KR20040055905A - Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same - Google Patents

Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same Download PDF

Info

Publication number
KR20040055905A
KR20040055905A KR1020020082359A KR20020082359A KR20040055905A KR 20040055905 A KR20040055905 A KR 20040055905A KR 1020020082359 A KR1020020082359 A KR 1020020082359A KR 20020082359 A KR20020082359 A KR 20020082359A KR 20040055905 A KR20040055905 A KR 20040055905A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
cold rolling
annealing
cold
Prior art date
Application number
KR1020020082359A
Other languages
Korean (ko)
Inventor
배병근
이원걸
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020082359A priority Critical patent/KR20040055905A/en
Publication of KR20040055905A publication Critical patent/KR20040055905A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A non-oriented magnetic steel sheet is provided which lowers iron loss and improves magnetic flux density by properly controlling contents of C and P, and a method for manufacturing the non-oriented magnetic steel sheet is provided. CONSTITUTION: The non-oriented magnetic steel sheet with excellent magnetism comprises 0.0010 to 0.0025 wt.% of C, 1.0 to 4.5 wt.% of Si, 0.5 wt.% or less of Mn, 0.005 wt.% or less of P, 0.005 wt.% or less of S, 0.2 to 1.5 wt.% of Al, 0.003 wt.% or less of N and a balance of Fe and other inevitable impurities. The method for manufacturing the non-oriented magnetic steel sheet with excellent magnetism comprises the steps of hot rolling the reheated steel slab after reheating a steel slab comprising 0.0010 to 0.0025 wt.% of C, 1.0 to 4.5 wt.% of Si, 0.5 wt.% or less of Mn, 0.005 wt.% or less of P, 0.005 wt.% or less of S, 0.2 to 1.5 wt.% of Al, 0.003 wt.% or less of N and a balance of Fe and other inevitable impurities; annealing the coiled hot rolled steel sheet at a temperature of 900 to 1,100 deg.C after coiling the hot rolled steel sheet at a temperature of 700 deg.C or less; cold rolling the annealed steel sheet by one cycle cold rolling process or two cycle cold rolling process comprising first cold rolling, intermediate annealing and second cold rolling processes; and annealing the cold rolled steel sheet at a temperature of 950 to 1,100 deg.C.

Description

자성이 우수한 무방향성 전기강판 및 그 제조방법{Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same}Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same

본 발명은 모터, 변압기 및 자기실드와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판에 관한 것으로서, 보다 상세하게는 C와 P의 함량을 적절하게 제어함으로써 철손을 낮추고 자속밀도를 향상시킨 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used as an iron core of an electric device such as a motor, a transformer and a magnetic shield, and more particularly, a non-oriented to lower the iron loss and improve the magnetic flux density by appropriately controlling the content of C and P It relates to an electrical steel sheet and a method of manufacturing the same.

무방향성 전기강판은 전기기기에서 전기적 에너지를 기계적 에너지로 바꾸어 주는데 필요한 중요한 부품으로서, 에너지 절감을 위해서는 그 자기적 특성 즉 철손을 낮추고 자속밀도를 높이는 것이 필요하다. 철손은 에너지 변환의 과정에서 열로 변하여 사라지는 에너지를 의미하며, 자속밀도는 동력을 일으키는 힘으로 나타난다. 상기 철손이 낮으면 에너지 손실을 줄일 수 있고, 자속밀도가 높으면 전기기기의 동손을 줄일 수 있어서 소형화가 가능하다.Non-oriented electrical steel sheet is an important component necessary for converting electrical energy into mechanical energy in electrical equipment. In order to save energy, it is necessary to lower magnetic properties, ie, iron loss and increase magnetic flux density. Iron loss refers to energy that turns into heat and disappears in the process of energy conversion, and magnetic flux density is shown as a power generating force. If the iron loss is low, the energy loss can be reduced, and if the magnetic flux density is high, the copper loss of the electric device can be reduced, thereby miniaturizing.

