JP3775570B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP3775570B2
JP3775570B2 JP2001027812A JP2001027812A JP3775570B2 JP 3775570 B2 JP3775570 B2 JP 3775570B2 JP 2001027812 A JP2001027812 A JP 2001027812A JP 2001027812 A JP2001027812 A JP 2001027812A JP 3775570 B2 JP3775570 B2 JP 3775570B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
gas sensor
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001027812A
Other languages
Japanese (ja)
Other versions
JP2002227691A (en
Inventor
池本  宣昭
洋祐 石川
幸一 清水
飯田  寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001027812A priority Critical patent/JP3775570B2/en
Priority to US09/998,641 priority patent/US6530214B2/en
Publication of JP2002227691A publication Critical patent/JP2002227691A/en
Application granted granted Critical
Publication of JP3775570B2 publication Critical patent/JP3775570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用の触媒の上流側と下流側にそれぞれ空燃比センサ(リニアA/Fセンサ)又は酸素センサを設置して内燃機関の空燃比をフィードバック制御する内燃機関の空燃比制御装置に関するものである。
【0002】
【従来の技術】
今日の自動車は、排気管に三元触媒を設置して排ガスを浄化するようにしているが、触媒の排ガス浄化率を高めるためには、排ガスの空燃比を触媒の浄化ウインド内(理論空燃比付近)に制御する必要がある。そこで、触媒の上流側と下流側にそれぞれ排ガスセンサ(空燃比センサ又は酸素センサ)を設置し、上流側排ガスセンサで検出される排ガスの空燃比が上流側目標空燃比となるように燃料噴射量をフィードバック制御すると共に、下流側排ガスセンサで検出される排ガスの空燃比が下流側目標空燃比となるように上流側目標空燃比を補正するサブフィードバック制御を実施するようにしたものがある。
【0003】
このようなメイン/サブフィードバックシステムでは、特許第2518247号公報に示すように、下流側排ガスセンサの検出空燃比と下流側目標空燃比との偏差が大きくなるほど、空燃比フィードバック制御定数(例えばスキップ量)の更新量を大きくすることが提案されている。
【0004】
【発明が解決しようとする課題】
ところで、触媒の動特性は、触媒の劣化度合、触媒内のリーン/リッチ成分吸着状態、エンジン運転状態によって変化するが、上記従来のメイン/サブフィードバックシステムでは、触媒の動特性の変化に対するサブフィードバック制御の応答性が十分とは言えない。このため、触媒の動特性の変化に対してサブフィードバック制御の応答遅れが発生して触媒下流側の空燃比(下流側排ガスセンサの出力)が不安定となり、ハンチングが発生する可能性がある。
【0005】
そこで、本発明者らは、この欠点を解消するために、特願2000−404671号の明細書に記載されているように、下流側排ガスセンサの過去の検出空燃比と最終的な下流側目標空燃比とに基づいてサブフィードバック制御の中間目標値を設定し、下流側排ガスセンサの検出空燃比と前記中間目標値との偏差に基づいて上流側目標空燃比を補正するサブフィードバック制御を行うシステムを実用化に向けて開発中である。
【0006】
このシステムを実用化にするに当たって、次のような新たな技術的課題が判明している。一般に、下流側排ガスセンサは、図4に示すように排ガスの空燃比がリッチかリーンかで出力特性が反転する酸素センサ(O2 センサ)が用いられている。この酸素センサの出力特性はZ特性と称され、空燃比が理論空燃比(空気過剰率λ=1)付近の領域、つまり酸素センサの出力電圧が0.3〜0.7Vの領域では、空燃比の変化が小さくても、酸素センサの出力電圧が急激に変化し、反対に、出力電圧が0.7V以上のリッチ域や、0.3V以下のリーン域では、空燃比の変化に対する酸素センサの出力電圧の変化が小さくなる特性がある。
【0007】
このようなZ特性の酸素センサの出力電圧をそのまま用いて中間目標値(中間目標電圧)を設定して、サブフィードバック制御を行うと、0.7V以上のリッチ域や、0.3V以下のリーン域では、空燃比の変化に対する酸素センサの出力電圧の変化が小さいため、実際の空燃比の変化量に対して、中間目標値(中間目標電圧)の更新量が小さくなり、空燃比の変化に対してサブフィードバック制御の応答が遅くなってしまい、その応答遅れによって、0.7V以上のリッチ域では、HC、COの排出量が増加し、0.3V以下のリーン域では、NOxの排出量が増加する欠点がある。
【0008】
また、理論空燃比付近(0.3〜0.7V)の領域では、空燃比の変化に対する酸素センサの出力電圧の変化が急峻であるため、空燃比の変化に対して中間目標値(中間目標電圧)の更新量が大きくなりすぎて、ハンチングが発生しやすくなり、サブフィードバック制御の安定性が低下する欠点がある。
【0009】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、中間目標値を用いてメイン/サブフィードバック制御を行うシステムにおいて、下流側排ガスセンサの出力特性の影響を補償して、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサの出力特性に左右されない安定した排ガス浄化性能を確保することができる内燃機関の空燃比制御装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の空燃比制御装置は、下流側排ガスセンサの過去の検出空燃比と現在制御されるべき最終的な下流側目標空燃比とに基づいて当該過去の検出空燃比と最終的な下流側目標空燃比との間に位置する中間目標値を設定し、下流側排ガスセンサの検出空燃比と前記中間目標値との偏差に基づいて上流側目標空燃比を補正するサブフィードバック制御を行うものにおいて、下流側排ガスセンサの出力に応じて、前記中間目標値の更新量、更新速度、前記サブフィードバック制御の制御ゲイン、制御周期、制御範囲のうちの少なくとも1つを制御補正手段によって変更するようにしたものである。このようにすれば、下流側排ガスセンサの出力特性がリニアな特性でなくても、その出力特性の影響を補償する適正な制御条件に変更することで、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサの出力特性に左右されない安定した排ガス浄化性能を確保することができる。
【0011】
この場合、請求項2のように、下流側排ガスセンサの過去の検出空燃比と最終的な下流側目標空燃比との偏差に減衰率を乗算した値と、最終的な下流側目標空燃比とを加算して中間目標値を求め、下流側排ガスセンサの出力に応じて減衰率を変更するようにしても良い。このようにすれば、中間目標値を簡単な演算処理で設定できると共に、下流側排ガスセンサの出力特性の影響を補償するための制御条件の変更を、簡単な演算処理で行うことができる。
【0012】
また、請求項3のように、下流側排ガスセンサの検出空燃比と中間目標値との偏差に対する比例積分動作で演算した値を所定の制御範囲内に制限することで、上流側目標空燃比の補正量を求め、下流側排ガスセンサの出力に応じて比例積分動作のゲイン(制御ゲイン)及び/又は制御範囲を変更するようにしても良い。このようにすれば、触媒の動特性の変化を上流側目標空燃比の補正量に応答良く反映させることができると共に、下流側排ガスセンサの出力特性の影響を補償するための制御条件の変更を、簡単な演算処理で行うことができる。
【0013】
また、請求項4のように、リニアライズ手段によって下流側排ガスセンサの出力を該下流側排ガスセンサの出力特性に応じてリニアライズ化した空燃比検出値を用いて、中間目標値を算出するようにしても良い。このようにすれば、下流側排ガスセンサの出力特性(空燃比の検出特性)がZ特性であっても、その出力特性をリニアな特性に変換した空燃比検出値を用いて中間目標値を算出することができるので、下流側排ガスセンサの出力特性の影響を補償して、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサの出力特性に左右されない安定した排ガス浄化性能を確保することができる。
【0014】
また、請求項5のように、下流側排ガスセンサの過去の検出空燃比と最終的な下流側目標空燃比とに基づいて設定した中間目標値を、下流側排ガスセンサの出力特性に応じて補正するようにしても、同様の効果を得ることができる。
【0015】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1乃至図7に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側には、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、スロットルバルブ15が設けられている。
【0016】
更に、スロットルバルブ15の下流側にはサージタンク17が設けられ、このサージタンク17に、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられている。各気筒の吸気マニホールド19の吸気ポート近傍には、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、気筒毎に点火プラグ21が取り付けられている。
【0017】
一方、エンジン11の排気管22の途中には、排ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設置されている。この触媒23の上流側と下流側には、それぞれ排ガス空燃比又はリッチ/リーンを検出する排ガスセンサ24,25が設置されている。本実施形態では、上流側排ガスセンサ24は、排ガス空燃比に応じたリニアな空燃比信号を出力する空燃比センサ(リニアA/Fセンサ)が用いられ、下流側排ガスセンサ25は、図4に示すように、排ガスの空燃比が理論空燃比(空気過剰率λ=1)に対してリッチかリーンかによって出力特性が反転する酸素センサ(O2 センサ)が用いられている。従って、下流側排ガスセンサ25は、空燃比がリーンの領域では、0.1〜0.3V程度の出力電圧を発生し、空燃比がリッチの領域では、0.7〜0.9V程度の出力電圧を発生する。尚、エンジン11のシリンダブロックには、冷却水温を検出する水温センサ26や、エンジン回転速度を検出する回転速度センサ27が取り付けられている。
