KR20040046823A - A method of air fuel raio control learning on vehicle engine - Google Patents
A method of air fuel raio control learning on vehicle engine Download PDFInfo
- Publication number
- KR20040046823A KR20040046823A KR1020020074853A KR20020074853A KR20040046823A KR 20040046823 A KR20040046823 A KR 20040046823A KR 1020020074853 A KR1020020074853 A KR 1020020074853A KR 20020074853 A KR20020074853 A KR 20020074853A KR 20040046823 A KR20040046823 A KR 20040046823A
- Authority
- KR
- South Korea
- Prior art keywords
- air
- fuel ratio
- oxygen sensor
- learning
- lean
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1409—Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
본 발명은 차량의 공연비 제어방법에 관한 것으로, 더 상세하게는 삼원 촉매장치의 상류측 산소 센서의 열화에 의한 제어 공연비의 시프트(Shift)를 보상하기 위하여 삼원 촉매장치의 하류측 산소 센서의 공연비를 측정하여 이 값에 따라 상류측 산소 센서의 공연비 희박(Lean)/농후(Rich) 판정 기준값을 조정하도록 하는 공연비 제어를 위한 학습방법에 관한 것이다.The present invention relates to a method for controlling an air-fuel ratio of a vehicle. More particularly, the air-fuel ratio of a downstream oxygen sensor of a three-way catalyst is compensated for in order to compensate for the shift of the control air-fuel ratio caused by deterioration of the upstream oxygen sensor of the three-way catalyst. It relates to a learning method for air-fuel ratio control to measure and adjust the air-fuel ratio lean / rich determination reference value of the upstream oxygen sensor in accordance with this value.
통상적으로 차량에서는 배기 가스의 안정화와 불필요한 연료의 손실을 억제하기 위하여 공연비 제어를 수행하고 있는데, 공연비의 제어는 배기가스를 정화하는 삼원 촉매장치의 상류측에 설치되는 산소 센서의 신호를 이용하고 있다.In general, in the vehicle, air-fuel ratio control is performed to stabilize the exhaust gas and suppress unnecessary fuel loss. The control of the air-fuel ratio uses a signal of an oxygen sensor installed upstream of the three-way catalytic device for purifying the exhaust gas. .
즉, 삼원 촉매장치의 상류측에 설치된 산소 센서에서 검출되는 신호를 공연비의 희박/농후 여부를 판정하고 이에 따라 연료 분사량을 맵 테이블로 설정되는 P-I 게인(Gain)에 따라 가감하여 공연비 제어를 수행한다.That is, the signal detected by the oxygen sensor installed upstream of the three-way catalyst device is determined whether the air-fuel ratio is lean / rich, and accordingly the fuel injection amount is added or subtracted according to the PI gain set in the map table to perform the air-fuel ratio control. .
이때, 삼원 촉매장치의 상류측에 설치된 산소 센서의 열화에 의해 제어되는 공연비 값이 희박 또는 농후한 쪽으로 시프트(Shift)되는 것을 보상하기 위해 P-I 게인의 지연시간(Delay time)을 설정하고 있다.At this time, the delay time of the P-I gain is set to compensate for the shift of the air-fuel ratio value controlled by the deterioration of the oxygen sensor provided upstream of the three-way catalytic apparatus to the lean or rich side.
따라서, 전체적인 공연비 제어는 기본적으로 P-I 게인 및 지연시간을 매핑하고 삼원 촉매장치의 상류측에 설치되는 산소 센서의 측정값을 통해 희박/농후 여부를 판정하여 이에 따라 연료 분사량을 매핑된 P-I 게인에 따라 가감하여 제어한다.Therefore, the overall air-fuel ratio control basically maps PI gain and delay time, and determines whether it is lean / rich based on the measured value of the oxygen sensor installed upstream of the three-way catalytic system, and accordingly, the fuel injection amount is determined according to the mapped PI gain. Control by adding or subtracting.