철손이 낮고 자속밀도가 높은 소재를 제조하려면 불순물이 적은 청정강으로 제조하거나, 특수 원소를 첨가하는 방법이 있다. 상기 불순물 원소는 C, S, P, N 및 기타 탄화물 및 질화물을 발생시키는 원소가 있다.In order to manufacture a material having low iron loss and high magnetic flux density, it is possible to manufacture a clean steel with few impurities or to add a special element. The impurity elements include elements that generate C, S, P, N and other carbides and nitrides.

무방향성 전기강판에 대한 종래기술로는 일본 공개특허공보 평10-212555호가 있다. 상기 종래기술에서는 P를 첨가하여 타발가공성을 향상시키고 있다. 또 다른 종래기술로는 일본 공개특허공보 평10-18005호가 있다. 상기 종래기술들에서는 기계적 특성을 향상시키기 위하여 P를 첨가하고 있다.The prior art for non-oriented electrical steel sheet is Japanese Patent Application Laid-open No. Hei 10-212555. In the above prior art, P is added to improve punchability. Another conventional technique is Japanese Patent Application Laid-open No. Hei 10-18005. In the above prior arts, P is added to improve mechanical properties.

무방향성 전기강판의 자성을 향상시키기 위한 종래기술로는 대한민국 특허 출원번호 2000-45785호가 있다. 상기 종래기술에서는 자성을 향상시키기 위하여 P를 첨가하고 있기는 하나, 낮은 P의 범위에서 자성에 영향을 미칠 수 있는 다른 성분의 제어가 없어 자성의 향상에 한계가 있는 문제점이 있다.The prior art for improving the magnetic properties of non-oriented electrical steel sheet is Korean Patent Application No. 2000-45785. In the prior art, although P is added to improve the magnetic properties, there is a problem in that the improvement of the magnetic properties is limited because there is no control of other components that may affect the magnetism in the low P range.

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, C와 P의 함량을 적절하게 제어함으로써 철손을 낮추고 자속밀도를 향상시킨 무방향성 전기강판 및 그 제조방법을 제공하는데, 그 목적이 있다.The present invention is to solve the above problems of the prior art, to provide a non-oriented electrical steel sheet and a method of manufacturing the same to reduce the iron loss and improve the magnetic flux density by appropriately controlling the content of C and P, the object.

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.0010~0.0025%, Si: 1.0~4.5%, Mn: 0.5% 이하, P: 0.005% 이하, S: 0.005% 이하, Al: 0.2~1.5%, N:0.003% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 포함하여 이루어진다.The present invention for achieving the above object by weight, C: 0.0010 ~ 0.0025%, Si: 1.0 ~ 4.5%, Mn: 0.5% or less, P: 0.005% or less, S: 0.005% or less, Al: 0.2 ~ 1.5%, N: 0.003% or less, including the remaining Fe and other inevitable impurities.

또한, 본 발명은 상기와 같이 조성되는 슬라브를 1100~1200℃로 재가열한 다음 열간압연하고, 700℃ 이하에서 권취한 다음 900~1100℃에서 열연판소둔한 후, 1회 냉간압연법 또는 1차 냉간압연후 중간소둔하고 2차 냉간압연하는 2회 냉간압연법으로 냉간압연하고, 950~1100℃에서 냉연판소둔하는 것을 포함하여 이루어진다.In addition, the present invention is reheated to 1100 ~ 1200 ℃ the slab composition as described above and then hot rolled, wound up to 700 ℃ or less and then hot-rolled annealing at 900 ~ 1100 ℃, once cold rolling method or primary After cold rolling, the intermediate annealing and the second cold rolling are cold rolled by two cold rolling methods, and cold rolling is performed at 950-1100 ° C.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