【0018】
エンジン制御回路(以下「ECU」と表記する)28は、ROM29、RAM30、CPU31、バッテリ32でバックアップされたバックアップRAM33、入力ポート34、出力ポート35等からなるマイクロコンピュータを主体として構成されている。入力ポート34には、回転速度センサ27の出力信号が入力されると共に、エアフローメータ14、上流側及び下流側排ガスセンサ24,25、水温センサ26の出力信号が、それぞれA/D変換器36を介して入力される。また、出力ポート35には、駆動回路39を介して燃料噴射弁20、点火プラグ21等が接続されている。
【0019】
ECU28は、ROM29に記憶された燃料噴射制御プログラムや点火制御プログラムをCPU31で実行することで、燃料噴射弁20や点火プラグ21の動作を制御すると共に、空燃比制御プログラムを実行することで、排ガスの空燃比が目標空燃比となるように空燃比(燃料噴射量)をフィードバック制御する。
【0020】
以下、本実施形態(1)の空燃比フィードバック制御システムについて図2及び図3に基づいて説明する。ここで、図2はCPU31の演算処理機能で実現する空燃比制御手段40の機能を示すブロック図、図3は空燃比フィードバック制御システム全体の機能を示すブロック図である。
【0021】
空燃比制御手段40は、燃料噴射量フィードバック制御部41と目標空燃比計算部42とから構成され、目標空燃比計算部42は、負荷目標空燃比計算部43と目標空燃比補正部44とから構成されている。
【0022】
燃料噴射量フィードバック制御部41は、上流側排ガスセンサ24の検出空燃比AFが上流側目標空燃比AFref に収束するように、燃料噴射弁20の燃料噴射時間Tinj を算出する。この燃料噴射時間Tinj の算出は、制御対象のモデルの線形方程式に対して構築された最適レギュレータにより行われる。この燃料噴射量フィードバック制御部41が、特許請求の範囲でいう空燃比フィードバック制御手段に相当する役割を果たす。
【0023】
一方、負荷目標空燃比計算部43は、ROM29に記憶された関数式又はマップにより吸入空気量(又は吸気管圧力)とエンジン回転速度に応じた負荷目標空燃比AFbaseを算出する。この負荷目標空燃比AFbaseを算出するための関数式又はマップは、下流側排ガスセンサ25の出力O2out(検出空燃比)が定常的にほぼ最終目標値O2targ (最終的な下流側目標空燃比)と等しいときに、上流側目標空燃比AFref を負荷目標空燃比AFbaseに維持すれば、下流側排ガスセンサ25の出力O2outが最終目標値O2targ 付近に維持されるように予め試験等によって設定されている。
【0024】
また、目標空燃比補正部44は、下流側排ガスセンサ25の出力O2outに基づいて、後述する中間目標値O2midtargを用いて上流側目標空燃比AFref の補正量AFcompを算出する。そして、この補正量AFcompを負荷目標空燃比AFbaseに加算することにより、上流側目標空燃比AFref を求め、この上流側目標空燃比AFref を燃料噴射量フィードバック制御部41に入力する。
AFref =AFbase+AFcomp
尚、上式に代えて、次式により上流側目標空燃比AFref を算出しても良い。
AFref =(1+AFcomp)×AFbase
【0025】
この場合、目標空燃比計算部42(負荷目標空燃比計算部43と目標空燃比補正部44)が、特許請求の範囲でいうサブフィードバック制御手段に相当する役割を果たす。
【0026】
次に、目標空燃比補正部44で中間目標値O2midtargを設定して上流側目標空燃比AFref の補正量AFcompを算出する方法を図3に基づいて説明する。
制御対象を燃料噴射量フィードバック制御部41、燃料噴射弁20、エンジン11、触媒23、下流側排ガスセンサ25等からなる系とする。目標空燃比補正部44は、時間遅れ要素(1/z)45、中間目標値計算部46、減衰率設定部47及び補正量計算部48から構成され、時間遅れ要素45は、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) を中間目標値計算部46に入力する。
【0027】
一方、中間目標値計算部46は、特許請求の範囲でいう中間目標値設定手段に相当する役割を果たし、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)(最終的な下流側目標空燃比)とに基づいて中間目標値O2midtarg(i) を下記の(1)式を用いて計算する。これにより、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)との間に中間目標値O2midtarg(i) が設定される。

Figure 0003775570
【0028】
上式において、O2targ(i)は今回の最終目標値、O2out(i-1) は前回演算時の下流側排ガスセンサ25の出力である。また、Kdec は減衰率であり、減衰率設定部47で、図5の減衰率設定マップを用いて、下流側排ガスセンサ25の出力O2out(i) に応じて0<Kdec <1の範囲内で設定される。
【0029】
図5の減衰率設定マップの特性は、図4に示す下流側排ガスセンサ25(酸素センサ)のZ型の出力特性の影響を補償するために、理論空燃比付近(0.3〜0.7V)の領域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が急峻であることを考慮して、減衰率Kdec が最大値(例えば0.98)に設定され、0.7V以上のリッチ域や、0.3V以下のリーン域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が小さいことを考慮して、リッチ、リーンの度合が強くなるほど、減衰率Kdec が小さくなるように設定されている。尚、減衰率設定部47は、特許請求の範囲でいう制御補正手段に相当する役割を果たす。
【0030】
以上のようにして、減衰率設定部47において、下流側排ガスセンサ25の出力O2out(i) に応じて設定した減衰率Kdec を用いて中間目標値計算部46で中間目標値O2midtarg(i) を計算した後、この中間目標値O2midtarg(i) を用いて次式により上流側目標空燃比AFref の補正量AFcomp(i) を算出する。
【0031】
Figure 0003775570
【0032】
上式において、Fsat は図6に示すような特性の飽和関数であり、補正量AFcomp(i) は、K1 ×ΔO2(i)+K2 ×Σ(ΔO2(i))の演算値を上限ガード値と下限ガード値でガード処理して求められる。上式において、K1 は比例ゲイン、K2 は積分ゲインである。K1 ×ΔO2(i)は比例項であり、中間目標値O2midtarg(i) と下流側排ガスセンサ25の出力O2out(i) との偏差ΔO2(i)が大きくなるほど、大きくなる。また、K2 ×ΣΔO2(i)は積分項であり、中間目標値O2midtarg(i) と下流側排ガスセンサ25の出力O2out(i) との偏差ΔO2(i)の積算値が大きくなるほど、大きくなる。補正量AFcomp(i) は、比例項と積分項を加算して求めた値を上限ガード値と下限ガード値でガード処理して求められる。
【0033】
以上説明した目標空燃比補正部44による補正量AFcomp(i) の算出は、図7の補正量算出プログラムに従って行われる。本プログラムは、所定時間毎又は所定クランク角毎に実行される。本プログラムが起動されると、まずステップ101で、現在の下流側排ガスセンサ25の出力O2out(i) を読み込み、次のステップ102で、図5の減衰率設定マップ(又は数式)を用いて、現在の下流側排ガスセンサ25の出力O2out(i) に応じて減衰率Kdec を設定する。
【0034】
そして、次のステップ103で、この減衰率Kdec を用いて前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)(最終的な下流側目標空燃比)とに基づいて中間目標値O2midtarg(i) を前記(1)式を用いて算出する。これにより、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)との間に中間目標値O2midtarg(i) が設定される。
【0035】
この後、ステップ104に進み、中間目標値O2midtarg(i) と下流側排ガスセンサ25の出力O2out(i) との偏差ΔO2(i)を算出する。
ΔO2(i)=O2midtarg(i) −O2out(i)
そして、次のステップ105で、前回までの偏差ΔO2 の積算値ΣΔO2(i-1)に今回の偏差ΔO2(i)を積算して、今回までの偏差ΔO2 の積算値ΣΔO2(i)を求める。
ΣΔO2(i)=ΣΔO2(i-1)+ΔO2(i)
【0036】
この後、ステップ106に進み、上流側目標空燃比AFref の補正量AFcomp(i) を次式により算出する。
AFcomp(i) =Fsat (K1 ×ΔO2(i)+K2 ×ΣΔO2(i))
これにより、上流側目標空燃比AFref の補正量AFcomp(i) は比例項(K1 ×ΔO2(i))と積分項(K2 ×ΣΔO2(i))を加算して求めた値を上限ガード値と下限ガード値でガード処理して求められる。
そして、次のステップ107で、今回のΔO2(i)とΣΔO2(i)をそれぞれ前回のΔO2(i-1)とΣΔO2(i-1)として記憶して本プログラムを終了する。
【0037】
エンジン運転中は、吸入空気量(又は吸気管圧力)とエンジン回転速度に応じた負荷目標空燃比AFbaseを算出し、上記図6の補正量算出プログラムで算出した補正量AFcompを負荷目標空燃比AFbaseに加算することで、上流側目標空燃比AFref を求め、上流側排ガスセンサ24の検出空燃比AFが上流側目標空燃比AFref に収束するように燃料噴射時間Tinj (燃料噴射量)を算出する。
【0038】
以上説明した本実施形態(1)によれば、排ガスの空燃比が理論空燃比付近の領域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が急峻であることを考慮して、減衰率Kdec を最大値に設定したので、空燃比の変化に対して中間目標値O2midtarg(i) の更新量が大きくなりすぎることを回避することができて、ハンチングを防止でき、理論空燃比付近のサブフィードバック制御の安定性を向上できる。しかも、リッチ域やリーン域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が小さいことを考慮して、リッチ、リーンの度合が強くなるほど、減衰率Kdec を小さくするように設定したので、中間目標値O2midtarg(i) の更新量を実際の空燃比の変化量に対応するように大きくすることができ、空燃比の変化に対してサブフィードバック制御を応答良く追従させることができ、リッチ域やリーン域での排気エミッションを低減することができる。
【0039】