이때, 삼원 촉매장치의 하류측에 설치된 산소 센서의 측정값이 농후하면 상기 P-I 게인의 희박 방향으로 맵핑된 지연 시간값을 증가시키고, 반대로 삼원 촉매장치의 하류측에 설치된 산소 센서의 측정값이 희박하면 상기 P-I 게인의 농후 방향으로 맵핑된 지연 시간값을 증가시키는 학습제어를 실시한다.At this time, if the measured value of the oxygen sensor installed downstream of the three-way catalytic apparatus is rich, the delay time value mapped in the lean direction of the PI gain is increased, and on the contrary, the measured value of the oxygen sensor installed downstream of the three-way catalytic apparatus is lean. Then, learning control is performed to increase the delay time value mapped in the rich direction of the PI gain.
상기한 바와 같이 통상적인 공연비 제어방법은 초기에 삼원 촉매장치의 하류측에 설치된 산소센서의 값에 대하여 초기에 희박/농후 방향에 대한 지연 시간값을 엔진의 각 조건에 따라 맵으로 설정하여야 하므로 개발 부담이 크고, 엔진 운전시 공연비 제어에도 양방향의 지연 시간값을 학습하므로, 적용되는 제어 로직이 복잡하게 되는 문제점이 발생한다.As described above, the conventional air-fuel ratio control method is developed because the delay time value in the lean / rich direction should be initially set as a map according to the engine conditions with respect to the value of the oxygen sensor installed downstream of the three-way catalytic apparatus. Since the burden is great and the delay time values in both directions are also learned for the air-fuel ratio control during engine operation, a problem arises in that the control logic applied becomes complicated.
본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로, 그 목적은 삼원 촉매장치의 상류측에 설치된 산소 센서의 열화에 의한 공연비의 시프트를 보상하기 위하여 삼원 촉매장치의 하류측에 설치된 산소 센서의 신호로부터 공연비를 측정하고, 이 값에 따라 삼원 촉매장치의 상류측에 설치된 산소 센서의 공연비 희박/농후 판정 기준값을 조정하도록 한 것이다.The present invention has been made to solve the above problems, the object of which is to provide an oxygen sensor installed downstream of the three-way catalytic apparatus to compensate for the shift in the air-fuel ratio due to deterioration of the oxygen sensor installed upstream of the three-way catalytic apparatus. The air-fuel ratio was measured from the signal, and the air-fuel ratio lean / rich determination reference value of the oxygen sensor provided upstream of the three-way catalytic device was adjusted according to this value.
즉, 삼원 촉매장치의 상류측에 설치된 산소 센서의 열화에 의한 제어 공연비의 시프트를 보상하기 위해 P-I 게인의 지연 시간값을 가감시키지 않고, 삼원 촉매장치의 상류측에 설치된 산소 센서의 공연비 희박/농후 판정 기준값(V_ref)을 상향 또는 하향 조정하는 학습 로직을 적용하여 공연비의 시프트를 보상하도록 한 것이다.That is, in order to compensate for the shift in the control air-fuel ratio caused by deterioration of the oxygen sensor installed upstream of the three-way catalyst device, the air-fuel ratio lean / rich of the oxygen sensor provided upstream of the three-way catalyst device is not added or subtracted. The learning logic for adjusting the determination threshold V_ref up or down is applied to compensate for the shift in the air-fuel ratio.
도 1은 본 발명에 따른 공연비 제어를 위한 학습장치에 대한 개략적 구성도.1 is a schematic configuration diagram of a learning apparatus for air-fuel ratio control according to the present invention.
도 2는 본 발명에 따라 공연비 제어를 위한 학습 수행의 일 실시예 흐름도.2 is a flow diagram of an embodiment of performing learning for air-fuel ratio control in accordance with the present invention.
도 3은 본 발명에 따른 공연비 제어 학습 과정에서 상류측 산소센서의 기준값을 희박한 방향으로 학습한 상태도.3 is a state diagram in which the reference value of the upstream oxygen sensor is learned in a lean direction in the air-fuel ratio control learning process according to the present invention.
도 4는 본 발명에 따른 공연비 제어 학습 과정에서 상류측 산소센서의 기준값을 농후한 방향으로 학습한 상태도.Figure 4 is a state diagram learning in a rich direction the reference value of the upstream oxygen sensor in the air-fuel ratio control learning process according to the present invention.