Si, Mn 및 Al을 함유하는 무방향성 전기강판에서 불순물 원소로 알려진 원소인 C, P, S 및 N 등은 가능하다면 적게 함유되도록 하는 것이 자기적 특성을 향상 시키기 위하여 바람직하다. 그런데, 이들 원소를 제거하기 위해서는 많은 제조경비를 들여야만 가능하게 된다. 따라서, 이들 불순물을 어느 정도 남겨두고 자성을 향상시키는 방법을 찾는다면 제조원가를 절감할 수 있게 되는 것이다.In the non-oriented electrical steel sheet containing Si, Mn and Al, elements such as C, P, S and N, which are known as impurity elements, are preferably contained as little as possible in order to improve magnetic properties. However, in order to remove these elements, it becomes possible only by having a large manufacturing cost. Therefore, it is possible to reduce the manufacturing cost if you leave a few of these impurities and find a way to improve the magnetism.

따라서, 본 발명자가 상기한 효과를 얻기 위해 연구한 결과, 금속재료 내부에는 결정립계가 존재하며, 이 결정립계 안에는 불순물 원소 특히 P와 C가 많은 것을 확인하였다. 이들 원소는 편석이 많이 발생되는 특성이 있으며, 결정립계 내부에는 어느 정도 이들 원소가 존재하게 된다. 따라서, C와 P가 적정량 존재하여야 한다는 가정하에서 P와 C의 함량을 변화시켜 실험한 결과, P를 0.005% 이하로 함유시키고 C함량을 적절하게 제어하면, 철손을 낮추고 자속밀도를 높일 수 있다는 것을 확인하였다. 즉, 본 발명의 조건으로 제조시 결정립 크기가 크게 성장하여 철손을 낮출 수 있으며, 자화가 용이한 방향인 <100> 방향이 많이 함유되는 (200)면을 갖는 집합조직이 잘 발달되어 자속밀도를 높일 수 있다.Therefore, as a result of the present inventor's research to obtain the above-mentioned effect, it was confirmed that grain boundaries exist inside the metal material, and there are many impurity elements, particularly P and C, in the grain boundaries. These elements have a characteristic that many segregation occurs, and these elements exist to some extent inside the grain boundary. Therefore, assuming that an appropriate amount of C and P should be present, the results of experiments varying the content of P and C indicate that if P is contained in an amount of 0.005% or less and the C content is properly controlled, iron loss and magnetic flux density can be increased. Confirmed. That is, the grain size can be greatly increased when manufacturing under the conditions of the present invention can lower the iron loss, and the texture having a (200) plane containing a lot of <100> direction, which is easy to magnetize, is well developed to improve the magnetic flux density. It can increase.

먼저, 본 발명의 성분제한 이유부터 살펴본다.First, look at the reasons for limiting the components of the present invention.

C: 0.0010~0.0025중량%C: 0.0010 to 0.0025 wt%

상기 C는 최종제품에서 자기시효를 일으켜서 사용중 자기적 특성을 저하시키므로, 일반적으로 C의 함량이 낮을 수록 자기적 특성에 바람직한 것으로 알려져 있다. 그러나, 본 발명자는 C의 함량이 0.0010중량% 이하로 과도하게 낮아도 자성이 저하되는 것을 확인하였으며, 특히 P가 낮아지면 자성이 보다 저하되는 것을 확인하였다. 또한, C가 너무 높아도 자기적 특성이 저하되는 것을 확인하였다. 즉, 상기 C의 함량이 0.0010중량% 미만이면 자성이 저하되고, 0.0025중량%를 초과하여도 자성이 저하되므로, 상기 C의 함량은 0.0010~0.0025중량%로 제한하는 것이 바람직하다.Since the C causes the magnetic aging in the final product to lower the magnetic properties during use, generally, the lower the content of C, the better the magnetic properties. However, the inventors of the present invention confirmed that the magnetic content is lowered even if the content of C is excessively low at 0.0010% by weight or less. In addition, it was confirmed that even if C is too high, the magnetic properties are lowered. That is, if the content of C is less than 0.0010% by weight, the magnetic properties are lowered, and even if the content is more than 0.0025% by weight, the magnetism is lowered, so the content of C is preferably limited to 0.0010 to 0.0025% by weight.