従って、本実施形態(1)によれば、下流側排ガスセンサ25の出力特性がリニアな特性でなくても、その出力特性の影響を補償する適正な減衰率Kdec に変更することで、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサ25の出力特性に左右されない安定した排ガス浄化性能を確保することができる。
【0040】
尚、本実施形態(1)では、減衰率Kdec を変更することで、中間目標値O2midtarg(i) の更新量を変更するようにしたが、これ以外の方法で中間目標値O2midtarg(i) の更新量を変更するようにしても良い。
或は、下流側排ガスセンサ25の出力に応じて中間目標値O2midtarg(i) の更新周期(更新速度)を変更するようにしても良い。
【0041】
[実施形態(2)]
上記実施形態(1)では、下流側排ガスセンサ25の出力電圧に応じて減衰率Kdec を変更することで、下流側排ガスセンサ25の出力特性を補償するようにしたが、図8及び図9に示す本発明の実施形態(2)では、下流側排ガスセンサ25の出力に応じて比例・積分ゲインK1 ,K2 を変更することで、下流側排ガスセンサ25の出力特性を補償するようにしている。
【0042】
図8の比例ゲインK1 (積分ゲインK2 )を変更するマップの特性は、理論空燃比付近(0.3〜0.7V)の領域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が急峻であることを考慮して、比例ゲインK1 (積分ゲインK2 )が最小値に設定され、0.7V以上のリッチ域や、0.3V以下のリーン域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が小さいことを考慮して、リッチ、リーンの度合が強くなるほど、比例ゲインK1 (積分ゲインK2 )が大きくなるように設定されている。
【0043】
本実施形態(2)で用いる図9の補正量算出プログラムは、前記実施形態(1)で説明した図6の補正量算出プログラムのステップ102の処理をステップ102aの処理に変更したものであり、それ以外の各ステップの処理は同じである。図9の補正量算出プログラムでは、ステップ101で、現在の下流側排ガスセンサ25の出力O2out(i) を読み込んだ後、ステップ102aに進み、現在の下流側排ガスセンサ25の出力O2out(i) に応じて、図8のマップにより比例・積分ゲインK1 ,K2 を変更する。そして、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)とに基づいて中間目標値O2midtarg(i) を算出した後、上記ステップ102aで設定した比例・積分ゲインK1 ,K2 を用いて、上流側目標空燃比AFref の補正量AFcomp(i) を算出する(ステップ103〜106)。
【0044】
尚、本実施形態(2)では、減衰率Kdec は、演算処理の簡略化のために、固定値としても良い。また、中間目標値O2midtarg(i) を、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)とをパラメータとする二次元マップにより算出するようにしても良い。
【0045】
以上説明した本実施形態(2)では、下流側排ガスセンサ25の出力に応じて比例・積分ゲインK1 ,K2 を変更することで、下流側排ガスセンサ25の出力特性の影響を補償する適正な比例・積分ゲインK1 ,K2 に変更することができ、それによって、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサ25の出力特性に左右されない安定した排ガス浄化性能を確保することができる。
【0046】
[実施形態(3)]
図10及び図11に示す本発明の実施形態(3)では、下流側排ガスセンサ25の出力に応じて制御範囲(上限ガード値と下限ガード値)を変更することで、下流側排ガスセンサ25の出力特性を補償するようにしている。
【0047】
図10の制御範囲を変更するマップの特性は、理論空燃比付近(0.3〜0.7V)の領域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が急峻であることを考慮して、制御範囲(上限ガード値と下限ガード値)の幅が最も狭くなるように設定され、0.7V以上のリッチ域や、0.3V以下のリーン域では、空燃比の変化に対する下流側排ガスセンサ25の出力電圧の変化が小さいことを考慮して、リッチ、リーンの度合が強くなるほど、制御範囲(上限ガード値と下限ガード値)の幅が広くなるように設定されている。
【0048】
本実施形態(3)で用いる図11の補正量算出プログラムは、前記実施形態(1)で説明した図6の補正量算出プログラムのステップ102の処理をステップ102bの処理に変更したものであり、それ以外の各ステップの処理は同じである。図11の補正量算出プログラムでは、ステップ101で、現在の下流側排ガスセンサ25の出力O2out(i) を読み込んだ後、ステップ102bに進み、現在の下流側排ガスセンサ25の出力O2out(i) に応じて、図10のマップにより制御範囲(上限ガード値と下限ガード値)を変更する。そして、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)とに基づいて中間目標値O2midtarg(i) を算出した後、上記ステップ102bで設定した制御範囲(上限ガード値と下限ガード値)を用いて、上流側目標空燃比AFref の補正量AFcomp(i) をガード処理する(ステップ103〜106)。
【0049】
尚、本実施形態(3)では、前記実施形態(2)と同じく、減衰率Kdec は、演算処理の簡略化のために、固定値としても良い。また、中間目標値O2midtarg(i) を、前回演算時の下流側排ガスセンサ25の出力O2out(i-1) と最終目標値O2targ(i)とをパラメータとする二次元マップにより算出しても良い。
【0050】
以上説明した本実施形態(3)では、下流側排ガスセンサ25の出力に応じて制御範囲(上限ガード値と下限ガード値)を変更することで、下流側排ガスセンサ25の出力特性の影響を補償する適正な制御範囲に変更することができ、それによって、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサ25の出力特性に左右されない安定した排ガス浄化性能を確保することができる。
尚、下流側排ガスセンサ25の出力に応じてサブフィードバック制御の制御周期(補正量AFcomp(i) の演算周期)を変更するようにしても良い。
【0051】
[実施形態(4)]
本発明の実施形態(4)では、図12に示すマップを用いて、下流側排ガスセンサ25の出力を該下流側排ガスセンサ25の出力特性に応じてリニアライズ化して空燃比検出値を求め、この空燃比検出値を用いて、中間目標値を算出するようにしている。このようにすれば、下流側排ガスセンサ25の出力特性(空燃比の検出特性)がZ特性であっても、その出力特性をリニアな特性に変換した空燃比検出値を用いて中間目標値を算出することができるので、下流側排ガスセンサ25の出力特性の影響を補償して、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサ25の出力特性に左右されない安定した排ガス浄化性能を確保することができる。
【0052】
[実施形態(5)]
本発明の実施形態(5)では、下流側排ガスセンサ25の過去の出力と最終目標値とに基づいて設定した中間目標値を、下流側排ガスセンサ25の出力特性に応じて補正し、補正後の中間目標値を用いてサブフィードバック制御を実行するようにしている。このようにしても、下流側排ガスセンサ25の出力特性の影響を補償して、応答性と安定性とを両立させたサブフィードバック制御を行うことができ、下流側排ガスセンサ25の出力特性に左右されない安定した排ガス浄化性能を確保することができる。
【0053】
以上説明した各実施形態(1)〜(5)は、適宜組み合わせて実施するようにしても良い。
尚、下流側排ガスセンサ25は、酸素センサに代えて、空燃比センサ(リニアA/Fセンサ)を用いても良く、また、上流側排ガスセンサ24は、空燃比センサ(リニアA/Fセンサ)に代えて、酸素センサを用いても良い。
【0054】
また、前記各実施形態では、中間目標値O2midtarg(i) を算出する際に前回演算時の下流側排ガスセンサ25の出力O2out(i-1) を用いたが、所定演算回数前の下流側排ガスセンサ25の出力O2out(i-n) を用いても良い。
【0055】
その他、本発明は、中間目標値O2midtarg(i) の算出式や補正量AFcomp(i) の算出式を適宜変更しても良い等、種々変更して実施できることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の実施形態(1)を示すエンジン制御システム全体の概略構成図
【図2】ECUのCPUの演算処理機能で実現する空燃比制御手段の機能を示すブロック図
【図3】空燃比フィードバック制御システム全体の機能を示す機能ブロック図
【図4】下流側排ガスセンサ(酸素センサ)の出力特性を示す図
【図5】下流側排ガスセンサの出力に応じて減衰率Kdec を設定するマップを概念的に示す図
【図6】補正量AFcomp(i) を算出する飽和関数を説明する図
【図7】実施形態(1)の補正量算出プログラムの処理の流れを示すフローチャート
【図8】下流側排ガスセンサの出力に応じて比例ゲインK1 (積分ゲインK2 )を設定するマップを概念的に示す図
【図9】実施形態(2)の補正量算出プログラムの処理の流れを示すフローチャート
【図10】下流側排ガスセンサの出力に応じて制御範囲を設定するマップを概念的に示す図
【図11】実施形態(3)の補正量算出プログラムの処理の流れを示すフローチャート
【図12】下流側排ガスセンサの出力を該下流側排ガスセンサの出力特性に応じてリニアライズ化するためのマップを概念的に示す図
【符号の説明】
11…エンジン(内燃機関)、20…燃料噴射弁、22…排気管、23…触媒、24…上流側排ガスセンサ、25…下流側排ガスセンサ、28…ECU(空燃比フィードバック制御手段,サブフィードバック制御手段,中間目標値設定手段)、31…CPU、40…空燃比制御手段、41…燃料噴射量フィードバック制御部(空燃比フィードバック制御手段)、42…目標空燃比計算部(サブフィードバック制御手段)、43…負荷目標空燃比計算部、44…目標空燃比補正部、45…時間遅れ要素(1/z)、46…中間目標値計算部(中間目標値設定手段)、47…減衰率設定部(制御補正手段)、47…補正量計算部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine in which an air-fuel ratio sensor (linear A / F sensor) or an oxygen sensor is installed on the upstream side and the downstream side of the exhaust gas purification catalyst to feedback control the air-fuel ratio of the internal combustion engine. It is about.