상기와 같은 목적을 실현하기 위한 본 발명은 엔진 시동후 피드백 제어 조건이 활성화되면 삼원 촉매장치의 상류측에 설치된 산소센서의 검출 신호를 분석하여 공연비의 희박/농후를 판정하는 과정과; 상기의 판정 결과에 따라 P-I게인 적용을 통한 연료량 증감 보정으로 이론 공연비 연소 제어를 수행하는 과정과; 상기 삼원 촉매장치의 하류측에 설치된 산소센서의 검출 신호를 분석하여 공연비의 희박/농후를 판정하는 과정과; 상기의 판정 결과에 따라 상류측 산소센서의 공연비 판정 기준값을 학습하여 적용하는 과정을 포함한다.The present invention for realizing the above object is the process of determining the lean / rich air-fuel ratio by analyzing the detection signal of the oxygen sensor installed on the upstream side of the three-way catalyst device when the feedback control conditions after engine start is activated; Performing theoretical air-fuel ratio combustion control by correcting the increase and decrease of the fuel amount by applying the P-I gain according to the determination result; Analyzing the detection signal of the oxygen sensor installed downstream of the three-way catalytic device to determine the lean / rich of the air-fuel ratio; And learning and applying the air-fuel ratio determination reference value of the upstream oxygen sensor according to the determination result.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1에서 알 수 있는 바와 같이, 본 발명에 따라 공연비 제어를 위한 학습장치는, 연소 가스에 포함되어 있는 NOx, HC, CO 등의 유해 물질을 대기로 배출시키기 전에 정화시키는 삼원 촉매장치(10)와, 상기 삼원 촉매장치(10)의 상류측에 설치되며, 연소 가스에 포함되어 있는 산소 농도를 검출하는 제1산소센서(20)와, 상기 삼원 촉매장치(10)의 하류측에 설치되며, 정화된 다음 대기중으로 배출되는 배기가스에 포함되어 있는 산소 농도를 검출하는 제2산소센서(30)와, 상기 제1,제2산소 센서(20)(30)의 신호를 분석하여 현재의 연료량에 대한 희박/농후 여부를 판정한 후 공연비로의 연소를 제어한다.As can be seen in Figure 1, the learning device for controlling the air-fuel ratio according to the present invention, the three-way catalytic device 10 for purifying the harmful substances such as NOx, HC, CO contained in the combustion gas before discharge to the atmosphere And a first oxygen sensor 20 which is installed upstream of the three-way catalyst device 10 and detects an oxygen concentration contained in the combustion gas, and a downstream of the three-way catalyst device 10, The signal of the second oxygen sensor 30 and the first and second oxygen sensors 20 and 30 which detects the oxygen concentration contained in the exhaust gas purged and then discharged into the atmosphere is analyzed to the current fuel amount. After determining whether the lean / rich, the combustion to the air-fuel ratio is controlled.
또한, 제어부(40)는 상기 삼원 촉매장치(10)의 상류측에 설치된 산소 센서(20)의 열화에 의한 공연비의 시프트를 보상하기 위하여 삼원 촉매장치(10)의 하류측에 설치된 산소 센서(30)의 산소 농도로부터 공연비를 측정하여 이 값이 농후하면 P-I 게인의 희박 방향 지연 시간값을 증가시키고, 반대로 삼원 촉매장치(10)의 하류측에 설치된 산소 센서(30)의 산소 농도로부터 공연비를 측정하여 이 값이 희박하면 P-I 게인의 농후 방향 지연 시간값을 증가시키는 공연비를 제어한다.In addition, the control unit 40 is provided with an oxygen sensor 30 installed downstream of the three-way catalyst device 10 to compensate for the shift in the air-fuel ratio due to deterioration of the oxygen sensor 20 provided upstream of the three-way catalyst device 10. If the air-fuel ratio is measured from the oxygen concentration of), the lean direction delay time value of the PI gain is increased, and the air-fuel ratio is measured from the oxygen concentration of the oxygen sensor 30 installed downstream of the three-way catalytic device 10. Therefore, if this value is sparse, it controls the air-fuel ratio which increases the rich direction delay time value of PI gain.