Si: 1.0~4.5중량%Si: 1.0-4.5 wt%

상기 Si는 비저항을 증가시켜서 철손중 와류손실을 낮추는 성분이지만, 1.0중량% 미만 첨가되면 자성의 확보가 불충분하고, 4.5중량%를 초과하여 첨가되면 냉간압연성의 저하를 초래하므로, 그 함량을 1.0~4.5중량%로 제한하는 것이 바람직하다.The Si is a component that decreases the eddy current loss during iron loss by increasing the specific resistance, but when added less than 1.0% by weight is insufficient in securing the magnetism, when added in excess of 4.5% by weight causes a decrease in cold rolling property, the content is 1.0 ~ It is preferable to limit to 4.5% by weight.

Mn: 0.5중량% 이하Mn: 0.5 wt% or less

상기Mn은 비저항을 증가시킬 뿐만 아니라 집합조직을 향상시키는 성분으로, 0.5중량%을 초과하여 첨가되면 집합조직의 향상 효과가 포화되므로, 그 함량을 0.5중량% 이하로 제한하는 것이 바람직하다.The Mn is a component that not only increases specific resistance but also improves texture, and when added in excess of 0.5% by weight, the improvement effect of the texture is saturated. Therefore, the content is preferably limited to 0.5% by weight or less.

P: 0.005중량% 이하P: 0.005 wt% or less

상기 P는 편석원소이며, 불순물 원소인 C를 0.0010~0.0025중량%로 관리하고, 이때 P를 0.005중량% 이하로 제어함으로써 자기적 특성이 향상될 수 있다. 상기 P의 함량이 0.005중량%를 초과하여 첨가되면 편석이 증가하여 자성이 저하되므로, 그 함량을 0.005중량% 이하로 제한하는 것이 바람직하다.P is a segregation element, and the impurity element C is managed at 0.0010 to 0.0025% by weight, and the magnetic properties can be improved by controlling P to 0.005% by weight or less. When the content of P is added in excess of 0.005% by weight, segregation increases and the magnetism is lowered, so it is preferable to limit the content to 0.005% by weight or less.

S: 0.005중량% 이하S: 0.005 wt% or less

상기 S는 미세한 석출물인 MnS를 형성하여 자기특성을 열화시키므로 가능한 낮게 관리하는 것이 유리하며, 0.005중량%를 초과하여 함유되면 자기특성이 매우 열화되므로, 그 함량을 0.005중량% 이하로 제한하는 것이 바람직하다.The S is advantageously managed as low as possible to form a fine precipitate MnS to deteriorate the magnetic properties, it is preferable to limit the content to 0.005% by weight or less because the magnetic properties are very degraded when contained in excess of 0.005% by weight. Do.

Al: 0.2~1.5중량%Al: 0.2-1.5 wt%

상기 Al은 비저항을 증가시켜 와류손실을 낮추는데 유효한 성분으로, 0.2중량% 미만 첨가되면 강내에 미세한 AlN이 석출되어 결정립 크기를 감소시키고, 1.5중량%를 초과하여 첨가되면 첨가량에 비해 자성향상의 정도가 떨어지므로, 그 함량을 0.2~1.5중량%로 제한하는 것이 바람직하다.The Al is an effective component to decrease the eddy current loss by increasing the specific resistance, when less than 0.2% by weight of fine AlN precipitates in the steel to decrease the grain size, and when added in excess of 1.5% by weight the degree of magnetic improvement compared to the added amount Since it falls, it is preferable to limit the content to 0.2-1.5 weight%.