[0002]
[Prior art]
In today's automobiles, a three-way catalyst is installed in the exhaust pipe to purify the exhaust gas. To increase the exhaust gas purification rate of the catalyst, the air-fuel ratio of the exhaust gas is set within the catalyst purification window (theoretical air-fuel ratio). Must be controlled in the vicinity). Therefore, an exhaust gas sensor (air-fuel ratio sensor or oxygen sensor) is installed on each of the upstream and downstream sides of the catalyst, and the fuel injection amount is set so that the air-fuel ratio of the exhaust gas detected by the upstream exhaust gas sensor becomes the upstream target air-fuel ratio. And the sub-feedback control for correcting the upstream target air-fuel ratio so that the air-fuel ratio of the exhaust gas detected by the downstream exhaust gas sensor becomes the downstream target air-fuel ratio.
[0003]
In such a main / sub feedback system, as shown in Japanese Patent No. 2518247, as the deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the downstream target air-fuel ratio increases, the air-fuel ratio feedback control constant (for example, skip amount) ) Has been proposed to increase the amount of updates.
[0004]
[Problems to be solved by the invention]
Incidentally, the dynamic characteristics of the catalyst vary depending on the deterioration degree of the catalyst, the lean / rich component adsorption state in the catalyst, and the engine operating state. However, in the above-described conventional main / sub feedback system, the sub feedback for the change in the dynamic characteristics of the catalyst. Control responsiveness is not sufficient. For this reason, a response delay of the sub-feedback control occurs with respect to a change in the dynamic characteristics of the catalyst, the air-fuel ratio (output of the downstream side exhaust gas sensor) on the downstream side of the catalyst becomes unstable, and hunting may occur.
[0005]
Therefore, in order to eliminate this drawback, the present inventors have disclosed the past detected air-fuel ratio and the final downstream target of the downstream exhaust gas sensor, as described in the specification of Japanese Patent Application No. 2000-404671. A system for performing sub-feedback control in which an intermediate target value for sub-feedback control is set based on the air-fuel ratio and the upstream target air-fuel ratio is corrected based on a deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value Is under development for practical use.
[0006]
In putting this system into practical use, the following new technical issues have been identified. In general, as shown in FIG. 4, the downstream side exhaust gas sensor is an oxygen sensor (O) whose output characteristics are inverted depending on whether the air-fuel ratio of exhaust gas is rich or lean. 2 Sensor) is used. The output characteristic of this oxygen sensor is called Z characteristic. In the region where the air-fuel ratio is near the stoichiometric air-fuel ratio (excess air ratio λ = 1), that is, in the region where the output voltage of the oxygen sensor is 0.3 to 0.7 V, the oxygen sensor Even if the change in the fuel ratio is small, the output voltage of the oxygen sensor changes abruptly. On the other hand, in the rich region where the output voltage is 0.7V or higher or the lean region where the output voltage is 0.3V or lower, the oxygen sensor against the change in the air-fuel ratio There is a characteristic in which the change in the output voltage is small.
[0007]
When sub-feedback control is performed by setting the intermediate target value (intermediate target voltage) using the output voltage of the oxygen sensor having such a Z characteristic as it is, a lean region of 0.7 V or more, or a lean value of 0.3 V or less In the region, since the change in the output voltage of the oxygen sensor with respect to the change in the air-fuel ratio is small, the update amount of the intermediate target value (intermediate target voltage) is smaller than the actual change in the air-fuel ratio, and the change in the air-fuel ratio On the other hand, the response of the sub-feedback control is delayed, and due to the response delay, the HC and CO emissions increase in the rich region above 0.7V, and the NOx emissions in the lean region below 0.3V. Has the disadvantage of increasing.
[0008]
In the region near the theoretical air-fuel ratio (0.3 to 0.7 V), the change in the output voltage of the oxygen sensor with respect to the change in the air-fuel ratio is steep. There is a drawback that the amount of renewal of (voltage) becomes too large, hunting is likely to occur, and the stability of the sub feedback control is lowered.
[0009]
The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to compensate for the influence of the output characteristics of the downstream side exhaust gas sensor in a system that performs main / sub feedback control using intermediate target values. An air-fuel ratio control device for an internal combustion engine that can perform sub-feedback control that achieves both responsiveness and stability, and can ensure stable exhaust gas purification performance that is not affected by the output characteristics of the downstream exhaust gas sensor. It is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an air-fuel ratio control apparatus for an internal combustion engine according to claim 1 of the present invention provides a past detected air-fuel ratio of a downstream exhaust gas sensor. Should be controlled now Based on the final downstream target air-fuel ratio Located between the past detected air-fuel ratio and the final downstream target air-fuel ratio An intermediate target value is set, and sub-feedback control is performed to correct the upstream target air-fuel ratio based on the deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value. Thus, at least one of the update amount of the intermediate target value, the update speed, the control gain of the sub feedback control, the control cycle, and the control range is changed by the control correction means. In this way, even if the output characteristics of the downstream side exhaust gas sensor are not linear characteristics, by changing to the appropriate control conditions that compensate for the influence of the output characteristics, both responsiveness and stability are achieved. Sub-feedback control can be performed, and stable exhaust gas purification performance independent of the output characteristics of the downstream exhaust gas sensor can be ensured.
[0011]
In this case, as in claim 2, a value obtained by multiplying the deviation between the past detected air-fuel ratio of the downstream exhaust gas sensor and the final downstream target air-fuel ratio by the attenuation rate, and the final downstream target air-fuel ratio May be added to obtain an intermediate target value, and the attenuation rate may be changed according to the output of the downstream side exhaust gas sensor. In this way, the intermediate target value can be set by a simple calculation process, and the control condition for compensating for the influence of the output characteristics of the downstream side exhaust gas sensor can be changed by a simple calculation process.
[0012]
Further, as in claim 3, by limiting the value calculated by the proportional integration operation with respect to the deviation between the detected air-fuel ratio of the downstream side exhaust gas sensor and the intermediate target value within a predetermined control range, The correction amount may be obtained, and the gain (control gain) and / or control range of the proportional integration operation may be changed according to the output of the downstream side exhaust gas sensor. In this way, the change in the dynamic characteristics of the catalyst can be reflected in the correction amount of the upstream target air-fuel ratio with good response, and the control condition for compensating the influence of the output characteristics of the downstream exhaust gas sensor can be changed. It can be done with simple arithmetic processing.