즉, P-I 게인의 지연 시간값을 가감시키지 않고, 삼원 촉매장치(10)의 상류측에 설치된 산소 센서(10)의 공연비 희박/농후 판정 기준값을 상향 또는 하향 조정하는 학습으로 공연비의 시프트를 보상한다.That is, the shift of the air-fuel ratio is compensated by learning to adjust the air-fuel ratio lean / rich determination reference value of the oxygen sensor 10 provided upstream of the three-way catalytic device 10 without increasing or decreasing the delay time value of the PI gain. .
상기한 바와 같은 기능을 포함하는 본 발명의 동작은 다음과 같이 수행된다.The operation of the present invention including the function as described above is performed as follows.
엔진 시동후 충분한 웜업으로 공연비 피드백 제어 조건이 활성화되면(S101), 제어부(40)는 삼원 촉매장치(10)의 상류측에 설치된 제1산소센서(20)로부터 검출되는 산소 농도에 대한 신호를 설정된 맵을 통해 분석하여 희박 혹은 농후의 공연비 제어 상태인지를 판단한다(S102).When the air-fuel ratio feedback control condition is activated with sufficient warm-up after the engine is started (S101), the controller 40 sets a signal for the oxygen concentration detected from the first oxygen sensor 20 installed upstream of the three-way catalytic device 10. The analysis is performed through the map to determine whether the air-fuel ratio control is lean or rich (S102).
이때, 농후한 공연비의 제어 상태인 것으로 판단되면 제어부(40)는 설정된 맵을 통해 희박 방향으로 P-I 게인을 적용한 연료량 감소 제어를 통해 이론 공연비의 연소가 이루어질 수 있도록 하고(S103), 희박한 공연비의 제어 상태인 것으로 판단되면 제어부(40)는 설정된 맵을 통해 농후 방향으로 P-I 게인을 적용한 연료량 증가 제어를 통해 이론 공연비의 연소가 이루어질 수 있도록 한다(S104).At this time, when it is determined that the control of the rich air-fuel ratio, the control unit 40 allows combustion of the theoretical air-fuel ratio by controlling the amount of fuel applied by the PI gain in the lean direction through the set map (S103), and controlling the lean air-fuel ratio. If it is determined that the state is in the control unit 40 allows the combustion of the theoretical air-fuel ratio through the fuel amount increase control by applying the PI gain in the rich direction through the set map (S104).
상기와 같이 삼원 촉매장치(10)의 상류측에 설치된 제1산소센서(20)의 신호에 따라 이론 공연비로의 제어를 수행하는 상태에서 삼원 촉매장치(10)의 하류측에 설치된 제2산소센서(30)로부터 검출되는 산소 농도에 대한 신호를 설정된 맵을 통해 분석하여 희박 혹은 농후의 제어 상태인지를 판단한다(S105).The second oxygen sensor installed on the downstream side of the three-way catalyst device 10 in the state of performing the control to the theoretical air-fuel ratio according to the signal of the first oxygen sensor 20 installed on the upstream side of the three-way catalyst device 10 as described above. The signal for the oxygen concentration detected from 30 is analyzed through the set map to determine whether it is a lean or rich control state (S105).
이때, 제2산소센서(30)로부터 검출되는 출력값이 농후한 상태를 유지하고 있을 경우에는 도 3에서 알 수 있는 바와 같이 삼원 촉매장치(10)의 상류측에 설치된 제1산소센서(20)의 공연비 판단 기준값(V_ref)을 희박한 방향으로 학습하고(V_ref_new = V_ref_old - dV/dT), 삼원 촉매장치(10)의 상류측에 설치된 제1산소 센서(20)에 의한 공연비 제어시에 공연비를 희박한 방향으로 제어하는 지연 시간값을 증가시킨다(S106).At this time, when the output value detected from the second oxygen sensor 30 is maintained in a rich state, as can be seen in Figure 3 of the first oxygen sensor 20 installed upstream of the three-way catalytic device 10 The air-fuel ratio determination reference value V_ref is learned in a lean direction (V_ref_new = V_ref_old-dV / dT), and the air-fuel ratio is lean in the air-fuel ratio control by the first oxygen sensor 20 installed upstream of the three-way catalyst device 10. The delay time value to be controlled is increased (S106).