N: 0.003중량% 이하N: 0.003 wt% or less

상기 N은 미세하고 긴 AlN석출물을 형성시키므로 가능한 적게 함유토록 하며, 본 발명에서는 0.003중량% 이하로 제한하는 것이 바람직하다.Since N forms fine and long AlN precipitates, it should be contained as little as possible, and in the present invention, it is preferably limited to 0.003% by weight or less.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

상기와 같이 조성되는 강 슬라브를 1100~1200℃로 재가열한 다음 열간압연한다. 상기 재가열 온도가 1100℃ 미만이면 압연시 압하부하가 너무 크고, 1200℃를 초과하면 불순물 원소가 미세한 석출물로 석출되어 최종 제품의 결정립 성장을 억제하므로, 상기 재가열 온도는 1100~1200℃로 제한하는 것이 바람직하다.The steel slabs formed as above are reheated to 1100 ~ 1200 ° C. and then hot rolled. If the reheating temperature is less than 1100 ° C, the rolling load during rolling is too large, and if the reheating temperature is higher than 1200 ° C, impurity elements precipitate as fine precipitates to suppress grain growth of the final product, so that the reheating temperature is limited to 1100-1200 ° C. desirable.

상기와 같이 제조된 열연판을 700℃ 이하에서 권취하고, 이후 공기중에서 코일상태로 또는 비산화성 분위기에서 냉각한다. 상기 권취온도가 700℃를 초과하면 냉각시 산화가 많아질 수 있어서 산세성이 나빠질 수 있으므로, 상기 권취온도는 700℃ 이하로 제한하는 것이 바람직하다. 또한, 자기적 특성은 상기 권취온도가 본 발명의 범위내에서 높을수록 바람직하다.The hot rolled sheet prepared as described above is wound at 700 ° C. or lower, and then cooled in air in a coil state or in a non-oxidizing atmosphere. When the coiling temperature exceeds 700 ° C, oxidation may increase during cooling, and pickling may deteriorate. Therefore, the coiling temperature is preferably limited to 700 ° C or lower. Moreover, the magnetic property is so preferable that the said winding temperature is high within the range of this invention.

상기 권취된 열연판을 900~1100℃에서 열연판소둔한 다음 산세한 후, 냉간압연한다. 상기 열연판소둔 온도가 900℃ 미만이면 소둔효과가 적으며, 1100℃를 초과하면 판형상이 나빠지고 소둔효과가 떨어지므로, 상기 열연판소둔 온도는 900℃~1100℃로 제한하는 것이 바람직하다. 상기 냉간압연은 1회 냉간압연법으로 냉간압연하거나, 또는 1차 냉간압연후 중간소둔한 다음 2차 냉간압연하는 2회 냉간압연법을 사용하는 것이 가능하다. 상기 중간소둔시 중간소둔 온도가 830℃ 미만이면 충분한 재결정이 되지 않고, 1100℃를 초과하면 과도한 입성장이 발생하여 2차 냉간압연후 재결정 소둔시 결정립 성장이 부족할 수 있으므로, 상기 중간소둔 온도는 830~1100℃로 제한하는 것이 바람직하다. 또한, 상기 중간소둔시 소둔분위기는 수소 10% 이상, 나머지 질소인 혼합분위기로 하는 것이 바람직하다. 그 이유는 상기 수소가 10% 미만이면 미세한 비금속개재물인 Al2O3, MnO 및 FeO가 강판의 표면직하에 발생되어 집합조직이 열화되어 자성이 나빠지기 때문이다.The wound hot rolled sheet is hot rolled at 900 to 1100 ° C., followed by pickling and cold rolling. When the hot rolled sheet annealing temperature is less than 900 ℃ annealing effect is less, when the temperature exceeds 1100 ℃ plate shape is worse and the annealing effect is lowered, the hot rolled sheet annealing temperature is preferably limited to 900 ℃ ~ 1100 ℃. The cold rolling may be cold rolled by one cold rolling method, or may be used by cold rolling two times after the first cold rolling and annealing after the second cold rolling. If the intermediate annealing temperature is less than 830 ° C. during the annealing, sufficient recrystallization is not performed. If it exceeds 1100 ° C., excessive grain growth may occur, and grain growth may be insufficient during recrystallization annealing after the second cold rolling. It is preferable to limit to 1100 ° C. In the intermediate annealing, the annealing atmosphere is preferably at least 10% hydrogen and a mixed atmosphere of remaining nitrogen. The reason is that when the hydrogen is less than 10%, fine nonmetallic inclusions Al 2 O 3 , MnO and FeO are generated directly under the surface of the steel sheet, resulting in deterioration of the assembly structure and deterioration of magnetic properties.