[0013]
Further, the intermediate target value is calculated using the air-fuel ratio detection value obtained by linearizing the output of the downstream side exhaust gas sensor according to the output characteristics of the downstream side exhaust gas sensor by the linearizing means. Anyway. In this way, even if the output characteristic (air-fuel ratio detection characteristic) of the downstream side exhaust gas sensor is the Z characteristic, the intermediate target value is calculated using the air-fuel ratio detection value obtained by converting the output characteristic into a linear characteristic. Therefore, it is possible to compensate for the influence of the output characteristics of the downstream side exhaust gas sensor and perform sub-feedback control that achieves both responsiveness and stability, and is stable regardless of the output characteristics of the downstream side exhaust gas sensor. The exhaust gas purification performance can be ensured.
[0014]
Further, as in claim 5, the intermediate target value set based on the past detected air-fuel ratio of the downstream side exhaust gas sensor and the final downstream target air-fuel ratio is corrected according to the output characteristics of the downstream side exhaust gas sensor. Even if it does, the same effect can be acquired.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. A throttle valve 15 is provided on the downstream side of the air flow meter 14.
[0016]
Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake manifold 19 for introducing air into each cylinder of the engine 11 is provided in the surge tank 17. A fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. A spark plug 21 is attached to the cylinder head of the engine 11 for each cylinder.
[0017]
On the other hand, a catalyst 23 such as a three-way catalyst for purifying CO, HC, NOx, etc. in the exhaust gas is installed in the middle of the exhaust pipe 22 of the engine 11. Exhaust gas sensors 24 and 25 for detecting exhaust gas air-fuel ratio or rich / lean are installed on the upstream side and downstream side of the catalyst 23, respectively. In the present embodiment, the upstream side exhaust gas sensor 24 is an air / fuel ratio sensor (linear A / F sensor) that outputs a linear air / fuel ratio signal corresponding to the exhaust gas air / fuel ratio, and the downstream side exhaust gas sensor 25 is shown in FIG. As shown, an oxygen sensor whose output characteristics are inverted depending on whether the air-fuel ratio of exhaust gas is rich or lean with respect to the stoichiometric air-fuel ratio (excess air ratio λ = 1) (O 2 Sensor) is used. Therefore, the downstream side exhaust gas sensor 25 generates an output voltage of about 0.1 to 0.3 V when the air-fuel ratio is lean, and outputs about 0.7 to 0.9 V when the air-fuel ratio is rich. Generate voltage. Note that a water temperature sensor 26 that detects the coolant temperature and a rotation speed sensor 27 that detects the engine rotation speed are attached to the cylinder block of the engine 11.
[0018]
The engine control circuit (hereinafter referred to as “ECU”) 28 is mainly composed of a microcomputer comprising a ROM 29, a RAM 30, a CPU 31, a backup RAM 33 backed up by a battery 32, an input port 34, an output port 35, and the like. The output signal of the rotational speed sensor 27 is input to the input port 34, and the output signals of the air flow meter 14, the upstream and downstream exhaust gas sensors 24 and 25, and the water temperature sensor 26 are respectively sent to the A / D converter 36. Is input via. Further, the fuel injection valve 20, the spark plug 21, and the like are connected to the output port 35 via a drive circuit 39.
[0019]
The ECU 28 executes the fuel injection control program and the ignition control program stored in the ROM 29 by the CPU 31, thereby controlling the operation of the fuel injection valve 20 and the ignition plug 21, and executing the air-fuel ratio control program to thereby control the exhaust gas. The air-fuel ratio (fuel injection amount) is feedback-controlled so that the air-fuel ratio becomes the target air-fuel ratio.
[0020]
Hereinafter, the air-fuel ratio feedback control system of the present embodiment (1) will be described with reference to FIGS. 2 is a block diagram showing the function of the air-fuel ratio control means 40 realized by the arithmetic processing function of the CPU 31, and FIG. 3 is a block diagram showing the function of the entire air-fuel ratio feedback control system.
[0021]
The air-fuel ratio control means 40 includes a fuel injection amount feedback control unit 41 and a target air-fuel ratio calculation unit 42. The target air-fuel ratio calculation unit 42 includes a load target air-fuel ratio calculation unit 43 and a target air-fuel ratio correction unit 44. It is configured.
[0022]
The fuel injection amount feedback control unit 41 calculates the fuel injection time Tinj of the fuel injection valve 20 so that the detected air-fuel ratio AF of the upstream exhaust gas sensor 24 converges to the upstream target air-fuel ratio AFref. The fuel injection time Tinj is calculated by an optimum regulator constructed for the linear equation of the model to be controlled. The fuel injection amount feedback control unit 41 plays a role corresponding to the air-fuel ratio feedback control means in the claims.
[0023]
On the other hand, the load target air-fuel ratio calculation unit 43 calculates the load target air-fuel ratio AFbase according to the intake air amount (or intake pipe pressure) and the engine rotation speed by using a function equation or map stored in the ROM 29. The function formula or map for calculating the load target air-fuel ratio AFbase is that the output O2out (detected air-fuel ratio) of the downstream side exhaust gas sensor 25 is constantly almost equal to the final target value O2targ (final downstream target air-fuel ratio). When equal, if the upstream target air-fuel ratio AFref is maintained at the load target air-fuel ratio AFbase, the output O2out of the downstream exhaust gas sensor 25 is set in advance by a test or the like so as to be maintained near the final target value O2targ.
[0024]
Further, the target air-fuel ratio correction unit 44 calculates the correction amount AFcomp of the upstream target air-fuel ratio AFref using an intermediate target value O2midtarg described later based on the output O2out of the downstream side exhaust gas sensor 25. Then, the upstream target air-fuel ratio AFref is obtained by adding the correction amount AFcomp to the load target air-fuel ratio AFbase, and this upstream target air-fuel ratio AFref is input to the fuel injection amount feedback control unit 41.
AFref = AFbase + AFcomp
Instead of the above equation, the upstream target air-fuel ratio AFref may be calculated by the following equation.
AFref = (1 + AFcomp) × AFbase
[0025]
In this case, the target air-fuel ratio calculation unit 42 (the load target air-fuel ratio calculation unit 43 and the target air-fuel ratio correction unit 44) plays a role corresponding to the sub-feedback control means in the claims.
[0026]
Next, a method for calculating the correction amount AFcomp of the upstream target air-fuel ratio AFref by setting the intermediate target value O2midtarg by the target air-fuel ratio correction unit 44 will be described with reference to FIG.
A control target is a system including a fuel injection amount feedback control unit 41, a fuel injection valve 20, an engine 11, a catalyst 23, a downstream side exhaust gas sensor 25, and the like. The target air-fuel ratio correction unit 44 includes a time delay element (1 / z) 45, an intermediate target value calculation unit 46, an attenuation rate setting unit 47, and a correction amount calculation unit 48. The output O2out (i-1) of the downstream side exhaust gas sensor 25 is input to the intermediate target value calculation unit 46.
[0027]
On the other hand, the intermediate target value calculation unit 46 plays a role corresponding to the intermediate target value setting means in the claims, and the output O2out (i-1) and the final target value O2targ of the downstream side exhaust gas sensor 25 at the time of the previous calculation. Based on (i) (final downstream target air-fuel ratio), an intermediate target value O2midtarg (i) is calculated using the following equation (1). Thereby, the intermediate target value O2midtarg (i) is set between the output O2out (i-1) of the downstream side exhaust gas sensor 25 at the time of the previous calculation and the final target value O2targ (i).
Figure 0003775570
[0028]
In the above equation, O2targ (i) is the final target value of this time, and O2out (i-1) is the output of the downstream side exhaust gas sensor 25 at the time of the previous calculation. Further, Kdec is an attenuation rate, and the attenuation rate setting unit 47 uses the attenuation rate setting map of FIG. 5 within the range of 0 <Kdec <1 according to the output O2out (i) of the downstream side exhaust gas sensor 25. Is set.
[0029]
The characteristic of the attenuation rate setting map of FIG. 5 is the vicinity of the theoretical air-fuel ratio (0.3 to 0.7 V) in order to compensate for the influence of the Z-type output characteristic of the downstream side exhaust gas sensor 25 (oxygen sensor) shown in FIG. ), The attenuation rate Kdec is set to the maximum value (for example, 0.98), considering that the change in the output voltage of the downstream side exhaust gas sensor 25 with respect to the change in the air-fuel ratio is steep. In a rich region of 0.3 V or a lean region of 0.3 V or less, considering that the change in the output voltage of the downstream side exhaust gas sensor 25 with respect to the change in the air-fuel ratio is small, the attenuation rate Kdec increases as the degree of rich and lean increases. It is set to be smaller. The attenuation rate setting unit 47 plays a role corresponding to the control correction means in the claims.
[0030]
As described above, in the attenuation rate setting unit 47, the intermediate target value O2midtarg (i) is obtained by the intermediate target value calculation unit 46 using the attenuation rate Kdec set according to the output O2out (i) of the downstream side exhaust gas sensor 25. After the calculation, the correction amount AFcomp (i) of the upstream target air-fuel ratio AFref is calculated by the following equation using the intermediate target value O2midtarg (i).
[0031]
Figure 0003775570
[0032]
In the above equation, Fsat is a saturation function having a characteristic as shown in FIG. 6, and the correction amount AFcomp (i) is obtained by calculating the calculated value of K1 × ΔO2 (i) + K2 × Σ (ΔO2 (i)) as the upper guard value. It is obtained by performing guard processing with the lower limit guard value. In the above equation, K1 is a proportional gain, and K2 is an integral gain. K1 × ΔO2 (i) is a proportional term, and increases as the deviation ΔO2 (i) between the intermediate target value O2midtarg (i) and the output O2out (i) of the downstream exhaust gas sensor 25 increases. K2 × ΣΔO2 (i) is an integral term, and increases as the integrated value of the deviation ΔO2 (i) between the intermediate target value O2midtarg (i) and the output O2out (i) of the downstream side exhaust gas sensor 25 increases. The correction amount AFcomp (i) is obtained by performing a guard process on the value obtained by adding the proportional term and the integral term using the upper limit guard value and the lower limit guard value.
[0033]
The calculation of the correction amount AFcomp (i) by the target air-fuel ratio correction unit 44 described above is performed according to the correction amount calculation program of FIG. This program is executed every predetermined time or every predetermined crank angle. When this program is started, first, in step 101, the current output O2out (i) of the downstream side exhaust gas sensor 25 is read, and in the next step 102, using the attenuation rate setting map (or formula) of FIG. The attenuation rate Kdec is set according to the current output O2out (i) of the downstream exhaust gas sensor 25.
[0034]
In the next step 103, the output O2out (i-1) and the final target value O2targ (i) (final downstream target air-fuel ratio) of the downstream side exhaust gas sensor 25 at the time of the previous calculation are calculated using this attenuation factor Kdec. Based on the above, the intermediate target value O2midtarg (i) is calculated using the equation (1). Thereby, the intermediate target value O2midtarg (i) is set between the output O2out (i-1) of the downstream side exhaust gas sensor 25 at the time of the previous calculation and the final target value O2targ (i).
[0035]
Thereafter, the routine proceeds to step 104, where a deviation ΔO2 (i) between the intermediate target value O2midtarg (i) and the output O2out (i) of the downstream side exhaust gas sensor 25 is calculated.
ΔO2 (i) = O2midtarg (i) -O2out (i)
In the next step 105, the current deviation ΔO2 (i) is added to the previous integrated value ΣΔO2 (i-1) of the deviation ΔO2, and the integrated value ΣΔO2 (i) of the current deviation ΔO2 is obtained.
ΣΔO2 (i) = ΣΔO2 (i-1) + ΔO2 (i)
[0036]
Thereafter, the routine proceeds to step 106, where the correction amount AFcomp (i) of the upstream target air-fuel ratio AFref is calculated by the following equation.
AFcomp (i) = Fsat (K1 × ΔO2 (i) + K2 × ΣΔO2 (i))
As a result, the correction amount AFcomp (i) of the upstream target air-fuel ratio AFref is obtained by adding the value obtained by adding the proportional term (K1 × ΔO2 (i)) and the integral term (K2 × ΣΔO2 (i)) to the upper limit guard value. It is obtained by performing guard processing with the lower limit guard value.
In the next step 107, the current ΔO2 (i) and ΣΔO2 (i) are stored as the previous ΔO2 (i-1) and ΣΔO2 (i-1), respectively, and the program is terminated.
[0037]
During engine operation, the load target air-fuel ratio AFbase corresponding to the intake air amount (or intake pipe pressure) and the engine speed is calculated, and the correction amount AFcomp calculated by the correction amount calculation program shown in FIG. 6 is used as the load target air-fuel ratio AFbase. To obtain the upstream target air-fuel ratio AFref, and calculate the fuel injection time Tinj (fuel injection amount) so that the detected air-fuel ratio AF of the upstream exhaust gas sensor 24 converges to the upstream target air-fuel ratio AFref.
[0038]
According to the present embodiment (1) described above, in the region where the air-fuel ratio of the exhaust gas is in the vicinity of the stoichiometric air-fuel ratio, considering that the change in the output voltage of the downstream exhaust gas sensor 25 with respect to the change in the air-fuel ratio is steep. Since the damping rate Kdec is set to the maximum value, it is possible to prevent the update amount of the intermediate target value O2midtarg (i) from becoming too large with respect to the change of the air-fuel ratio, to prevent hunting, and to realize the theoretical air-fuel ratio. The stability of the nearby sub-feedback control can be improved. In addition, in the rich region and the lean region, considering that the change in the output voltage of the downstream side exhaust gas sensor 25 with respect to the change in the air-fuel ratio is small, the attenuation rate Kdec is set to be smaller as the degree of rich and lean becomes stronger. Therefore, the update amount of the intermediate target value O2midtarg (i) can be increased to correspond to the actual change amount of the air-fuel ratio, and the sub-feedback control can follow the change of the air-fuel ratio with good response. Exhaust emissions in rich and lean areas can be reduced.
[0039]
Therefore, according to the present embodiment (1), even if the output characteristic of the downstream side exhaust gas sensor 25 is not a linear characteristic, the response characteristic is changed by changing to an appropriate attenuation rate Kdec that compensates for the influence of the output characteristic. Sub-feedback control that achieves both stability and stability, and stable exhaust gas purification performance independent of the output characteristics of the downstream exhaust gas sensor 25 can be ensured.
[0040]
In this embodiment (1), the update amount of the intermediate target value O2midtarg (i) is changed by changing the attenuation rate Kdec, but the intermediate target value O2midtarg (i) is changed by other methods. The update amount may be changed.
Alternatively, the update cycle (update speed) of the intermediate target value O2midtarg (i) may be changed according to the output of the downstream side exhaust gas sensor 25.
[0041]
[Embodiment (2)]
In the above embodiment (1), the attenuation characteristic Kdec is changed in accordance with the output voltage of the downstream side exhaust gas sensor 25 to compensate for the output characteristics of the downstream side exhaust gas sensor 25. FIG. 8 and FIG. In the embodiment (2) of the present invention shown, the output characteristics of the downstream exhaust gas sensor 25 are compensated by changing the proportional / integral gains K1 and K2 according to the output of the downstream exhaust gas sensor 25.
[0042]
The characteristic of the map for changing the proportional gain K1 (integral gain K2) in FIG. 8 is that the output voltage of the downstream side exhaust gas sensor 25 with respect to the change of the air-fuel ratio is in the vicinity of the theoretical air-fuel ratio (0.3 to 0.7 V). Considering that the change is steep, the proportional gain K1 (integral gain K2) is set to the minimum value, and in the rich region of 0.7V or more and the lean region of 0.3V or less, the downstream with respect to the change of the air-fuel ratio. Considering that the change in the output voltage of the side exhaust gas sensor 25 is small, the proportional gain K1 (integral gain K2) is set to increase as the degree of rich and lean becomes stronger.
[0043]
The correction amount calculation program of FIG. 9 used in the present embodiment (2) is obtained by changing the process of step 102 of the correction amount calculation program of FIG. 6 described in the embodiment (1) to the process of step 102a. The other steps are the same. In the correction amount calculation program of FIG. 9, after the current output O2out (i) of the downstream exhaust gas sensor 25 is read in step 101, the process proceeds to step 102a, where the current output O2out (i) of the downstream exhaust gas sensor 25 is set. Accordingly, the proportional / integral gains K1 and K2 are changed according to the map of FIG. Then, after calculating the intermediate target value O2midtarg (i) based on the output O2out (i-1) of the downstream side exhaust gas sensor 25 at the time of the previous calculation and the final target value O2targ (i), the proportionality set in the above step 102a. A correction amount AFcomp (i) for the upstream target air-fuel ratio AFref is calculated using the integral gains K1 and K2 (steps 103 to 106).
[0044]
In the present embodiment (2), the attenuation rate Kdec may be a fixed value in order to simplify the arithmetic processing. Further, the intermediate target value O2midtarg (i) is calculated by a two-dimensional map using the output O2out (i-1) of the downstream side exhaust gas sensor 25 at the previous calculation and the final target value O2targ (i) as parameters. Also good.
[0045]
In the embodiment (2) described above, an appropriate proportionality that compensates for the influence of the output characteristics of the downstream exhaust gas sensor 25 by changing the proportional / integral gains K1 and K2 according to the output of the downstream exhaust gas sensor 25. -The integral gains K1 and K2 can be changed, whereby sub-feedback control that achieves both responsiveness and stability can be performed, and stable exhaust gas purification independent of the output characteristics of the downstream exhaust gas sensor 25 Performance can be ensured.
[0046]
[Embodiment (3)]
In the embodiment (3) of the present invention shown in FIGS. 10 and 11, by changing the control range (upper limit guard value and lower limit guard value) according to the output of the downstream side exhaust gas sensor 25, the downstream side exhaust gas sensor 25. The output characteristics are compensated.
[0047]
The characteristic of the map for changing the control range in FIG. 10 is that the change in the output voltage of the downstream exhaust gas sensor 25 with respect to the change in the air-fuel ratio is steep in the region near the theoretical air-fuel ratio (0.3 to 0.7 V). Is set so that the width of the control range (upper limit guard value and lower limit guard value) is the narrowest, and in a rich region of 0.7V or more and a lean region of 0.3V or less, the change in the air-fuel ratio Considering that the change in the output voltage of the downstream side exhaust gas sensor 25 is small, the control range (upper limit guard value and lower limit guard value) is set wider as the degree of rich and lean becomes stronger.
[0048]
The correction amount calculation program of FIG. 11 used in the present embodiment (3) is obtained by changing the process of step 102 of the correction amount calculation program of FIG. 6 described in the embodiment (1) to the process of step 102b. The other steps are the same. In the correction amount calculation program of FIG. 11, after the current output O2out (i) of the downstream exhaust gas sensor 25 is read in step 101, the process proceeds to step 102b, where the current output O2out (i) of the downstream exhaust gas sensor 25 is set. Accordingly, the control range (upper limit guard value and lower limit guard value) is changed according to the map of FIG. Then, after calculating the intermediate target value O2midtarg (i) based on the output O2out (i-1) and the final target value O2targ (i) of the downstream side exhaust gas sensor 25 at the time of the previous calculation, the control set in step 102b above. Using the range (the upper guard value and the lower guard value), the correction amount AFcomp (i) of the upstream target air-fuel ratio AFref is guarded (steps 103 to 106).
[0049]
In the present embodiment (3), the attenuation rate Kdec may be a fixed value in order to simplify the arithmetic processing, as in the embodiment (2). Further, the intermediate target value O2midtarg (i) may be calculated by a two-dimensional map using the output O2out (i-1) of the downstream side exhaust gas sensor 25 at the previous calculation and the final target value O2targ (i) as parameters. .
[0050]
In the present embodiment (3) described above, the control range (upper limit guard value and lower limit guard value) is changed according to the output of the downstream side exhaust gas sensor 25 to compensate for the influence of the output characteristics of the downstream side exhaust gas sensor 25. It is possible to change the control range to an appropriate control range, thereby performing sub-feedback control that achieves both responsiveness and stability, and stable exhaust gas purification performance independent of the output characteristics of the downstream exhaust gas sensor 25 Can be secured.
Note that the control period of the sub feedback control (the calculation period of the correction amount AFcomp (i)) may be changed according to the output of the downstream side exhaust gas sensor 25.
[0051]
[Embodiment (4)]
In the embodiment (4) of the present invention, using the map shown in FIG. 12, the output of the downstream exhaust gas sensor 25 is linearized according to the output characteristics of the downstream exhaust gas sensor 25 to obtain the air-fuel ratio detection value, An intermediate target value is calculated using this air-fuel ratio detection value. In this way, even if the output characteristic (air-fuel ratio detection characteristic) of the downstream side exhaust gas sensor 25 is the Z characteristic, the intermediate target value is set using the air-fuel ratio detection value obtained by converting the output characteristic into a linear characteristic. Since it is possible to calculate, the influence of the output characteristics of the downstream side exhaust gas sensor 25 can be compensated, and sub-feedback control that achieves both responsiveness and stability can be performed. Stable exhaust gas purification performance that is not affected can be ensured.
[0052]
[Embodiment (5)]
In the embodiment (5) of the present invention, the intermediate target value set based on the past output and the final target value of the downstream side exhaust gas sensor 25 is corrected according to the output characteristics of the downstream side exhaust gas sensor 25, and after the correction. The sub feedback control is executed using the intermediate target value. Even in this case, it is possible to compensate for the influence of the output characteristics of the downstream side exhaust gas sensor 25 and perform sub-feedback control that achieves both responsiveness and stability. Stable exhaust gas purification performance that is not performed can be ensured.
[0053]
The embodiments (1) to (5) described above may be implemented in combination as appropriate.
The downstream exhaust gas sensor 25 may be an air-fuel ratio sensor (linear A / F sensor) instead of the oxygen sensor, and the upstream exhaust gas sensor 24 is an air-fuel ratio sensor (linear A / F sensor). Instead of this, an oxygen sensor may be used.
[0054]
In each of the above embodiments, the output O2out (i-1) of the downstream exhaust gas sensor 25 at the previous calculation is used when calculating the intermediate target value O2midtarg (i). The output O2out (in) of the sensor 25 may be used.
[0055]
In addition, it goes without saying that the present invention can be implemented with various changes such as appropriately changing the calculation formula for the intermediate target value O2midtarg (i) and the calculation formula for the correction amount AFcomp (i).
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.
FIG. 2 is a block diagram showing functions of air-fuel ratio control means realized by an arithmetic processing function of a CPU of an ECU.
FIG. 3 is a functional block diagram showing functions of the entire air-fuel ratio feedback control system.
FIG. 4 is a graph showing output characteristics of a downstream exhaust gas sensor (oxygen sensor)
FIG. 5 is a diagram conceptually showing a map for setting the attenuation rate Kdec according to the output of the downstream side exhaust gas sensor.
FIG. 6 is a diagram for explaining a saturation function for calculating a correction amount AFcomp (i).
FIG. 7 is a flowchart showing a processing flow of a correction amount calculation program according to the embodiment (1).
FIG. 8 is a diagram conceptually showing a map for setting a proportional gain K1 (integral gain K2) according to the output of the downstream side exhaust gas sensor.
FIG. 9 is a flowchart showing a processing flow of a correction amount calculation program according to the embodiment (2).
FIG. 10 is a diagram conceptually showing a map for setting a control range according to the output of the downstream side exhaust gas sensor.
FIG. 11 is a flowchart showing a processing flow of a correction amount calculation program according to the embodiment (3).
FIG. 12 is a diagram conceptually showing a map for linearizing the output of the downstream side exhaust gas sensor in accordance with the output characteristics of the downstream side exhaust gas sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 20 ... Fuel injection valve, 22 ... Exhaust pipe, 23 ... Catalyst, 24 ... Upstream exhaust gas sensor, 25 ... Downstream exhaust gas sensor, 28 ... ECU (Air-fuel ratio feedback control means, Sub feedback control) Means ... intermediate target value setting means), 31 ... CPU, 40 ... air-fuel ratio control means, 41 ... fuel injection amount feedback control section (air-fuel ratio feedback control means), 42 ... target air-fuel ratio calculation section (sub-feedback control means), 43: Load target air-fuel ratio calculation unit 44: Target air-fuel ratio correction unit 45: Time delay element (1 / z) 46: Intermediate target value calculation unit (intermediate target value setting means) 47: Decay rate setting unit ( Control correction means), 47... Correction amount calculation section.