상기에서 삼원 촉매장치(10)의 하류측에 설치된 제2산소센서(30)로부터 검출되는 출력값이 희박한 상태를 유지하고 있을 경우에는 도 4에서 알 수 있는 바와 같이 삼원 촉매장치(10)의 상류측에 설치된 제1산소센서(20)의 공연비 판정 기준값(V_ref)을 농후한 방향으로 학습하고(V_ref_new = V_ref_old + dV/dT), 삼원 촉매장치(10)의 상류측에 설치된 제1산소센서(20)에 의한 공연비 제어시에 공연비를 농후한 방향으로 제어하는 지연 시간값을 증가시킨다(S109).In the case where the output value detected from the second oxygen sensor 30 installed downstream of the three-way catalytic device 10 is maintained in a lean state, as shown in FIG. 4, the upstream side of the three-way catalytic device 10 is shown. Learning the air-fuel ratio determination reference value (V_ref) of the first oxygen sensor 20 installed in the rich direction (V_ref_new = V_ref_old + dV / dT), the first oxygen sensor 20 installed upstream of the three-way catalytic device 10 The delay time value for controlling the air-fuel ratio in the rich direction at the time of controlling the air-fuel ratio by the step (S109) is increased.
상기에서 dV는 V_ref의 한 스텝(Step)값이고, dT는 일정 시간 간격을 의미한다.In the above, dV is a step value of V_ref, and dT means a predetermined time interval.
상기와 같이 제1산소센서(20)에 대한 희박/농후 판정에 대한 기준값의 학습이 수행되면, 상기 S106에서 희박 방향으로의 학습값(V_ref_new)이 설정된 하한치(V_ref_min) 보다 작은 값을 갖는지를 판단하여(S108), 하한치 이하이면 하한치 값을 희박 방향으로의 학습값으로 설정하고, 하한치 이상이면 현재의 값을 그대로 적용한다(S110).As described above, when the learning of the reference value for the lean / rich determination with respect to the first oxygen sensor 20 is performed, it is determined whether the learning value V_ref_new in the lean direction has a value smaller than the set lower limit value V_ref_min in S106. (S108), the lower limit value is set as the learning value in the lean direction if it is lower than the lower limit value, and the current value is applied as it is (S110).
또한, 상기 S107에서 농후 방향으로의 학습값(V_ref_new)이 설정된 상한치(V_ref_max) 보다 큰 값을 갖는지를 판단하여(S109), 상한치 이상이면 상한치 값을 농후 방향으로의 학습값으로 설정하고, 상한치 이하이면 현재의 값을 그대로 적용한다(S111).Further, in step S107, it is determined whether the learning value V_ref_new in the rich direction has a value larger than the set upper limit value V_ref_max (S109). If the learning value V_ref_max is greater than or equal to the upper limit value, the upper limit value is set as the learning value in the rich direction, and is less than or equal to the upper limit value. If so, the current value is applied as it is (S111).
이상에서 설명한 바와 같이 본 발명은 종래에 수행하는 희박/농후에 대한 공연비 제어 지연 시간값을 각각 매핑하고, 학습 제어시 이 두 지연 시간값을 가감시키는 방법에 비해 초기 희박/농후의 판단 기준값(V_ref)을 선정후 학습에 사용되는시간 간격 dT와 증가치 dV만 설정함으로써 간단한 로직의 적용으로 동일한 기능을 수행한다.As described above, the present invention maps the air-fuel ratio control delay time values for the lean / rich, which is conventionally performed, and the initial lean / rich judgment reference value (V_ref) as compared to the method of adding or subtracting the two delay time values during the learning control. ) And select the time interval dT and the increment dV used for learning.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020074853A KR20040046823A (en) | 2002-11-28 | 2002-11-28 | A method of air fuel raio control learning on vehicle engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020074853A KR20040046823A (en) | 2002-11-28 | 2002-11-28 | A method of air fuel raio control learning on vehicle engine |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040046823A true KR20040046823A (en) | 2004-06-05 |
Family
ID=37342328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020074853A KR20040046823A (en) | 2002-11-28 | 2002-11-28 | A method of air fuel raio control learning on vehicle engine |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040046823A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5115639A (en) * | 1991-06-28 | 1992-05-26 | Ford Motor Company | Dual EGO sensor closed loop fuel control |
KR940009505A (en) * | 1992-10-20 | 1994-05-20 | 나까무라 유이찌 | Air-fuel ratio control device of internal combustion engine |