상기 냉간압연된 강판을 950~1100℃에서 냉연판소둔한다. 상기 소둔온도가 950℃ 미만이면 결정립 성장이 미흡하고, 1100℃를 초과하면 표면온도가 과다하게 높아서 판표면에 표면결함이 발생될 수 있을 뿐만 아니라 자기적 특성도 나빠지므로, 상기 냉연판소둔 온도는 950~1100℃로 제한하는 것이 바람직하다. 또한, 상기 소둔시 소둔분위기는 수소10% 이상, 나머지 질소인 혼합분위기로 하는 것이 바람직하다. 그 이유는 상기 수소가 10% 미만이면 미세한 비금속개재물인 Al2O3, MnO 및 FeO가 강판의 표면직하에 발생되어 집합조직이 열화되어 자성이 나빠지기 때문이다.The cold rolled steel sheet is cold-rolled annealing at 950 ~ 1100 ℃. If the annealing temperature is less than 950 ℃ crystal grain growth is insufficient, if the temperature exceeds 1100 ℃ excessively high surface temperature not only can cause surface defects on the surface of the plate but also deteriorate magnetic properties, the cold rolled sheet annealing temperature is It is preferable to limit to 950-1100 degreeC. In addition, the annealing atmosphere at the time of annealing is preferably at least 10% hydrogen, mixed atmosphere of the remaining nitrogen. The reason is that when the hydrogen is less than 10%, fine nonmetallic inclusions Al 2 O 3 , MnO and FeO are generated directly under the surface of the steel sheet, resulting in deterioration of the assembly structure and deterioration of magnetic properties.

상기 소둔판은 절연피막처리후 수요가로 출하된다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다.The annealing plate is shipped at the demand price after the insulation coating. The insulating coating may be treated with an organic, inorganic and organic-inorganic composite coating, and may be treated with other insulating coating.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1]Example 1

하기 표 1과 같이 조성되는 강 슬라브를 하기 표 2의 재가열온도로 재가열하고, 1.9mm로 열간압연한 후, 660℃에서 권취하였다. 상기 권취된 열연판을 1000℃에서 5분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하였다. 또한, 2차 냉간압연재는 산세한 다음 0.8mm로 냉간압연하고, 930℃에서 중간소둔한 다음 최종두께로 냉간압연하였다. 이후 1030℃에서 하기 표2와 같은 분위기로 1분간 냉연판소둔하였다. 상기 소둔판은 절단후 자기적 특성 및 결정립 크기가 조사되었으며, 그 결과는 하기 표 2와 같다.The steel slab, as shown in Table 1 below, was reheated to the reheating temperature shown in Table 2 below, hot rolled to 1.9 mm, and wound up at 660 ° C. The wound hot rolled sheet was annealed at 1000 ° C. for 5 minutes, pickled, and cold rolled to a thickness of 0.35 mm. In addition, the secondary cold rolled material was pickled, cold rolled to 0.8 mm, annealed at 930 ° C., and then cold rolled to a final thickness. Thereafter, the cold rolled sheet was annealed at 1030 ° C. for 1 minute in an atmosphere as shown in Table 2 below. The annealing plate was investigated after the magnetic properties and grain size, the results are shown in Table 2 below.

상기 표 2에 나타난 바와 같이, 본 발명의 성분범위를 만족하는 발명강 (A~B)를 이용하여 본 발명의 제조조건으로 제조한 발명재(1~5)는 비교재(1~5)에 비하여 철손이 낮고, 자속밀도가 높은 것을 알 수 있다.As shown in Table 2, the invention materials (1 to 5) manufactured by the production conditions of the present invention using the invention steel (A ~ B) satisfying the component range of the present invention to the comparative material (1 to 5) It can be seen that the iron loss is low and the magnetic flux density is high in comparison.