Claims (5)

排ガス浄化用の触媒の上流側と下流側でそれぞれ排ガスの空燃比又はリッチ/リーンを検出する上流側排ガスセンサ及び下流側排ガスセンサと、
前記上流側排ガスセンサの検出空燃比が上流側目標空燃比となるように燃料噴射量をフィードバック制御する空燃比フィードバック制御手段と、
前記下流側排ガスセンサの過去の検出空燃比と現在制御されるべき最終的な下流側目標空燃比とに基づいて当該過去の検出空燃比と最終的な下流側目標空燃比との間に位置する中間目標値を設定する中間目標値設定手段と、
前記下流側排ガスセンサの検出空燃比と前記中間目標値とに基づいて前記上流側目標空燃比を補正するサブフィードバック制御を行うサブフィードバック制御手段と
を備えた内燃機関の空燃比制御装置において、
前記下流側排ガスセンサの出力に応じて、前記中間目標値の更新量、更新速度、前記サブフィードバック制御の制御ゲイン、制御周期、制御範囲のうちの少なくとも1つを変更する制御補正手段を備えていることを特徴とする内燃機関の空燃比制御装置。
An upstream exhaust gas sensor and a downstream exhaust gas sensor for detecting the air-fuel ratio or rich / lean of the exhaust gas on the upstream side and downstream side of the exhaust gas purification catalyst, respectively;
Air-fuel ratio feedback control means for feedback-controlling the fuel injection amount so that the detected air-fuel ratio of the upstream exhaust gas sensor becomes the upstream target air-fuel ratio;
Based on the past detected air-fuel ratio of the downstream side exhaust gas sensor and the final downstream target air-fuel ratio to be controlled at present, it is located between the past detected air-fuel ratio and the final downstream target air-fuel ratio. Intermediate target value setting means for setting the intermediate target value;
An air-fuel ratio control apparatus for an internal combustion engine, comprising: sub-feedback control means for performing sub-feedback control for correcting the upstream target air-fuel ratio based on the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value;
Control correction means for changing at least one of the update amount of the intermediate target value, the update speed, the control gain of the sub feedback control, the control cycle, and the control range according to the output of the downstream side exhaust gas sensor. An air-fuel ratio control apparatus for an internal combustion engine characterized by comprising:
前記中間目標値設定手段は、前記下流側排ガスセンサの過去の検出空燃比と最終的な下流側目標空燃比との偏差に減衰率を乗算した値と、最終的な下流側目標空燃比とを加算して前記中間目標値を求め、
前記制御補正手段は、前記下流側排ガスセンサの出力に応じて前記減衰率を変更することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
The intermediate target value setting means obtains a value obtained by multiplying a deviation between a past detected air-fuel ratio of the downstream side exhaust gas sensor and a final downstream target air-fuel ratio by a decay rate, and a final downstream target air-fuel ratio. Add to obtain the intermediate target value,
2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the control correction unit changes the attenuation rate in accordance with an output of the downstream side exhaust gas sensor.
前記サブフィードバック制御手段は、前記下流側排ガスセンサの検出空燃比と前記中間目標値との偏差に対する比例積分動作で演算した値を所定の制御範囲内に制限することで前記上流側目標空燃比の補正量を求め、
前記制御補正手段は、前記下流側排ガスセンサの出力に応じて前記比例積分動作のゲイン及び/又は前記制御範囲を変更することを特徴とする請求項1又は2に記載の内燃機関の空燃比制御装置。
The sub-feedback control means limits the upstream target air-fuel ratio by limiting a value calculated by a proportional integration operation with respect to a deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value within a predetermined control range. Find the correction amount,
3. The air-fuel ratio control of the internal combustion engine according to claim 1, wherein the control correction unit changes a gain of the proportional integration operation and / or the control range in accordance with an output of the downstream side exhaust gas sensor. apparatus.
排ガス浄化用の触媒の上流側と下流側でそれぞれ排ガスの空燃比又はリッチ/リーンを検出する上流側排ガスセンサ及び下流側排ガスセンサと、
前記上流側排ガスセンサの検出空燃比が上流側目標空燃比となるように燃料噴射量をフィードバック制御する空燃比フィードバック制御手段と、
前記下流側排ガスセンサの過去の検出空燃比と現在制御されるべき最終的な下流側目標空燃比とに基づいて当該過去の検出空燃比と最終的な下流側目標空燃比との間に位置する中間目標値を設定する中間目標値設定手段と、
前記下流側排ガスセンサの検出空燃比と前記中間目標値とに基づいて前記上流側目標空燃比を補正するサブフィードバック制御を行うサブフィードバック制御手段と
を備えた内燃機関の空燃比制御装置において、
前記下流側排ガスセンサの出力を該下流側排ガスセンサの出力特性に応じてリニアライズ化して空燃比検出値を求めるリニアライズ手段を備え、
前記中間目標値設定手段は、前記リニアライズ手段でリニアライズ化した空燃比検出値を用いて前記中間目標値を算出することを特徴とする内燃機関の空燃比制御装置。
An upstream exhaust gas sensor and a downstream exhaust gas sensor for detecting the air-fuel ratio or rich / lean of the exhaust gas on the upstream side and downstream side of the exhaust gas purification catalyst, respectively;
Air-fuel ratio feedback control means for feedback-controlling the fuel injection amount so that the detected air-fuel ratio of the upstream exhaust gas sensor becomes the upstream target air-fuel ratio;
Based on the past detected air-fuel ratio of the downstream side exhaust gas sensor and the final downstream target air-fuel ratio to be controlled at present, it is located between the past detected air-fuel ratio and the final downstream target air-fuel ratio. Intermediate target value setting means for setting the intermediate target value;
An air-fuel ratio control apparatus for an internal combustion engine, comprising: sub-feedback control means for performing sub-feedback control for correcting the upstream target air-fuel ratio based on the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value;
Linearization means for linearizing the output of the downstream side exhaust gas sensor according to the output characteristics of the downstream side exhaust gas sensor and obtaining an air-fuel ratio detection value;
The air-fuel ratio control apparatus for an internal combustion engine, wherein the intermediate target value setting means calculates the intermediate target value using the air-fuel ratio detection value linearized by the linearizing means.
排ガス浄化用の触媒の上流側と下流側でそれぞれ排ガスの空燃比又はリッチ/リーンを検出する上流側排ガスセンサ及び下流側排ガスセンサと、
前記上流側排ガスセンサの検出空燃比が上流側目標空燃比となるように燃料噴射量をフィードバック制御する空燃比フィードバック制御手段と、
前記下流側排ガスセンサの過去の検出空燃比と現在制御されるべき最終的な下流側目標空燃比とに基づいて当該過去の検出空燃比と最終的な下流側目標空燃比との間に位置する中間目標値を設定する中間目標値設定手段と、
前記下流側排ガスセンサの検出空燃比と前記中間目標値とに基づいて前記上流側目標空燃比を補正するサブフィードバック制御を行うサブフィードバック制御手段と
を備えた内燃機関の空燃比制御装置において、
前記下流側排ガスセンサの出力特性に応じて前記中間目標値を補正する制御補正手段を備えていることを特徴とする内燃機関の空燃比制御装置。
An upstream exhaust gas sensor and a downstream exhaust gas sensor for detecting the air-fuel ratio or rich / lean of the exhaust gas on the upstream side and downstream side of the exhaust gas purification catalyst, respectively;
Air-fuel ratio feedback control means for feedback-controlling the fuel injection amount so that the detected air-fuel ratio of the upstream exhaust gas sensor becomes the upstream target air-fuel ratio;
Based on the past detected air-fuel ratio of the downstream side exhaust gas sensor and the final downstream target air-fuel ratio to be controlled at present, it is located between the past detected air-fuel ratio and the final downstream target air-fuel ratio. Intermediate target value setting means for setting the intermediate target value;
An air-fuel ratio control apparatus for an internal combustion engine, comprising: sub-feedback control means for performing sub-feedback control for correcting the upstream target air-fuel ratio based on the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value;
An air-fuel ratio control apparatus for an internal combustion engine, comprising control correction means for correcting the intermediate target value in accordance with output characteristics of the downstream side exhaust gas sensor.
JP2001027812A 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP3775570B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001027812A JP3775570B2 (en) 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine
US09/998,641 US6530214B2 (en) 2001-02-05 2001-12-03 Air-fuel ratio control apparatus having sub-feedback control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001027812A JP3775570B2 (en) 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002227691A JP2002227691A (en) 2002-08-14
JP3775570B2 true JP3775570B2 (en) 2006-05-17

Family

ID=18892409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001027812A Expired - Lifetime JP3775570B2 (en) 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3775570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770589B2 (en) * 2006-05-24 2011-09-14 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2002227691A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US5157920A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP3625163B2 (en) Exhaust purification catalyst deterioration detection device
JP3759567B2 (en) Catalyst degradation state detection device
US20130184973A1 (en) Fuel injection amount control apparatus for an internal combustion engine
US6530214B2 (en) Air-fuel ratio control apparatus having sub-feedback control
JP3826997B2 (en) Air-fuel ratio control device for internal combustion engine
JP3788497B2 (en) Air-fuel ratio control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JP3775570B2 (en) Air-fuel ratio control device for internal combustion engine
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
JP4314551B2 (en) Air-fuel ratio control device for internal combustion engine
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JPH06264787A (en) Air-fuel ratio control device of internal combustion engine
JPH06294342A (en) Air-fuel ratio feedback controller of internal combustion engine
JP4247730B2 (en) Air-fuel ratio control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP3998784B2 (en) EGR rate estimation device for engine
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3765416B2 (en) Air-fuel ratio control device for internal combustion engine
JP4636214B2 (en) Air-fuel ratio control device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP2004308429A (en) Controller for internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JP3023614B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Ref document number: 3775570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term