JPH09112310A (en) * | 1995-10-13 | 1997-04-28 | Nissan Motor Co Ltd | Air-fuel ratio controller for internal combustion engine |
KR19980049809A (en) * | 1996-12-20 | 1998-09-15 | 박병재 | Air-fuel ratio control device using dual oxygen sensor and its method |
JP2000097081A (en) * | 1998-09-24 | 2000-04-04 | Denso Corp | Air-fuel ratio control device of internal-combustion engine |
US6470674B1 (en) * | 1999-11-08 | 2002-10-29 | Denso Corporation | Deterioration detecting apparatus and method for engine exhaust gas purifying device |
KR20030031758A (en) * | 2001-10-16 | 2003-04-23 | 현대자동차주식회사 | A method for ignition timing controlling of engine in vehicle |
-
2002
- 2002-11-28 KR KR1020020074853A patent/KR20040046823A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5115639A (en) * | 1991-06-28 | 1992-05-26 | Ford Motor Company | Dual EGO sensor closed loop fuel control |
KR940009505A (en) * | 1992-10-20 | 1994-05-20 | 나까무라 유이찌 | Air-fuel ratio control device of internal combustion engine |
JPH09112310A (en) * | 1995-10-13 | 1997-04-28 | Nissan Motor Co Ltd | Air-fuel ratio controller for internal combustion engine |
KR19980049809A (en) * | 1996-12-20 | 1998-09-15 | 박병재 | Air-fuel ratio control device using dual oxygen sensor and its method |
JP2000097081A (en) * | 1998-09-24 | 2000-04-04 | Denso Corp | Air-fuel ratio control device of internal-combustion engine |
US6470674B1 (en) * | 1999-11-08 | 2002-10-29 | Denso Corporation | Deterioration detecting apparatus and method for engine exhaust gas purifying device |
KR20030031758A (en) * | 2001-10-16 | 2003-04-23 | 현대자동차주식회사 | A method for ignition timing controlling of engine in vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6301878B1 (en) | Method and apparatus for exhaust gas cleaning with trim control | |
US6079203A (en) | Apparatus and method for detecting deterioration of NOx catalyst in diesel engine | |
US7520274B2 (en) | Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine | |
JP5282844B2 (en) | Catalyst degradation detector | |
JP3759567B2 (en) | Catalyst degradation state detection device | |
US7013214B2 (en) | Air-fuel ratio feedback control apparatus and method for internal combustion engine | |
KR20210077433A (en) | Exhaust gas purification apparatus using three way catalyst and method for controlling the same | |
JP2004069457A (en) | Apparatus for detecting degradation of air/fuel ratio detecting device | |
US20040107696A1 (en) | Open loop fuel controller | |
JPH06200801A (en) | Air-fuel ratio control device for internal combustion engine | |
KR20180090759A (en) | Method for heating and regenerating a particulate filter in an exhaust gas of an otto engine | |
JP2946886B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR20040046823A (en) | A method of air fuel raio control learning on vehicle engine | |
KR100287695B1 (en) | Method for compensating fuel during acceleration | |
JPH08158915A (en) | Air fuel ratio control device for internal combustion engine | |
KR100520517B1 (en) | Method for oxygen remove on catalyst of vehicle | |
KR100412681B1 (en) | Air/fuel ratio feedback controlling method of engine | |
JP2006126218A (en) | Deterioration detector for air-fuel ratio detection device | |
JP3075025B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
JPH06347437A (en) | Control device for determining deterioration of air-fuel ratio sensor | |
JP2020026756A (en) | Engine control device and engine control method | |
KR100612967B1 (en) | Oxygen sensor deterioration compensation control method | |
KR20040046822A (en) | A method for air fuel raio control of go with sustenance on vehicle | |
JPH05312074A (en) | Air-fuel ratio controller of internal combustion engine | |
JP3775570B2 (en) | Air-fuel ratio control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |