device and the discharge valve at the bottom of the dissolution tank under these conditions. The separated solid was slowly cooled to room temperature and then discharged from the dissolution bath to dry. The dried solids were quantified and the components of the solids were quantified by liquid chromatography and gas chromatography. The results are shown in Table 3 below.
실시예 2~7Examples 2-7
용해조건을 하기 표 3에 기재된 바와 같이 변경하면서 상기 실시예 1과 동일한 방식으로 2,6-나프탈렌디카르복실산을 정제하고, 최종적으로 수득된 고형분의 성분을 정량분석하였다. 결과는 하기 표 3과 같다.The 2,6-naphthalenedicarboxylic acid was purified in the same manner as in Example 1 while changing the dissolution conditions as described in Table 3 below, and the components of the finally obtained solid component were quantified. The results are shown in Table 3 below.
실시예 8: 수소화 과정을 포함한 2,6-나프탈렌디카르복실산의 정제Example 8 Purification of 2,6-naphthalenedicarboxylic Acid Including Hydrogenation
상기 제조예 1에서 수득한 cNDA 10.0g을 물과 함께 용해조에 투입하고 교반하여 슬러리 상태로 만들었다. 이때 물과 cNDA의 혼합비는 60:1(w/w)이었다. 팔라디움이 0.5중량% 담지된 활성탄 입자(입경 2~10 mm) 0.2g을 격자간격이 0.1mm인 티타늄망에 싸서 교반축에 부착한 상태에서, 상기 슬러리를 상온에서 10분 정도 교반하면서, 질소 기체를 흘려서 용해조 내의 압력을 20 psig로 유지하면서 용해조 내의 공기를 배기시켜 불활성 기체 분위기로 만들었다. 이어서, 수소 기체를 정제원료인 cNDA 내의 NDA 몰수의 1%에 해당하는 양(21.0 ml)으로 주사기를 이용하여 용해조에 주입하였다. 그런 다음, 상기 슬러리를 지속적으로 교반하면서 가열기를 이용해 280℃까지 급속 승온시켰다. 280℃에서 10분간 체류시킨 후, 이 조건에서 용해조 하부의 여과장치와 배출밸브를 이용하여 액상과 고형분을 분리하였다. 분리된 고형분을 상온까지 서냉시킨 후 용해조에서 배출시켜 건조하였다. 건조된 고형분을 정량하고, 액체크로마토그래피와 기체크로마토그래피에 의해 상기 고형분의 성분들을 정량분석하였다. 결과는 하기 표 3과 같다.10.0 g of cNDA obtained in Preparation Example 1 was added to a dissolution tank with water and stirred to make a slurry. The mixing ratio of water and cNDA was 60: 1 (w / w). Nitrogen gas, while stirring 0.2 g of the slurry at room temperature for 10 minutes in a state in which 0.2 g of palladium supported 0.2 g of activated carbon particles (particle diameter of 2 to 10 mm) was wrapped in a titanium mesh having a lattice spacing of 0.1 mm and attached to a stirring shaft. Was flowed to maintain the pressure in the dissolution tank at 20 psig, thereby evacuating the air in the dissolution tank to an inert gas atmosphere. Subsequently, hydrogen gas was injected into the dissolution tank by using a syringe in an amount corresponding to 1% of the number of moles of NDA in cNDA as a refining raw material (21.0 ml). The slurry was then rapidly heated to 280 ° C. using a heater while continuously stirring. After staying at 280 ° C. for 10 minutes, the liquid phase and the solids were separated using the filtration device and the discharge valve at the bottom of the dissolution tank under these conditions. The separated solid was slowly cooled to room temperature and then discharged from the dissolution bath to dry. The dried solids were quantified and the components of the solids were quantified by liquid chromatography and gas chromatography. The results are shown in Table 3 below.
제조예 2: 2,6-나프탈렌디카르복실산의 제조Preparation Example 2 Preparation of 2,6-naphthalenedicarboxylic acid
후속 실시예에서 정제원료의 순도변화에 따른 정제효율의 변화를 보기 위해, 상기 제조예 1에서와 동일한 방식으로 디메틸나프탈렌의 산화반응을 진행하되, 하기 표 4의 조성을 갖는 촉매용액을 사용하고 산소공급 속도를 800 ml/min으로 변경하여 cNDA를 수득하였다. cNDA 성분의 정량분석 결과는 하기 표 5와 같다.In the following examples, in order to see the change in purification efficiency according to the purity change of the raw material, the oxidation reaction of dimethylnaphthalene was carried out in the same manner as in Preparation Example 1, using a catalyst solution having the composition shown in Table 4 below, and oxygen supply. The rate was changed to 800 ml / min to give cNDA. Quantitative analysis results of cNDA components are shown in Table 5 below.
실시예 9: 2,6-나프탈렌디카르복실산의 정제Example 9: Purification of 2,6-naphthalenedicarboxylic acid
상기 제조예 2로부터 수득한 cNDA를 사용하여 하기 표 5에 기재된 조건으로 상기 실시예 1에서와 동일한 방식으로 2,6-나프탈렌디카르복실산을 정제하고, 최종적으로 수득된 고형분의 성분을 정량분석하였다. 결과는 하기 표 5와 같다.The cNDA obtained from Preparation Example 2 was used to purify 2,6-naphthalenedicarboxylic acid in the same manner as in Example 1 under the conditions shown in Table 5 below, and finally, the components of the obtained solid were quantified. It was. The results are shown in Table 5 below.
실시예 10~11: 수소화 과정을 포함한 2,6-나프탈렌디카르복실산의 정제Examples 10-11: Purification of 2,6-naphthalenedicarboxylic acid including hydrogenation process
상기 제조예 2로부터 수득한 cNDA를 사용하여 하기 표 5에 기재된 조건으로 상기 실시예 8에서와 동일한 방식으로 2,6-나프탈렌디카르복실산을 정제하고, 최종적으로 수득된 고형분의 성분을 정량분석하였다. 결과는 하기 표 5와 같다.The cNDA obtained from Preparation Example 2 was used to purify 2,6-naphthalenedicarboxylic acid in the same manner as in Example 8 under the conditions shown in Table 5 below, and finally, the components of the obtained solid were quantified. It was. The results are shown in Table 5 below.
이상에서 상세히 설명한 바와 같이, 본 발명에 의하면 PEN 중합에 사용될 수 있는 고순도, 고색도의 2,6-나프탈렌디카르복실산을 경제적으로 생산할 수 있다.As described in detail above, according to the present invention, it is possible to economically produce high purity and high color 2,6-naphthalenedicarboxylic acid which can be used for PEN polymerization.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020087822A KR20040061551A (en) | 2002-12-31 | 2002-12-31 | Purification Method of 2,6-Naphthalenedicarboxylic Acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020087822A KR20040061551A (en) | 2002-12-31 | 2002-12-31 | Purification Method of 2,6-Naphthalenedicarboxylic Acid |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040061551A true KR20040061551A (en) | 2004-07-07 |
Family
ID=37353086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020087822A KR20040061551A (en) | 2002-12-31 | 2002-12-31 | Purification Method of 2,6-Naphthalenedicarboxylic Acid |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040061551A (en) |
-
2002
- 2002-12-31 KR KR1020020087822A patent/KR20040061551A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100214397B1 (en) | Method of producing terephthalic acid | |
JP3729284B2 (en) | Method for producing high purity terephthalic acid | |
EP2292581B1 (en) | Extraction process for removal of impurities from mother liquor in the synthesis of terephthalic acid | |
JP3390169B2 (en) | Method for producing 2,6-naphthalenedicarboxylic acid | |
EP0476009A1 (en) | Extraction process for removal of impurities from terephthalic acid filtrate. | |
EP0818434A2 (en) | Process for the production of high-purity isophthalic acid | |
US6541662B2 (en) | Process for producing a hydrogenation product of an aromatic carboxylic acid | |
US6491795B2 (en) | Process for recovering benzyl benzoate | |
KR20040061551A (en) | Purification Method of 2,6-Naphthalenedicarboxylic Acid | |
JP3879781B2 (en) | Method for producing high purity 2,6-naphthalenedicarboxylic acid | |
JPH07238051A (en) | Production of naphthalene-dicarboxylic acid of high purity | |
KR20040061555A (en) | Purification Method of 2,6-Naphthalenedicarboxylic Acid | |
JPH07118200A (en) | Production of naphthalenedicarboxylic acid | |
KR20030007155A (en) | Purification method of 2,6-naphthalenedicarboxylic acid | |
KR20230092892A (en) | Method for producing fluorenone | |
JP2924104B2 (en) | Method for producing high-purity isophthalic acid | |
JP4032186B2 (en) | Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate | |
JPH07173100A (en) | Production of high-purity 2,6-naphthalene-dicarboxylic acid | |
JP3319044B2 (en) | Method for producing high-purity terephthalic acid | |
JPH1180074A (en) | Production of highly pure 2,6-naphthalene dicarboxylic acid | |
JP3826960B2 (en) | Method for producing high purity naphthalenedicarboxylic acid | |
JPH0717901A (en) | Production of high-purity isophthalic acid | |
JPH09208518A (en) | Production of high-purity naphthalenedicarboxylic acid | |
JPH09263566A (en) | Purification method of crude benzenedicarboxylic acid, catalyst used for purification and production method thereof | |
JP3757989B2 (en) | Method for purifying naphthalenedicarboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20021231 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20050531 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20060322 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20050531 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |