JP4636214B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP4636214B2
JP4636214B2 JP2000303146A JP2000303146A JP4636214B2 JP 4636214 B2 JP4636214 B2 JP 4636214B2 JP 2000303146 A JP2000303146 A JP 2000303146A JP 2000303146 A JP2000303146 A JP 2000303146A JP 4636214 B2 JP4636214 B2 JP 4636214B2
Authority
JP
Japan
Prior art keywords
catalyst
air
amount
fuel ratio
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000303146A
Other languages
Japanese (ja)
Other versions
JP2002081339A (en
Inventor
久代 堂田
池本  宣昭
山下  幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000303146A priority Critical patent/JP4636214B2/en
Priority to US09/866,804 priority patent/US20020011067A1/en
Publication of JP2002081339A publication Critical patent/JP2002081339A/en
Application granted granted Critical
Publication of JP4636214B2 publication Critical patent/JP4636214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒内の状態を考慮して空燃比を制御する内燃機関の空燃比制御装置に関するものである。
【0002】
【従来の技術】
近年の自動車は、排気管に三元触媒を設置すると共に、この触媒の上流側に空燃比センサを設置し、この空燃比センサの出力に基づいて排出ガスの空燃比を触媒の浄化ウインドウ(理論空燃比付近)に制御するように燃料噴射量を制御することで、排出ガスを効率良く浄化するようにしている。
【0003】
【発明が解決しようとする課題】
ところで、触媒は、排出ガス中のリーン成分(NOx,O2 等)とリッチ成分(HC,H2 等)とを酸化還元反応させて無害の中性ガス成分(CO2 ,H2 O,N2 等)に変化させる他に、未反応のリーン成分やリッチ成分を一時的に触媒内に吸着する作用もあり、これら酸化還元反応と吸着作用の両方によって排出ガスを浄化するものである。エンジン運転状態によっては、触媒に流入する排出ガスの空燃比が理論空燃比からリッチ側又はリーン側にずれた状態が暫く続くことがあるが、このように空燃比がずれた状態が暫く続くと、触媒内のリーン成分吸着量又はリッチ成分吸着量が増加して飽和状態になることがあり、その結果、触媒の吸着能力が低下して排出ガス浄化率が低下する不具合が発生する。
【0004】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、触媒内の状態を考慮して空燃比を適正に制御することで、排出ガス浄化率を向上できる内燃機関の空燃比制御装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の空燃比制御装置は、触媒の上流又は下流の排出ガスの空燃比を空燃比検出手段により検出すると共に、内燃機関に吸入される空気量を空気量検出手段により検出し、検出した排出ガスの空燃比と空気量とに基づいて触媒のリーン成分及びリッチ成分全体の吸着量(以下「触媒内状態量」という)を触媒内状態量算出手段により算出し、この触媒内状態量と目標触媒内状態量との偏差が小さくなるように燃料噴射量を噴射制御手段により補正する。このようにすれば、触媒の吸着能力ができるだけ良好に維持されるように制御され、排出ガス浄化率が向上する。
更に、請求項1に係る発明は、触媒内状態量の算出値を触媒の飽和吸着量に相当するガード値で制限するガード処理手段を備え、前記ガード値を空気量が多くなるほど触媒の飽和吸着量が少なくなるように変化させるようにしている。これらの技術的特徴については後述する。
【0006】
この場合、触媒内状態量は排出ガスの空燃比と空気量とに基づいて算出されるが、空気量を検出する位置(吸気管)と排出ガスの空燃比を検出する位置(排気管)とが離れているため、空気量検出位置を通過した空気が噴射燃料と混合して燃焼して空燃比検出位置に到達するまでに時間遅れが生じる。このため、空気量が変化する過渡運転時には、同時刻に検出した空燃比と空気量を用いたのでは触媒内状態量を正確に算出することができない。
【0007】
そこで、触媒内状態量を算出する際に用いる空気量は、少なくとも燃料噴射から排出ガスの空燃比を検出するまでの遅れ時間分過去の空気量を用いると良い。このようにすれば、触媒内状態量を算出する際に用いる空気量と空燃比との時間的なずれを修正することができ、空気量が変化する過渡運転時でも触媒内状態量を精度良く算出することができる。
【0008】
また、所定の演算周期で目標空燃比に対する排出ガスの空燃比のずれ量と空気量とに基づいて触媒内状態量の変化量を算出し、この変化量を積算して現在の触媒内状態量を求めるようにしても良い。このようにすれば、簡単な演算処理で触媒内状態量を精度良く算出することができる。
【0009】
また、触媒内状態量が触媒の飽和吸着量に達すると、それ以上はガス成分を吸着できなくなるため、請求項1に係る発明では、触媒内状態量の算出値をガード処理手段によって触媒の飽和吸着量に相当するガード値で制限するようにしている。このようにすれば、触媒が飽和状態になったときに触媒内状態量の算出値の誤差が拡大することを防止することができる。
【0010】
この場合、触媒内を流れる排出ガスの流速が速くなるほど(空気量が多くなるほど)、触媒の飽和吸着量が少なくなるという飽和吸着特性があるため、請求項1に係る発明では、触媒内状態量の算出値に対するガード値を空気量が多くなるほど触媒の飽和吸着量が少なくなるように変化させるようにしている。このようにすれば、実際の触媒の飽和吸着特性に適合したガード値を設定することができ、触媒内状態量の算出精度を更に向上することができる。
【0011】
尚、排出ガスの空燃比とガス濃度とは相関関係があるため、請求項のように触媒の上流又は下流の排出ガスのガス濃度をガス濃度検出手段により検出すると共に、内燃機関に吸入される空気量を空気量検出手段により検出し、検出した排出ガスのガス濃度と空気量とに基づいて触媒内状態量を算出し、この触媒内状態量と目標触媒内状態量との偏差が小さくなるように燃料噴射量を補正するようにしても良い。このようにしても、請求項1と同じく、触媒の吸着能力ができるだけ良好に維持されるように制御され、排出ガス浄化率が向上する。
【0012】
ところで、触媒内状態量を算出する際に、ある程度の誤差が生じることは避けられない。この触媒内状態量の算出誤差(推定誤差)は、触媒下流側に設置した空燃比センサ(又は酸素センサ)の出力を触媒上流側の目標空燃比に反映させるサブフィードバックにより補正できるが、サブフィードバックによる補正は、応答遅れがある。
【0013】
そこで、請求項2に係る発明では、触媒内状態量を算出する際に、その算出値を実際の触媒内状態量に応じて補正手段によって補正するようにしている。このようにすれば、触媒内状態量の算出誤差(推定誤差)を少なくすることができ、その分、実際の触媒内状態量に対する応答性の良い空燃比制御を実施することができ、過渡時の排出ガス浄化性能を向上することができる。
【0014】
この場合、実際の触媒内状態量に応じて、触媒から流出する排出ガスの空燃比又はガス濃度が変化する特性があるため、請求項2に係る発明では、実際の触媒内状態量の情報は、触媒から流出する排出ガスの空燃比又はガス濃度を検出する触媒下流側のセンサの出力を用いるようにしている。これにより、触媒下流側のセンサの出力から実際の触媒内状態量の情報を簡単に得ることができる。
【0015】
また、請求項2に係る発明では、触媒内状態量算出手段により算出した触媒内状態量と目標触媒内状態量との偏差に応じて、目標燃料過剰率を制御するパラメータをパラメータ可変手段により可変すると共に、目標燃料過剰率を制御するパラメータとして、触媒の下流側の空燃比を前記目標燃料過剰率に反映させるサブフィードバックの制御パラメータを可変するようにしている。これにより、目標燃料過剰率を触媒内状態量の偏差に応じて応答性良く設定することができる。
【0016】
この場合、請求項3のように、触媒内状態量を算出する際に、その算出に用いる式のパラメータを触媒下流側のセンサの出力に基づいて可変に設定するようにしても良い。これにより、目標燃料過剰率を触媒内状態量の偏差に応じて応答性良く可変することができる。
【0017】
また、実際の触媒内状態量の情報にもある程度の誤差があることを考慮して、請求項のように、触媒内状態量算出手段により算出した触媒内状態量と実際の触媒内状態量との偏差が所定値以下の場合に、該偏差を0と見なすようにしても良い。このようにすれば、実際の触媒内状態量の情報(触媒下流側のセンサの出力)に含まれる誤差による過補正を回避することができ、安定した空燃比制御を行うことができる。
【0018】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1乃至図5に基づいて説明する。
【0019】
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側には、吸入空気量を検出するエアフローメータ14(空気量検出手段)が設けられている。このエアフローメータ14の下流側には、スロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
【0020】
更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。
【0021】
一方、エンジン11の排気管21の途中には、排ガス中の有害成分(CO,HC,NOx等)を低減させる三元触媒等の触媒22が設置されている。この触媒22の上流側には、排出ガスの空燃比を検出するリニアA/Fセンサ等の空燃比センサ23(空燃比検出手段)が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ24や、エンジン回転速度を検出するクランク角センサ25が取り付けられている。
【0022】
これら各種のセンサ出力は、エンジン制御回路(以下「ECU」と表記する)26に入力される。このECU26は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された図2及び図3の目標φ算出プログラムを実行することで、触媒22のリーン成分及びリッチ成分全体の吸着量である触媒内状態量OSを算出し、この触媒内状態量OSに応じて触媒22上流側の目標燃料過剰率φref を算出する。ここで、燃料過剰率φは、空気過剰率λの逆数であり(φ=1/λ)、空気過剰率λは、実空燃比と理論空燃比との比である。
λ=実空燃比/理論空燃比 φ=理論空燃比/実空燃比
【0023】
ECU26は、図2及び図3の目標φ算出プログラムで算出した目標燃料過剰率φref と実際の燃料過剰率φとの偏差を小さくするように燃料噴射量をフィードバック補正して、触媒内状態量OSを目標触媒内状態量OSref 付近に制御する。この機能が特許請求の範囲でいう噴射制御手段に相当する。
【0024】
図2及び図3の目標φ算出プログラムは、所定クランク角毎(例えば180℃A毎)又は所定時間毎に起動され、まず、ステップ101で、次のようにして現在の触媒内状態量OS(i) を算出する。まず、触媒22上流側の空燃比センサ23で検出した実際の燃料過剰率φと目標燃料過剰率φref との偏差(φ−φref )と、単位時間当たり触媒22に流入する空気量Qとに基づいて触媒内状態量の変化量ΔOS(i) を算出する。
ΔOS(i) =(φ−φref )×Q(i-d) ……(1)
【0025】
ここで、空気量Qは、燃料噴射から排出ガスの燃料過剰率φを検出するまでの遅れ時間dを考慮して、現時点iよりも遅れ時間d前の過去の空気量Q(i-d) を用いる。この際、遅れ時間dは、演算処理を簡単にするために固定値としても良いが、空気量Qに応じて遅れ時間dを変化させても良い。つまり、空気量Qが多くなるほど、空気の流速が速くなって実際の遅れ時間dが短くなるため、空気量Qが多くなるほど、遅れ時間dを短くするように設定しても良い。
【0026】
上記(1)式で算出した触媒内状態量の変化量ΔOS(i) を前回の触媒内状態量算出値OS(i-1) に積算して現在の触媒内状態量OS(i) を求める。
OS(i) =ΔOS(i) +OS(i-1) ……(2)
このステップ101の処理が特許請求の範囲でいう触媒内状態量算出手段としての役割を果たす。
【0027】
その後、ステップ102に進み、触媒内状態量OS(i) の算出値を触媒22のリーン側/リッチ側飽和吸着量に相当するガード値OSmin ,OSmax でガード処理する。例えば、触媒内状態量OS(i) の算出値がガード値OSmin ,OSmax の範囲内(OSmin ≦OS(i) ≦OSmax )であれば、触媒内状態量OS(i) の算出値をそのまま採用し、触媒内状態量OS(i) の算出値がガード値OSmin (又はOSmax )を越えていれば、触媒内状態量OS(i) の算出値をガード値OSmin (又はOSmax )に置き換えて、OS(i) =OSmin (又はOS(i) =OSmax )とする。この処理が特許請求の範囲でいうガード処理手段としての役割を果たす。
【0028】
この際、ガード値OSmin ,OSmax は、演算処理を簡単にするために固定値としても良いが、触媒22内を流れる排出ガスの流速が速くなるほど(空気量Qが多くなるほど)、触媒22の飽和吸着量が少なくなるという飽和吸着特性があるため、図4に示すように、ガード値OSmin ,OSmax を空気量Qに応じてマップ等で変化させるようにしても良い。この場合は、空気量Qが多くなるほど、ガード値OSmin ,OSmax が小さくなるように設定すると良い。このようにすれば、実際の触媒22の飽和吸着特性に適合したガード値OSmin ,OSmax を設定することができる。
【0029】
その後、ステップ103に進み、目標触媒内状態量OSref と現在の触媒内状態量OS(i) との偏差OSerror を算出する。
OSerror =OSref −OS(i)
【0030】
そして、次のステップ104で、PIDコントローラの比例ゲインkp、積分ゲインki、微分ゲインkdをマップ等により設定する。この際、各ゲインkp,ki,kdを吸入空気量又は吸気管圧力等のエンジン運転条件に応じて可変しても良い。
【0031】
この後、ステップ105に進み、各ゲインkp,ki,kdと演算間隔dt(例えば180℃A回転するのに要する時間)を用いて、PIDコントローラの制御パラメータA1,A2,B1,B2,B3を次式により算出する。
A1=1
A2=0
B1=kp・(1+dt/ki+kd/dt)
B2=kp・(1+2・kd/dt)
B3=kp・kd/dt
【0032】
この後、図3のステップ106に進み、上記各制御パラメータA1,A2,B1,B2,B3と触媒内状態量偏差OSerror と過去の目標燃料過剰率φref を用いて今回の目標燃料過剰率φref を次のようにして算出する。まず、目標燃料過剰率補正量Δφref を次式により算出する。
Δφref =B1・OSerror(i)−B2・OSerror(i-1)+B3・OSerror(i-2)+A1・φref (i-1) −A2・φref (i-2)
【0033】
そして、この目標燃料過剰率補正量Δφref をベース値“1”に加算して、触媒22上流側の目標燃料過剰率φref を求めて、本プログラムを終了する。
φref =1+Δφref
【0034】
次に、図5に基づいて、過渡運転時の燃料過剰率φと触媒内状態量OSの挙動の一例を説明する。例えば、触媒22上流側の燃料過剰率φがリッチ側に変化すると、触媒22内にリッチ成分が吸着されて触媒内状態量OSが増加する。しかし、触媒内状態量OSがリッチ側のガード値OSmax (リッチ側の飽和吸着量)に達すると、それ以上はリッチ成分を吸着できなくなるため、触媒内状態量OSの算出値がガード値OSmax でガード処理され、触媒内状態量OSの算出値がガード値OSmax に張り付いた状態となる。これにより、触媒22が飽和状態になったときに触媒内状態量OSの算出値の誤差が拡大することが防止される。
【0035】
その後、燃料過剰率φがリーン側に変化すると、触媒22内に吸着されていたリッチ成分が排出ガス中のリーン成分と酸化還元反応して消費されるため、触媒内状態量OSが減少し始める。これにより、触媒内状態量OSが目標触媒内状態量OSref 付近に戻される。その結果、触媒22の吸着能力が良好に維持され、排出ガス浄化率が向上する。
【0036】
ところで、本実施形態(1)では、触媒内状態量OSを排出ガスの燃料過剰率φと空気量Qとに基づいて算出するが、空気量Qを検出する位置(吸気管12)と排出ガスの燃料過剰率φを検出する位置(排気管21)とが離れているため、空気量検出位置を通過した空気が噴射燃料と混合して燃焼して燃料過剰率φの検出位置に到達するまでに時間遅れが生じる。このため、空気量Qが変化する過渡運転時には、同時刻に検出した燃料過剰率φ(i) と空気量Q(i) を用いたのでは触媒内状態量OSを正確に算出することができない。
【0037】
そこで、本実施形態(1)では、触媒内状態量OSを算出する際に用いる空気量は、燃料噴射から排出ガスの燃料過剰率φを検出するまでの遅れ時間dを考慮して、現時点iよりも遅れ時間d前の過去の空気量Q(i-d) を用いる。これにより、触媒内状態量OSを算出する際に用いる空気量Qと燃料過剰率φとの時間的なずれを修正することができ、空気量Qが変化する過渡運転時でも触媒内状態量を精度良く算出することができる。
【0038】
尚、本実施形態(1)では、燃料噴射から排出ガスの燃料過剰率φを検出するまでの遅れ時間dを考慮したが、空気が空気量検出位置から燃料過剰率φの検出位置に到達するまでの遅れ時間d’を考慮して、現時点iよりも遅れ時間d’前の過去の空気量Q(i-d')を用いるようにしても良く、要は、少なくとも燃料噴射から排出ガスの燃料過剰率φを検出するまでの遅れ時間分過去の空気量を用いるようにすれば良い。
【0039】
また、本実施形態(1)では、PIDコントローラを用いて制御パラメータA1,A2,B1,B2,B3を算出するようにしたが、図6に示す本発明の他の実施形態では、PIDコントローラの代わりに、近似微分を用いて制御パラメータA1,A2,B1,B2,B3を算出するようにしている。その他の処理は、図2及び図3の各ステップの処理と同じで良い。このように、近似微分を用いて制御パラメータA1,A2,B1,B2,B3を算出しても、前記実施形態とほぼ同様の効果を得ることができる。
【0040】
図1に示すシステム構成例では、触媒22の上流側のみに空燃比センサ23を設置したが、触媒22の上流側と下流側の両方に空燃比センサを設置したシステムにも本発明を適用できる。この場合、触媒下流側の空燃比センサで検出した燃料過剰率と空気量とに基づいて触媒内状態量を算出し、この触媒内状態量と目標触媒内状態量との偏差を小さくするように触媒上流側の目標燃料過剰率を算出するようにしても良い。この際、触媒内状態量の算出に用いる空気量は、少なくとも燃料噴射から触媒下流側で排出ガスの燃料過剰率を検出するまでの遅れ時間を考慮して、その遅れ時間分過去の空気量を用いるようにすると良い。
【0041】
また、上記各実施形態においては、空燃比の情報として燃料過剰率φを用いたが、燃料過剰率φに代えて、空気過剰率λ又は空燃比A/Fを用いても良いことは言うまでもない。
【0042】
また、空燃比センサ23の代わりに、排出ガスのガス濃度を検出するガス濃度センサを用いても良い。この場合は、検出した排出ガスのガス濃度と空気量とに基づいて触媒内状態量を算出し、この触媒内状態量と目標値との偏差が小さくなるように燃料噴射量を補正するようにすれば良い。
【0043】
[実施形態(2)]
次に、図7乃至図10に基づいて本発明の実施形態(2)を説明する。本実施形態(2)では、触媒22の上流側と下流側の両方に空燃比センサ23,27を設置している。上流側の空燃比センサ(以下「上流側センサ」という)23は、前記実施形態(1)と同じく、排出ガスの空燃比に応じてリニアな空燃比信号を出力するリニアA/Fセンサ等が用いられ、下流側の空燃比センサ(以下「下流側センサ」という)27は、排出ガスの空燃比のリッチ/リーンに応じて出力電圧が反転する酸素センサ等が用いられている。尚、下流側センサ27も、上流側センサ23と同じく、リニアA/Fセンサ等を用いても良いことは言うまでもない。その他のシステム構成は、前記実施形態(1)と同じである。
【0044】
ECU26は、図8の目標φ算出プログラムで算出した目標燃料過剰率φref と実際の燃料過剰率φとの偏差を小さくするように燃料噴射量をフィードバック補正して、触媒内状態量OSを目標触媒内状態量OSref 付近に制御する。
【0045】
図8の目標φ算出プログラムは、所定クランク角毎又は所定時間毎に起動され、まず、ステップ201で、上流側センサ23の出力(触媒22に流入する排出ガスの空燃比)がリッチかリーンかを判別する。
【0046】
もし、上流側センサ23の出力がリッチと判定されれば、ステップ202に進み、前回演算時から今回演算時までの触媒内状態量の変化量ΔOS(i) を次式により算出する。
ΔOS(i) =kr×(φ−φref )×Q(i-d)
kr:重み係数
φ:上流側センサ23で検出した実際の燃料過剰率
φref :目標燃料過剰率
Q(i-d) :現時点iよりも遅れ時間d前の過去の空気量
【0047】
ここで、重み係数krは、実際の触媒内状態量の代用情報となる下流側センサ27の出力(触媒22から流出する排出ガスの空燃比)に応じて次のように設定される。
【0048】
▲1▼下流側センサ27の出力(実際の触媒内状態量)がリッチの時は、重み係数krを1よりも小さい所定値に設定する。この所定値は、予め設定した固定値でも良いが、下流側センサ27の出力に応じてマップ又は数式により設定しても良い。
【0049】
▲2▼下流側センサ27の出力(実際の触媒内状態量)がリーンの時は、重み係数krを1よりも大きい所定値に設定する。この所定値は、予め設定した固定値でも良いが、下流側センサ27の出力に応じてマップ又は数式により設定しても良い。
【0050】
▲3▼下流側センサ27の出力(実際の触媒内状態量)がストイキの時は、重み係数krを1に設定する。尚、kr=1とする下流側センサ27の出力の範囲をある程度幅を持たせて、下流側センサ27の出力(実際の触媒内状態量)がストイキに近ければ、kr=1としても良い。
【0051】
一方、上記ステップ201で、上流側センサ23の出力がリーンと判定されれば、ステップ202に進み、重み係数klを用いて、前回演算時から今回演算時までの触媒内状態量の変化量ΔOS(i) を次式により算出する。
ΔOS(i) =kl×(φ−φref )×Q(i-d)
【0052】
ここで、重み係数klは、実際の触媒内状態量の代用情報となる下流側センサ27の出力(触媒22から流出する排出ガスの空燃比)に応じて次のように設定される。
【0053】
▲1▼下流側センサ27の出力(実際の触媒内状態量)がリッチの時は、重み係数klを1よりも大きい所定値に設定する。この所定値は、予め設定した固定値でも良いが、下流側センサ27の出力に応じてマップ又は数式により設定しても良い。
【0054】
▲2▼下流側センサ27の出力(実際の触媒内状態量)がリーンの時は、重み係数klを1よりも小さい所定値に設定する。この所定値は、予め設定した固定値でも良いが、下流側センサ27の出力に応じてマップ又は数式により設定しても良い。
【0055】
▲3▼下流側センサ27の出力(実際の触媒内状態量)がストイキの時は、重み係数klを1に設定する。尚、kl=1とする下流側センサ27の出力の範囲をある程度幅を持たせて、下流側センサ27の出力(実際の触媒内状態量)がストイキに近ければ、kl=1としても良い。
【0056】
上記ステップ202,203で、下流側センサ27の出力に応じて触媒内状態量の変化量ΔOS(i) の演算式のパラメータ(重み係数kr,kl)を可変する処理が特許請求の範囲でいうパラメータ可変手段としての役割を果たす。また、上記ステップ202,203で、パラメータ(重み係数kr,kl)を用いて、触媒内状態量の変化量ΔOS(i) を補正しながら求める処理が特許請求の範囲でいう補正手段としての役割を果たす。
【0057】
以上のようにしてステップ202又は203で、触媒内状態量の変化量ΔOS(i) を算出した後、ステップ204に進み、触媒内状態量の変化量ΔOS(i) を前回の触媒内状態量算出値OS(i-1) に積算して現在の触媒内状態量OS(i) を求める。
OS(i) =ΔOS(i) +OS(i-1)
【0058】
その後、ステップ205に進み、触媒内状態量OS(i) の算出値を触媒22のリーン側/リッチ側飽和吸着量に相当するガード値OSmin ,OSmax でガード処理する。
【0059】
この後、ステップ206に進み、目標触媒内状態量OSref と現在の触媒内状態量OS(i) との偏差OSerror を算出する。
OSerror =OSref −OS(i)
【0060】
そして、次のステップ207で、PIDコントローラの比例ゲイン、積分ゲイン、微分ゲインをマップ等により算出した後、ステップ208に進み、各ゲインを用いて、PIDコントローラの制御パラメータA1,A2,B1,B2,B3を前記実施形態(1)と同様の方法で算出する。
【0061】
この後、ステップ209に進み、上記制御パラメータA1,A2,B1,B2,B3と過去の目標燃料過剰率φref を用いて目標燃料過剰率補正量ΔφrefBを次式により算出する。
ΔφrefB=B1・OSerror(i)−B2・OSerror(i-1)
+B3・OSerror(i-2)+A1・φref (i-1) −A2・φref (i-2)
【0062】
そして、次のステップ210で、後述する図9のΔφrefA算出プログラムを実行して、サブフィードバックによる目標燃料過剰率補正量ΔφrefAを算出する。この後、ステップ211に進み、上記ステップ209,210で算出した2つの目標燃料過剰率補正量ΔφrefB,ΔφrefAをベース値“1”に加算して、触媒22上流側の目標燃料過剰率φref を設定し、本プログラムを終了する。
φref =1+ΔφrefA+ΔφrefB
【0063】
一方、上記ステップ210で、図9のΔφrefA算出プログラムが起動されると、まず、ステップ301で、目標触媒内状態量OSref と現在の触媒内状態量OS(i) との偏差OSerror(i)に応じて、サブフィードバックの制御パラメータki,kpを次式により算出する。
ki=kis×OSerror(i)
kp=kps×OSerror(i)
ここで、kisとkpsは、それぞれ制御パラメータki,kpのベース値である。
【0064】
この後、ステップ302に進み、現在の下流側センサ27の出力(実際の触媒内状態量)がリッチかリーンかを判別する。もし、下流側センサ27の出力がリッチと判定されれば、ステップ303に進み、前回もリッチであったか否かを判定する。前回も今回もリッチである場合には、ステップ304に進み、前回の目標燃料過剰率補正量ΔφrefA(i-1) に制御パラメータkiを加算して今回の目標燃料過剰率補正量ΔφrefA(i) を求める。
ΔφrefA(i) =ΔφrefA(i-1) +ki
【0065】
また、下流側センサ27の出力が前回はリーン側で今回リッチに反転した場合は、ステップ305に進み、前回の目標燃料過剰率補正量ΔφrefA(i-1) に制御パラメータkpを加算して今回の目標燃料過剰率補正量ΔφrefA(i) を求める。
ΔφrefA(i) =ΔφrefA(i-1) +kp
【0066】
一方、ステップ302で、現在の下流側センサ27の出力(実際の触媒内状態量)がリーンと判定されれた場合は、ステップ306に進み、前回もリーンであったか否かを判定する。前回も今回もリーンである場合には、ステップ308に進み、前回の目標燃料過剰率補正量ΔφrefA(i-1) に制御パラメータkiを加算して今回の目標燃料過剰率補正量ΔφrefA(i) を求める。
ΔφrefA(i) =ΔφrefA(i-1) +ki
【0067】
また、下流側センサ27の出力が前回はリッチ側で今回リーンに反転した場合は、ステップ307に進み、前回の目標燃料過剰率補正量ΔφrefA(i-1) に制御パラメータkpを加算して今回の目標燃料過剰率補正量ΔφrefA(i) を求める。
ΔφrefA(i) =ΔφrefA(i-1) +kp
【0068】
以上のようにして、ステップ304,305,307,308のいずれかで、目標燃料過剰率補正量ΔφrefA(i) を算出した後、ステップ309に進み、目標燃料過剰率補正量ΔφrefA(i) を適正なガード値でガード処理して、本プログラムを終了する。
【0069】
以上説明した実施形態(2)の過渡時の制御特性を図10のタイムチャートを用いて説明する。図10のタイムチャートは、実施形態(2)の制御特性を実施形態(1)の制御特性と比較して示している。
【0070】
実施形態(2)では、触媒22の下流側に設置した下流側センサ27の出力(触媒22から流出する排出ガスの空燃比)が実際の触媒内状態量に追従して変化する点に着目し、触媒内状態量の変化量ΔOS(i) の演算式のパラメータ(重み係数kr,kl)を下流側センサ27の出力(実際の触媒内状態量)に応じて可変するようにしたので、触媒内状態量OS(i) の算出値を下流側センサ27の出力(実際の触媒内状態量)に応じて逐次補正することができる。これにより、実施形態(2)では、触媒内状態量OS(i) の算出誤差(推定誤差)を実施形態(1)よりも少なくすることができ、実際の触媒内状態量に追従した応答性の良い空燃比制御を実施することができる。これにより、過渡時に触媒22上流側の燃料過剰率φや、下流側センサ27の出力(実際の触媒内状態量)を早期にストイキに収束させることができ、過渡時でも安定した排出ガス浄化性能を維持することができる。
【0071】
しかも、本実施形態(2)では、触媒22の下流側の空燃比(下流側センサ27の出力)を目標燃料過剰率φref に反映させるサブフィードバックの制御パラメータki,kpを、下流側センサ27の出力(実際の触媒内状態量)に応じて可変するようにしたので、下流側センサ27の出力(実際の触媒内状態量)に応じて目標燃料過剰率φref を応答性良く可変することができる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)を示すエンジン制御システム全体の概略構成図
【図2】実施形態(1)の目標φ算出プログラムの処理の流れを示すフローチャート(その1)
【図3】実施形態(1)の目標φ算出プログラムの処理の流れを示すフローチャート(その2)
【図4】触媒内状態量OSの算出値に対するガード値OSmin ,OSmax と空気量Qとの関係を示す図
【図5】過渡運転時の燃料過剰率φと触媒内状態量OSの挙動の一例を示すタイムチャート
【図6】近似微分を用いて制御パラメータA1,A2,B1,B2,B3を算出する方法を説明するフローチャート
【図7】本発明の実施形態(2)を示すエンジン制御システム全体の概略構成図
【図8】実施形態(2)の目標φ算出プログラムの処理の流れを示すフローチャート
【図9】ΔφrefA算出プログラムの処理の流れを示すフローチャート
【図10】実施形態(2)の制御特性を実施形態(1)の制御特性と比較して示すタイムチャート
【符号の説明】
11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ(空気量検出手段)、20…燃料噴射弁、21…排気管、22…触媒、23…空燃比センサ(空燃比検出手段,上流側センサ)、26…ECU(触媒内状態量算出手段,噴射制御手段,ガード処理手段,補正手段,パラメータ可変手段)、27…空燃比センサ(下流側センサ)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that controls an air-fuel ratio in consideration of a state in a catalyst.
[0002]
[Prior art]
In recent automobiles, a three-way catalyst is installed in the exhaust pipe, an air-fuel ratio sensor is installed upstream of the catalyst, and the air-fuel ratio of the exhaust gas is reduced based on the output of the air-fuel ratio sensor. By controlling the fuel injection amount so that it is controlled in the vicinity of the air-fuel ratio), the exhaust gas is efficiently purified.
[0003]
[Problems to be solved by the invention]
By the way, the catalyst is a lean component (NOx, Ox) in the exhaust gas. 2 Etc.) and rich components (HC, H 2 Harmless neutral gas components (CO 2 , H 2 O, N 2 In addition, there is also an action of temporarily adsorbing unreacted lean components and rich components in the catalyst, and purifying exhaust gas by both of these oxidation-reduction reactions and adsorption actions. Depending on the engine operating condition, the state where the air-fuel ratio of the exhaust gas flowing into the catalyst has shifted from the stoichiometric air-fuel ratio to the rich side or lean side may continue for a while, but if the air-fuel ratio shifts in this way for a while In some cases, the amount of lean component adsorption or the amount of rich component adsorption in the catalyst increases and becomes saturated. As a result, the catalyst adsorption capacity decreases and the exhaust gas purification rate decreases.
[0004]
The present invention has been made in view of such circumstances. Accordingly, the object of the present invention is to improve the exhaust gas purification rate by appropriately controlling the air-fuel ratio in consideration of the state in the catalyst. An object is to provide an air-fuel ratio control device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an air-fuel ratio control apparatus for an internal combustion engine according to claim 1 of the present invention detects an air-fuel ratio of exhaust gas upstream or downstream of a catalyst by an air-fuel ratio detection means and is taken into the internal combustion engine. The amount of air detected is detected by the air amount detection means, and based on the detected air-fuel ratio and the amount of air Adsorption amount of the lean and rich components of the catalyst (hereinafter referred to as “ State quantity in catalyst ") Is calculated by the in-catalyst state quantity calculating means, and the fuel injection amount is corrected by the injection control means so that the deviation between the in-catalyst state quantity and the target in-catalyst state quantity becomes small. In this way, the adsorption capacity of the catalyst is controlled so as to be maintained as good as possible, and the exhaust gas purification rate is improved.
The invention according to claim 1 further comprises guard processing means for limiting the calculated value of the in-catalyst state amount with a guard value corresponding to the saturated adsorption amount of the catalyst, and the saturation value of the catalyst is increased as the air amount increases. The amount is changed so as to decrease. These technical features will be described later.
[0006]
In this case, the in-catalyst state quantity is calculated based on the air-fuel ratio of the exhaust gas and the air quantity. The position for detecting the air quantity (intake pipe) and the position for detecting the air-fuel ratio of the exhaust gas (exhaust pipe) Therefore, there is a time delay until the air that has passed through the air amount detection position is mixed with the injected fuel and burned to reach the air-fuel ratio detection position. For this reason, during transient operation in which the air amount changes, the in-catalyst state amount cannot be accurately calculated by using the air-fuel ratio and air amount detected at the same time.
[0007]
Therefore , Touch As the air amount used when calculating the state quantity in the medium, it is preferable to use the past air amount at least for the delay time from the fuel injection to the detection of the air-fuel ratio of the exhaust gas. In this way, it is possible to correct the time lag between the air amount used when calculating the in-catalyst state amount and the air-fuel ratio, and the in-catalyst state amount can be accurately determined even during transient operation in which the air amount changes. Can be calculated.
[0008]
Also , Place The amount of change in the in-catalyst state amount is calculated based on the deviation amount of the air-fuel ratio of the exhaust gas with respect to the target air-fuel ratio and the air amount at a constant calculation cycle, and this change amount is integrated to obtain the current in-catalyst state amount You may do it. In this way, the in-catalyst state quantity can be accurately calculated by a simple calculation process.