[실시예2]Example 2

중량%로, C: 0.0022%, Si: 2.8%, Mn: 0.35%, P: 0.001%, S: 0.0008%, Al: 0.80%, N: 0.0012%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1150℃로 재가열한 다음 열간압연하여 1.8mm 두께의 강판을 제조하였다. 상기 강판을 680℃에서 권취한 다음 1000℃에서 4분간 소둔하였다. 상기 강판을 산세후 0.5mm의 두께로 냉간압연하였다. 상기 냉연판을 1070℃에서 50초간 수소70%와 질소30%의 분위기에서 냉연판소둔하였다. 상기 소둔후 연속하여 유무기복합의 절연피막을 입힌후 절단하여, 자기적 특성 및 결정립 크기를 조사하였다. 상기한 강판의 자기적 특성중 철손(W15/50)은 2.38W/kg이었으며, 자속밀도(B50)은 1.68Tesla이었고, 결정립 크기는 158㎛이었다.Slabs composed of C: 0.0022%, Si: 2.8%, Mn: 0.35%, P: 0.001%, S: 0.0008%, Al: 0.80%, N: 0.0012%, remaining Fe and other unavoidable impurities. Reheated to 1150 ℃ and hot rolled to prepare a 1.8mm thick steel sheet. The steel sheet was wound at 680 ° C. and then annealed at 1000 ° C. for 4 minutes. The steel sheet was cold rolled to a thickness of 0.5 mm after pickling. The cold rolled sheet was cold-annealed at 1070 ° C. for 50 seconds in an atmosphere of 70% hydrogen and 30% nitrogen. After annealing, the organic and inorganic composite insulating coating was continuously coated and then cut to investigate magnetic properties and grain size. Among the magnetic properties of the steel sheet, the iron loss (W 15/50 ) was 2.38 W / kg, the magnetic flux density (B 50 ) was 1.68 Tesla, and the grain size was 158 μm.

[실시예3]Example 3

중량%로, C: 0.0015%, Si: 3.23%, Mn: 0.25%, P: 0.004%, S: 0.0015%, Al: 1.3%, N: 0.0015%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1120℃로 재가열한 다음 2.0mm의 두께로 열간압연하였다. 상기 열연판을 680℃에서 권취한 다음 980℃에서 소둔하였다. 이후 산세한 다음 1.0mm로 1차 냉간압연후, 950℃에서 30초간 중간소둔하고, 0.20mm의 두께로 2차 냉간압연하였다. 상기 냉연판을 1070℃에서 60초간 소둔하였다. 상기와 같이 제조된 강판을 절단하고, 자기적 특성을 측정한 결과 철손(W10/400)이 11.02W/kg이었고, 자속밀도(B50)는 1.66Tesla이었다. 또한, 결정립 크기는 140㎛이었으며, (200)면의 집합조직강도는 1.62이었다.Slabs composed of C: 0.0015%, Si: 3.23%, Mn: 0.25%, P: 0.004%, S: 0.0015%, Al: 1.3%, N: 0.0015%, remaining Fe and other unavoidable impurities. Reheated to 1120 ° C. and then hot rolled to a thickness of 2.0 mm. The hot rolled sheet was wound at 680 ° C. and then annealed at 980 ° C. After pickling, first cold rolling to 1.0mm, followed by intermediate annealing at 950 ° C. for 30 seconds, and second cold rolling to a thickness of 0.20mm. The cold rolled sheet was annealed at 1070 ° C. for 60 seconds. The steel sheet manufactured as described above was cut and the magnetic properties were measured. The iron loss (W 10/400 ) was 11.02 W / kg, and the magnetic flux density (B 50 ) was 1.66 Tesla. In addition, the grain size was 140 μm, and the texture strength of the (200) plane was 1.62.