[0009]
Further, when the amount of state in the catalyst reaches the saturated adsorption amount of the catalyst, the gas component cannot be adsorbed any more, so the claim In the invention according to 1, The calculated value of the in-catalyst state quantity is limited by a guard value corresponding to the saturated adsorption amount of the catalyst by the guard processing means. is doing . In this way, it is possible to prevent the error in the calculated value of the in-catalyst state quantity from increasing when the catalyst is saturated.
[0010]
In this case, since the saturated adsorption characteristic that the saturated adsorption amount of the catalyst decreases as the flow rate of the exhaust gas flowing through the catalyst increases (the air amount increases), the invention according to claim 1 has a state quantity in the catalyst. The guard value for the calculated value of air volume As the amount of catalyst increases, the amount of saturated adsorption of the catalyst decreases. I try to change it. In this way, a guard value suitable for the actual saturation adsorption characteristic of the catalyst can be set, and the calculation accuracy of the in-catalyst state quantity can be further improved.
[0011]
Since the air-fuel ratio of exhaust gas and the gas concentration are correlated, the claims 2 As described above, the gas concentration of the exhaust gas upstream or downstream of the catalyst is detected by the gas concentration detecting means, and the air amount sucked into the internal combustion engine is detected by the air amount detecting means, and the detected gas concentration of the exhaust gas and the air are detected. The amount of state in the catalyst is calculated based on the amount of State quantity in catalyst The fuel injection amount may be corrected so that the deviation from the above becomes small. Even in this case, as in the first aspect, the adsorption capacity of the catalyst is controlled to be maintained as good as possible, and the exhaust gas purification rate is improved.
[0012]
Incidentally, when calculating the in-catalyst state quantity, it is inevitable that a certain amount of error occurs. The calculation error (estimation error) of the in-catalyst state quantity can be corrected by sub-feedback that reflects the output of the air-fuel ratio sensor (or oxygen sensor) installed downstream of the catalyst in the target air-fuel ratio upstream of the catalyst. There is a response delay in the correction by.
[0013]
Therefore, the claim In the invention according to 2 When calculating the in-catalyst state quantity, the calculated value is corrected by the correcting means according to the actual in-catalyst state quantity. Have . In this way, the calculation error (estimation error) of the in-catalyst state quantity can be reduced, and accordingly, air-fuel ratio control with good responsiveness to the actual in-catalyst state quantity can be performed. The exhaust gas purification performance can be improved.
[0014]
In this case, the air-fuel ratio or gas concentration of the exhaust gas flowing out from the catalyst changes depending on the actual amount of state in the catalyst. In the invention according to 2 As for the information on the actual amount of state in the catalyst, the output of the sensor on the downstream side of the catalyst for detecting the air-fuel ratio or gas concentration of the exhaust gas flowing out from the catalyst is used. is doing . As a result, information on the actual in-catalyst state quantity can be easily obtained from the output of the sensor on the downstream side of the catalyst.
[0015]
In the invention according to claim 2, the in-catalyst state quantity calculated by the in-catalyst state quantity calculating means Goal The parameter for controlling the target excess fuel ratio is varied by the parameter variable means according to the deviation from the in-catalyst state quantity. At the same time, as a parameter for controlling the target excess fuel ratio, a sub-feedback control parameter for reflecting the air fuel ratio on the downstream side of the catalyst in the target excess fuel ratio is varied. Thereby, the target excess fuel ratio can be set with good responsiveness according to the deviation of the in-catalyst state quantity.
[0016]
In this case, as in claim 3, when calculating the in-catalyst state quantity, the parameter of the equation used for the calculation may be variably set based on the output of the sensor on the downstream side of the catalyst. Yes. This The target fuel excess rate can be varied with good responsiveness according to the deviation of the in-catalyst state quantity.
[0017]
In addition, in consideration of the fact that there is a certain amount of error in the information on the actual amount of state in the catalyst, the claims 4 As described above, when the deviation between the in-catalyst state quantity calculated by the in-catalyst state quantity calculating means and the actual in-catalyst state quantity is a predetermined value or less, the deviation may be regarded as zero. In this way, it is possible to avoid overcorrection due to an error included in the information on the actual amount of state in the catalyst (sensor output on the downstream side of the catalyst), and stable air-fuel ratio control can be performed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS.
[0019]
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is an internal combustion engine, and an air flow meter 14 (air amount detecting means) for detecting the intake air amount is provided downstream of the air cleaner 13. ing. A throttle valve 15 and a throttle opening sensor 16 for detecting the throttle opening are provided on the downstream side of the air flow meter 14.
[0020]
Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes.
[0021]
On the other hand, a catalyst 22 such as a three-way catalyst for reducing harmful components (CO, HC, NOx, etc.) in the exhaust gas is installed in the middle of the exhaust pipe 21 of the engine 11. On the upstream side of the catalyst 22, an air-fuel ratio sensor 23 (air-fuel ratio detection means) such as a linear A / F sensor for detecting the air-fuel ratio of the exhaust gas is provided. A cooling water temperature sensor 24 that detects the cooling water temperature and a crank angle sensor 25 that detects the engine rotation speed are attached to the cylinder block of the engine 11.
[0022]
These various sensor outputs are input to an engine control circuit (hereinafter referred to as “ECU”) 26. This ECU 26 is mainly composed of a microcomputer, and by executing the target φ calculation program of FIGS. 2 and 3 stored in a built-in ROM (storage medium), The adsorption amount of the lean component and the rich component of the catalyst 22 The in-catalyst state amount OS is calculated, and the target fuel excess ratio φref on the upstream side of the catalyst 22 is calculated in accordance with the in-catalyst state amount OS. Here, the excess fuel ratio φ is the reciprocal of the excess air ratio λ (φ = 1 / λ), and the excess air ratio λ is the ratio between the actual air-fuel ratio and the stoichiometric air-fuel ratio.
λ = actual air / fuel ratio / theoretical air / fuel ratio φ = theoretical air / fuel ratio / actual air / fuel ratio
[0023]
The ECU 26 feedback corrects the fuel injection amount so as to reduce the deviation between the target fuel excess rate φref calculated by the target φ calculation program of FIG. 2 and FIG. Is controlled in the vicinity of the target catalyst state quantity OSref. This function corresponds to the injection control means in the claims.
[0024]
2 and FIG. 3 is started every predetermined crank angle (for example, every 180 ° C.) or every predetermined time. First, at step 101, the current in-catalyst state quantity OS ( i) is calculated. First, based on the deviation (φ−φref) between the actual excess fuel ratio φ and the target excess fuel ratio φref detected by the air-fuel ratio sensor 23 upstream of the catalyst 22 and the amount of air Q flowing into the catalyst 22 per unit time. Then, the change amount ΔOS (i) of the in-catalyst state quantity is calculated.
ΔOS (i) = (φ−φref) × Q (id) (1)
[0025]
Here, the air amount Q uses the past air amount Q (id) before the current time i and before the current time i in consideration of the delay time d from the fuel injection to the detection of the excess fuel ratio φ of the exhaust gas. . At this time, the delay time d may be a fixed value in order to simplify the arithmetic processing, but the delay time d may be changed according to the air amount Q. That is, as the air amount Q increases, the air flow rate increases and the actual delay time d decreases. Therefore, the delay time d may be set shorter as the air amount Q increases.
[0026]
The change amount ΔOS (i) of the in-catalyst state quantity calculated by the above equation (1) is added to the previous in-catalyst state quantity calculation value OS (i-1) to obtain the current in-catalyst state quantity OS (i). .
OS (i) = ΔOS (i) + OS (i-1) (2)
The processing of step 101 serves as the in-catalyst state quantity calculating means in the claims.
[0027]
Thereafter, the routine proceeds to step 102 where the calculated value of the in-catalyst state quantity OS (i) is guarded with the guard values OSmin and OSmax corresponding to the lean side / rich side saturated adsorption quantity of the catalyst 22. For example, if the calculated value of the in-catalyst state amount OS (i) is within the range of the guard values OSmin and OSmax (OSmin ≦ OS (i) ≦ OSmax), the calculated value of the in-catalyst state amount OS (i) is adopted as it is. If the calculated value of the in-catalyst state amount OS (i) exceeds the guard value OSmin (or OSmax), the calculated value of the in-catalyst state amount OS (i) is replaced with the guard value OSmin (or OSmax), Let OS (i) = OSmin (or OS (i) = OSmax). This process serves as guard processing means in the claims.
[0028]
At this time, the guard values OSmin and OSmax may be fixed values in order to simplify the arithmetic processing. However, as the flow rate of the exhaust gas flowing through the catalyst 22 increases (the air amount Q increases), the saturation of the catalyst 22 occurs. Since there is a saturated adsorption characteristic in which the adsorption amount decreases, the guard values OSmin and OSmax may be changed on a map or the like according to the air amount Q as shown in FIG. In this case, it is preferable to set the guard values OSmin and OSmax to be smaller as the air amount Q increases. In this way, it is possible to set the guard values OSmin and OSmax suitable for the saturation adsorption characteristics of the actual catalyst 22.
[0029]
Thereafter, the process proceeds to step 103, and a deviation OSerror between the target in-catalyst state quantity OSref and the current in-catalyst state quantity OS (i) is calculated.
OS error = OSref -OS (i)
[0030]
In the next step 104, the proportional gain kp, integral gain ki, and differential gain kd of the PID controller are set using a map or the like. At this time, the gains kp, ki, and kd may be varied according to the engine operating conditions such as the intake air amount or the intake pipe pressure.
[0031]
Thereafter, the process proceeds to step 105, and the control parameters A1, A2, B1, B2, B3 of the PID controller are set using the gains kp, ki, kd and the calculation interval dt (for example, the time required for 180 ° A rotation). Calculated by the following formula.
A1 = 1
A2 = 0
B1 = kp · (1 + dt / ki + kd / dt)
B2 = kp · (1 + 2 · kd / dt)
B3 = kp · kd / dt
[0032]
Thereafter, the process proceeds to step 106 in FIG. 3, and the current target fuel excess rate φref is determined using the control parameters A1, A2, B1, B2, B3, the in-catalyst state quantity deviation OSerror, and the past target fuel excess rate φref. Calculate as follows. First, the target fuel excess rate correction amount Δφref is calculated by the following equation.
Δφref = B1 · OSerror (i) −B2 · OSerror (i-1) + B3 · OSerror (i-2) + A1 · φref (i-1) −A2 · φref (i-2)
[0033]
Then, this target fuel excess rate correction amount Δφref is added to the base value “1”, the target fuel excess rate φref on the upstream side of the catalyst 22 is obtained, and this program ends.
φref = 1 + Δφref
[0034]
Next, an example of the behavior of the excess fuel ratio φ and the in-catalyst state quantity OS during transient operation will be described with reference to FIG. For example, when the excess fuel ratio φ on the upstream side of the catalyst 22 changes to the rich side, rich components are adsorbed in the catalyst 22 and the in-catalyst state amount OS increases. However, when the in-catalyst state amount OS reaches the rich guard value OSmax (rich side saturated adsorption amount), the rich component cannot be adsorbed any more, so the calculated value of the in-catalyst state amount OS is the guard value OSmax. The guard process is performed, and the calculated value of the in-catalyst state quantity OS is stuck to the guard value OSmax. This prevents an error in the calculated value of the in-catalyst state amount OS from increasing when the catalyst 22 is saturated.
[0035]
Thereafter, when the excess fuel ratio φ changes to the lean side, the rich component adsorbed in the catalyst 22 is consumed by oxidation-reduction reaction with the lean component in the exhaust gas, and therefore the in-catalyst state quantity OS starts to decrease. . Thereby, the in-catalyst state quantity OS is returned to the vicinity of the target in-catalyst state quantity OSref. As a result, the adsorption capacity of the catalyst 22 is maintained well, and the exhaust gas purification rate is improved.
[0036]
In the present embodiment (1), the in-catalyst state amount OS is calculated based on the excess fuel ratio φ of the exhaust gas and the air amount Q. However, the position (intake pipe 12) where the air amount Q is detected and the exhaust gas are calculated. Since the position where the excess fuel ratio φ is detected (exhaust pipe 21) is separated, the air that has passed through the air amount detection position is mixed with the injected fuel and burned until it reaches the detection position for the excess fuel ratio φ. A time delay occurs. For this reason, during transient operation in which the air amount Q changes, the in-catalyst state amount OS cannot be accurately calculated by using the excess fuel ratio φ (i) and the air amount Q (i) detected at the same time. .
[0037]
Therefore, in the present embodiment (1), the amount of air used when calculating the in-catalyst state amount OS is determined by taking into account the delay time d from the fuel injection until the excess fuel ratio φ of the exhaust gas is detected. The past air amount Q (id) before the delay time d is used. As a result, the time lag between the air amount Q used when calculating the in-catalyst state amount OS and the excess fuel ratio φ can be corrected, and the in-catalyst state amount can be reduced even during transient operation in which the air amount Q changes. It is possible to calculate with high accuracy.
[0038]
In the present embodiment (1), the delay time d from the fuel injection to the detection of the excess fuel ratio φ of the exhaust gas is taken into consideration, but the air reaches the detection position of the excess fuel ratio φ from the air amount detection position. In consideration of the delay time d ′ until the current time i, the past air amount Q (i-d ′) before the delay time d ′ may be used. The past air amount may be used for the delay time until the excess fuel ratio φ is detected.
[0039]
In the present embodiment (1), the control parameters A1, A2, B1, B2, and B3 are calculated using the PID controller. However, in another embodiment of the present invention shown in FIG. Instead, the control parameters A1, A2, B1, B2, and B3 are calculated using approximate differentiation. Other processing may be the same as the processing of each step in FIGS. Thus, even if the control parameters A1, A2, B1, B2, and B3 are calculated using approximate differentiation, substantially the same effects as those of the above-described embodiment can be obtained.
[0040]
In the system configuration example shown in FIG. 1, the air-fuel ratio sensor 23 is installed only on the upstream side of the catalyst 22, but the present invention can also be applied to a system in which air-fuel ratio sensors are installed on both the upstream and downstream sides of the catalyst 22. . In this case, the in-catalyst state quantity is calculated based on the excess fuel ratio and the air amount detected by the air-fuel ratio sensor on the downstream side of the catalyst, and the deviation between the in-catalyst state quantity and the target in-catalyst state quantity is reduced. The target excess fuel ratio on the upstream side of the catalyst may be calculated. At this time, the amount of air used to calculate the in-catalyst state amount is determined by taking into account the delay time from the fuel injection to the detection of the excess fuel ratio of the exhaust gas on the downstream side of the catalyst. It should be used.
[0041]
In each of the above embodiments, the excess fuel ratio φ is used as the air-fuel ratio information, but it goes without saying that the excess air ratio λ or the air-fuel ratio A / F may be used instead of the excess fuel ratio φ. .
[0042]
Further, instead of the air-fuel ratio sensor 23, a gas concentration sensor that detects the gas concentration of the exhaust gas may be used. In this case, the in-catalyst state amount is calculated based on the detected exhaust gas concentration and the air amount, and the fuel injection amount is corrected so that the deviation between the in-catalyst state amount and the target value is small. Just do it.
[0043]
[Embodiment (2)]
Next, Embodiment (2) of this invention is demonstrated based on FIG. 7 thru | or FIG. In this embodiment (2), air-fuel ratio sensors 23 and 27 are installed on both the upstream side and the downstream side of the catalyst 22. The upstream air-fuel ratio sensor (hereinafter referred to as “upstream sensor”) 23 is a linear A / F sensor that outputs a linear air-fuel ratio signal in accordance with the air-fuel ratio of the exhaust gas, as in the first embodiment. As the downstream air-fuel ratio sensor (hereinafter referred to as “downstream sensor”) 27, an oxygen sensor whose output voltage is inverted according to the rich / lean of the air-fuel ratio of the exhaust gas is used. Needless to say, the downstream sensor 27 may also be a linear A / F sensor or the like, similar to the upstream sensor 23. Other system configurations are the same as those in the embodiment (1).
[0044]
The ECU 26 feedback corrects the fuel injection amount so as to reduce the deviation between the target fuel excess rate φref calculated by the target φ calculation program of FIG. 8 and the actual fuel excess rate φ, and the in-catalyst state amount OS is set to the target catalyst. Control is performed in the vicinity of the internal state quantity OSref.
[0045]
The target φ calculation program in FIG. 8 is started at every predetermined crank angle or every predetermined time. First, at step 201, whether the output of the upstream sensor 23 (the air-fuel ratio of the exhaust gas flowing into the catalyst 22) is rich or lean. Is determined.
[0046]
If it is determined that the output of the upstream sensor 23 is rich, the routine proceeds to step 202, where the change amount ΔOS (i) of the in-catalyst state quantity from the previous calculation to the current calculation is calculated by the following equation.
ΔOS (i) = kr × (φ−φref) × Q (id)
kr: Weight coefficient
φ: Actual fuel excess rate detected by upstream sensor 23
φref: Target fuel excess rate
Q (id): Past air volume before delay time d before current i
[0047]
Here, the weighting factor kr is set as follows in accordance with the output of the downstream sensor 27 (the air-fuel ratio of the exhaust gas flowing out from the catalyst 22), which is substitute information for the actual in-catalyst state quantity.
[0048]
(1) When the output of the downstream sensor 27 (actual in-catalyst state quantity) is rich, the weighting coefficient kr is set to a predetermined value smaller than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.