상술한 바와 같이, 본 발명은 C와 P의 함량을 적절하게 제어함으로써 철손을 낮추고 자속밀도를 향상시킨 무방향성 전기강판 및 그 제조방법을 제공하는 효과가 있다.As described above, the present invention has the effect of providing a non-oriented electrical steel sheet and a method of manufacturing the same by controlling the content of C and P appropriately to lower the iron loss and improve the magnetic flux density.

Claims (4)

중량%로, C: 0.0010~0.0025%, Si: 1.0~4.5%, Mn: 0.5% 이하, P: 0.005% 이하, S: 0.005% 이하, Al: 0.2~1.5%, N: 0.003% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 포함하여 이루어지는 자성이 우수한 무방향성 전기강판.By weight%, C: 0.0010-0.0025%, Si: 1.0-4.5%, Mn: 0.5% or less, P: 0.005% or less, S: 0.005% or less, Al: 0.2-1.5%, N: 0.003% or less, remainder Non-oriented electrical steel sheet having excellent magnetic properties, including the composition of Fe and other unavoidable impurities. 중량%로, C: 0.0010~0.0025%, Si: 1.0~4.5%, Mn: 0.5% 이하, P: 0.005% 이하, S: 0.005% 이하, Al: 0.2~1.5%, N: 0.003% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1100~1200℃로 재가열한 다음 열간압연하고, 700℃ 이하에서 권취한 다음 900~1100℃에서 열연판소둔한 후, 1회 냉간압연법 또는 1차 냉간압연후 중간소둔하고 2차 냉간압연하는 2회 냉간압연법으로 냉간압연하고, 950~1100℃에서 냉연판소둔하는 것을 포함하여 이루어지는 자성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.0010-0.0025%, Si: 1.0-4.5%, Mn: 0.5% or less, P: 0.005% or less, S: 0.005% or less, Al: 0.2-1.5%, N: 0.003% or less, remainder The slab composed of Fe and other unavoidable impurities is reheated to 1100 ~ 1200 ℃, then hot rolled, wound up to 700 ℃ or lower, then hot rolled annealed at 900 ~ 1100 ℃, and then cold rolled or cold rolled once. After the intermediate annealing and secondary cold rolling, cold rolling by two cold rolling method, cold-rolled annealing at 950 ~ 1100 ℃ manufacturing method of excellent non-oriented electrical steel sheet comprising a. 제2항에 있어서, 상기 중간소둔시 소둔온도는 830~1100℃임을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.The method of claim 2, wherein the annealing temperature during the intermediate annealing is 830 to 1100 ° C. 4. 제2항에 있어서, 상기 중간소둔 및 냉연판소둔시 분위기는 수소가 10% 이상, 나머지 질소인 혼합분위기임을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.The method of claim 2, wherein the intermediate annealing and cold rolling annealing atmosphere is a mixed atmosphere in which hydrogen is at least 10% and the remaining nitrogen.
KR1020020082359A 2002-12-23 2002-12-23 Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same KR20040055905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020082359A KR20040055905A (en) 2002-12-23 2002-12-23 Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020082359A KR20040055905A (en) 2002-12-23 2002-12-23 Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20040055905A true KR20040055905A (en) 2004-06-30

Family

ID=37348340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020082359A KR20040055905A (en) 2002-12-23 2002-12-23 Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20040055905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116211A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Core for transformer or reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116211A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Core for transformer or reactor

Similar Documents

Publication Publication Date Title
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100544417B1 (en) Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR101059215B1 (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR20040055905A (en) Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR20030053139A (en) Method for manufacturing non-oriented electrical steel sheet with low iron loss
KR100268853B1 (en) The manufacturing method of non oriented electric steel sheet with excellent magnetic properties
KR100276307B1 (en) The manufacturing method of oriented electric steelsheet with thick plate
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR101067478B1 (en) Non-oriented electrical sheets with improved magnetic properties and method for manufacturing the same
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
KR19990042318A (en) Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application