[0049]
(2) When the output of the downstream sensor 27 (actual in-catalyst state quantity) is lean, the weighting factor kr is set to a predetermined value larger than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.
[0050]
(3) When the output of the downstream sensor 27 (actual in-catalyst state quantity) is stoichiometric, the weighting factor kr is set to 1. If the range of the output of the downstream sensor 27 where kr = 1 is widened to some extent, and the output of the downstream sensor 27 (actual in-catalyst state amount) is close to the stoichiometry, kr = 1 may be set.
[0051]
On the other hand, if it is determined in step 201 that the output of the upstream sensor 23 is lean, the process proceeds to step 202, and the change amount ΔOS of the in-catalyst state quantity from the previous calculation to the current calculation is performed using the weight coefficient kl. (i) is calculated by the following equation.
ΔOS (i) = kl × (φ−φref) × Q (id)
[0052]
Here, the weighting factor kl is set as follows according to the output of the downstream sensor 27 (the air-fuel ratio of the exhaust gas flowing out from the catalyst 22), which is the substitute information for the actual in-catalyst state quantity.
[0053]
(1) When the output of the downstream sensor 27 (actual in-catalyst state quantity) is rich, the weighting factor kl is set to a predetermined value larger than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.
[0054]
(2) When the output of the downstream sensor 27 (actual in-catalyst state quantity) is lean, the weighting factor kl is set to a predetermined value smaller than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.
[0055]
(3) When the output of the downstream sensor 27 (actual in-catalyst state quantity) is stoichiometric, the weighting factor kl is set to 1. It should be noted that if the output range of the downstream sensor 27 where kl = 1 is widened to some extent and the output (actual in-catalyst state amount) of the downstream sensor 27 is close to the stoichiometric, kl = 1 may be set.
[0056]
The process of varying the parameters (weighting factors kr, kl) of the arithmetic expression of the change amount ΔOS (i) of the in-catalyst state quantity in accordance with the output of the downstream sensor 27 in the steps 202 and 203 is referred to in the claims. It serves as a parameter variable means. Further, in the above-described steps 202 and 203, the processing to be obtained while correcting the change amount ΔOS (i) of the in-catalyst state quantity using the parameters (weighting factors kr, kl) serves as a correction means in the claims. Fulfill.
[0057]
After calculating the change amount ΔOS (i) of the in-catalyst state quantity in step 202 or 203 as described above, the process proceeds to step 204, where the change quantity ΔOS (i) of the in-catalyst state quantity is determined as the previous in-catalyst state quantity. The current in-catalyst state amount OS (i) is obtained by integrating the calculated value OS (i-1).
OS (i) = ΔOS (i) + OS (i-1)
[0058]
Thereafter, the routine proceeds to step 205, where the calculated value of the in-catalyst state quantity OS (i) is guarded with guard values OSmin and OSmax corresponding to the lean side / rich side saturated adsorption quantity of the catalyst 22.
[0059]
Thereafter, the process proceeds to step 206, and a deviation OSerror between the target in-catalyst state quantity OSref and the current in-catalyst state quantity OS (i) is calculated.
OS error = OSref -OS (i)
[0060]
Then, in the next step 207, the proportional gain, integral gain, and differential gain of the PID controller are calculated by a map or the like, and then the process proceeds to step 208, where each gain is used to control parameters A1, A2, B1, B2 of the PID controller. , B3 are calculated by the same method as in the above embodiment (1).
[0061]
Thereafter, the routine proceeds to step 209, where the target fuel excess rate correction amount ΔφrefB is calculated by the following equation using the control parameters A1, A2, B1, B2, B3 and the past target fuel excess rate φref.
ΔφrefB = B1 · OSerror (i) −B2 · OSerror (i-1)
+ B3 ・ OSerror (i-2) + A1 ・ φref (i-1) −A2 ・ φref (i-2)
[0062]
Then, in the next step 210, a ΔφrefA calculation program of FIG. 9 described later is executed to calculate a target fuel excess rate correction amount ΔφrefA by sub feedback. Thereafter, the process proceeds to step 211 where the two target fuel excess rate correction amounts ΔφrefB and ΔφrefA calculated in steps 209 and 210 are added to the base value “1” to set the target fuel excess rate φref on the upstream side of the catalyst 22. And exit this program.
φref = 1 + ΔφrefA + ΔφrefB
[0063]
On the other hand, when the ΔφrefA calculation program of FIG. 9 is started in step 210, first, in step 301, the deviation OSerror (i) between the target in-catalyst state quantity OSref and the current in-catalyst state quantity OS (i) is set. Accordingly, the sub feedback control parameters ki and kp are calculated by the following equations.
ki = kis × OSerror (i)
kp = kps × OSerror (i)
Here, kis and kps are base values of the control parameters ki and kp, respectively.
[0064]
Thereafter, the process proceeds to step 302 to determine whether the current output (actual in-catalyst state amount) of the downstream sensor 27 is rich or lean. If it is determined that the output of the downstream sensor 27 is rich, the process proceeds to step 303, where it is determined whether the previous time was also rich. If both the previous time and the current time are rich, the routine proceeds to step 304, where the control parameter ki is added to the previous target fuel excess rate correction amount ΔφrefA (i-1) and the current target fuel excess rate correction amount ΔφrefA (i). Ask for.
ΔφrefA (i) = ΔφrefA (i-1) + ki
[0065]
If the output of the downstream sensor 27 has been lean on the lean side this time, the process proceeds to step 305, where the control parameter kp is added to the previous target excess fuel ratio correction amount ΔφrefA (i-1) and this time. The target excess fuel ratio correction amount ΔφrefA (i) is obtained.
ΔφrefA (i) = ΔφrefA (i-1) + kp
[0066]
On the other hand, if it is determined in step 302 that the current output of the downstream sensor 27 (actual in-catalyst state quantity) is lean, the process proceeds to step 306, where it is determined whether or not it was also lean last time. If both the previous time and the current time are lean, the routine proceeds to step 308, where the control parameter ki is added to the previous target fuel excess rate correction amount ΔφrefA (i-1) and the current target fuel excess rate correction amount ΔφrefA (i). Ask for.
ΔφrefA (i) = ΔφrefA (i-1) + ki
[0067]
If the output of the downstream sensor 27 is rich last time and reverses lean this time, the process proceeds to step 307 where the control parameter kp is added to the previous target fuel excess rate correction amount ΔφrefA (i−1) and this time. The target excess fuel ratio correction amount ΔφrefA (i) is obtained.
ΔφrefA (i) = ΔφrefA (i-1) + kp
[0068]
As described above, after calculating the target excess fuel ratio correction amount ΔφrefA (i) in any one of steps 304, 305, 307, and 308, the process proceeds to step 309, where the target excess fuel ratio correction amount ΔφrefA (i) is set. Guard processing is performed with an appropriate guard value, and the program is terminated.
[0069]
The transient control characteristics of the embodiment (2) described above will be described with reference to the time chart of FIG. The time chart of FIG. 10 shows the control characteristics of the embodiment (2) in comparison with the control characteristics of the embodiment (1).
[0070]
In the embodiment (2), attention is paid to the fact that the output of the downstream sensor 27 installed on the downstream side of the catalyst 22 (the air-fuel ratio of the exhaust gas flowing out from the catalyst 22) changes following the actual in-catalyst state quantity. Since the parameter (weighting coefficient kr, kl) of the arithmetic expression of the change amount ΔOS (i) of the in-catalyst state quantity is made variable according to the output (actual in-catalyst state quantity) of the downstream sensor 27, the catalyst The calculated value of the internal state quantity OS (i) can be corrected sequentially according to the output of the downstream sensor 27 (actual in-catalyst state quantity). Thereby, in the embodiment (2), the calculation error (estimation error) of the in-catalyst state quantity OS (i) can be made smaller than that in the embodiment (1), and the responsiveness following the actual in-catalyst state quantity. The air-fuel ratio control with good quality can be performed. As a result, the excess fuel ratio φ on the upstream side of the catalyst 22 and the output (actual in-catalyst state amount) of the downstream sensor 27 can be quickly converged to stoichiometric at the time of transition, and stable exhaust gas purification performance even at the time of transition. Can be maintained.
[0071]
Moreover, in the present embodiment (2), the air / fuel ratio downstream of the catalyst 22 (the output of the downstream sensor 27) is set to the target excess fuel ratio φre. f The sub feedback control parameters ki and kp to be reflected are made variable in accordance with the output of the downstream sensor 27 (actual in-catalyst state quantity), so the output of the downstream sensor 27 (actual in-catalyst state quantity). Depending on the target excess fuel ratio φre f Variable with good responsiveness.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.
FIG. 2 is a flowchart (part 1) showing a flow of processing of a target φ calculation program according to the embodiment (1).
FIG. 3 is a flowchart (part 2) illustrating a flow of processing of a target φ calculation program according to the embodiment (1).
FIG. 4 is a diagram showing a relationship between guard values OSmin and OSmax and an air amount Q with respect to a calculated value of a state quantity OS in the catalyst.
FIG. 5 is a time chart showing an example of behavior of excess fuel ratio φ and in-catalyst state quantity OS during transient operation.
FIG. 6 is a flowchart illustrating a method of calculating control parameters A1, A2, B1, B2, and B3 using approximate differentiation.
FIG. 7 is a schematic configuration diagram of an entire engine control system showing an embodiment (2) of the present invention.
FIG. 8 is a flowchart showing a flow of processing of a target φ calculation program according to the embodiment (2).
FIG. 9 is a flowchart showing a flow of processing of a ΔφrefA calculation program.
FIG. 10 is a time chart showing the control characteristics of the embodiment (2) in comparison with the control characteristics of the embodiment (1).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter (air quantity detection means), 20 ... Fuel injection valve, 21 ... Exhaust pipe, 22 ... Catalyst, 23 ... Air-fuel ratio sensor (Air-fuel ratio detection means, Upstream sensor), 26 ECU (in-catalyst state quantity calculation means, injection control means, guard processing means, correction means, parameter variable means), 27 air-fuel ratio sensor (downstream sensor).

Claims (4)

排出ガスを浄化する触媒を備えた内燃機関において、
前記触媒の上流又は下流の排出ガスの空燃比を検出する空燃比検出手段と、
内燃機関に吸入される空気量を検出する空気量検出手段と、
前記空燃比検出手段で検出した排出ガスの空燃比と前記空気量検出手段で検出した空気量とに基づいて前記触媒のリーン成分及びリッチ成分全体の吸着量(以下「触媒内状態量」という)を算出する触媒内状態量算出手段と、
前記触媒内状態量と目標触媒内状態量との偏差が小さくなるように燃料噴射量を補正する噴射制御手段と、
前記触媒内状態量の算出値を前記触媒の飽和吸着量に相当するガード値で制限するガード処理手段とを備え、
前記ガード処理手段は、前記ガード値を前記空気量が多くなるほど前記触媒の飽和吸着量が少なくなるように変化させる手段を有することを特徴とする内燃機関の空燃比制御装置。
In an internal combustion engine equipped with a catalyst for purifying exhaust gas,
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas upstream or downstream of the catalyst;
An air amount detecting means for detecting the amount of air sucked into the internal combustion engine;
Based on the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detection means and the air amount detected by the air amount detection means, the adsorption amount of the lean component and the entire rich component of the catalyst (hereinafter referred to as “in- catalyst state amount ”). In-catalyst state quantity calculating means for calculating
Injection control means for correcting the fuel injection amount so that the deviation between the in-catalyst state amount and the target in-catalyst state amount is small;
Guard processing means for limiting the calculated value of the in-catalyst state amount with a guard value corresponding to the saturated adsorption amount of the catalyst,
The air-fuel ratio control apparatus for an internal combustion engine, wherein the guard processing means includes means for changing the guard value so that the saturated adsorption amount of the catalyst decreases as the air amount increases.
排出ガスを浄化する触媒を備えた内燃機関において、
前記触媒の上流又は下流の排出ガスのガス濃度を検出するガス濃度検出手段と、
内燃機関に吸入される空気量を検出する空気量検出手段と、
前記ガス濃度検出手段で検出した排出ガスのガス濃度と前記空気量検出手段で検出した空気量とに基づいて前記触媒のリーン成分及びリッチ成分全体の吸着量(以下「触媒内状態量」という)を算出する触媒内状態量算出手段と、
前記触媒内状態量と目標触媒内状態量との偏差が小さくなるように燃料噴射量を補正する噴射制御手段と、
前記触媒内状態量算出手段により前記触媒内状態量を算出する際に、その算出値を実際の触媒内状態量に応じて補正する補正手段とを備え、
前記補正手段は、前記実際の触媒内状態量の情報を、前記触媒から流出する排出ガスの空燃比又はガス濃度を検出する触媒下流側のセンサの出力から得る手段と、前記触媒内状態量算出手段により算出した触媒内状態量と目標触媒内状態量との偏差に応じて目標燃料過剰率を制御するパラメータを可変するパラメータ可変手段とを備え
前記パラメータ可変手段は、前記目標燃料過剰率を制御するパラメータとして、前記触媒の下流側の空燃比を前記目標燃料過剰率に反映させるサブフィードバックの制御パラメータを可変することを特徴とする内燃機関の空燃比制御装置。
In an internal combustion engine equipped with a catalyst for purifying exhaust gas,
Gas concentration detection means for detecting the gas concentration of the exhaust gas upstream or downstream of the catalyst;
An air amount detecting means for detecting the amount of air sucked into the internal combustion engine;
Based on the gas concentration of the exhaust gas detected by the gas concentration detecting means and the air amount detected by the air amount detecting means, the adsorption amount of the lean component and the rich component of the catalyst (hereinafter referred to as “in- catalyst state amount ”). In-catalyst state quantity calculating means for calculating
Injection control means for correcting the fuel injection amount so that the deviation between the in-catalyst state amount and the target in-catalyst state amount is small;
When calculating the in-catalyst state quantity by the in-catalyst state quantity calculating means, the correction means for correcting the calculated value according to the actual in-catalyst state quantity,
The correction means obtains information on the actual in-catalyst state quantity from an output of a sensor on the downstream side of the catalyst that detects the air-fuel ratio or gas concentration of the exhaust gas flowing out from the catalyst; and the in-catalyst state quantity calculation Parameter varying means for varying a parameter for controlling the target excess fuel ratio according to the deviation between the in-catalyst state quantity calculated by the means and the target in-catalyst state quantity ,
The parameter varying means varies a control parameter for sub-feedback that reflects an air fuel ratio downstream of the catalyst in the target excess fuel ratio as a parameter for controlling the target excess fuel ratio . Air-fuel ratio control device.
前記補正手段は、前記触媒内状態量を算出する際に、その算出に用いる式のパラメータを前記触媒下流側のセンサの出力に基づいて可変に設定することを特徴とする請求項2に記載の内燃機関の空燃比制御装置。  The said correction | amendment means variably sets the parameter of the type | formula used for the calculation based on the output of the sensor of the said catalyst downstream, when calculating the said internal state amount of a catalyst. An air-fuel ratio control apparatus for an internal combustion engine. 前記パラメータ可変手段は、前記触媒内状態量算出手段により算出した触媒内状態量と実際の触媒内状態量との偏差が所定値以下の場合に該偏差を0と見なすことを特徴とする請求項2又は3に記載の内燃機関の空燃比制御装置。The parameter varying means considers the deviation as 0 when the deviation between the in-catalyst state quantity calculated by the in-catalyst state quantity calculating means and the actual in-catalyst state quantity is a predetermined value or less. The air-fuel ratio control apparatus for an internal combustion engine according to 2 or 3 .
JP2000303146A 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4636214B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000303146A JP4636214B2 (en) 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine
US09/866,804 US20020011067A1 (en) 2000-06-20 2001-05-30 Air-fuel ratio control system for engine with in-catalyst state compensation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-189733 2000-06-20
JP2000189733 2000-06-20
JP2000303146A JP4636214B2 (en) 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002081339A JP2002081339A (en) 2002-03-22
JP4636214B2 true JP4636214B2 (en) 2011-02-23

Family

ID=26594564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303146A Expired - Fee Related JP4636214B2 (en) 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine

Country Status (2)

Country Link
US (1) US20020011067A1 (en)
JP (1) JP4636214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679335B2 (en) 2005-11-01 2011-04-27 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
KR100747909B1 (en) * 2006-07-10 2007-08-08 현대자동차주식회사 The air-bag housing structure of a passenger seat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249032A (en) * 1993-03-02 1994-09-06 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JPH0763111A (en) * 1993-08-20 1995-03-07 Mitsubishi Motors Corp Misfire detection device for engine
JP2000008921A (en) * 1998-06-17 2000-01-11 Unisia Jecs Corp Oxygen storage quantity control device for three-way catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310636A (en) * 1996-05-20 1997-12-02 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine
JPH09310635A (en) * 1996-05-20 1997-12-02 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249032A (en) * 1993-03-02 1994-09-06 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JPH0763111A (en) * 1993-08-20 1995-03-07 Mitsubishi Motors Corp Misfire detection device for engine
JP2000008921A (en) * 1998-06-17 2000-01-11 Unisia Jecs Corp Oxygen storage quantity control device for three-way catalyst

Also Published As

Publication number Publication date
JP2002081339A (en) 2002-03-22
US20020011067A1 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3572961B2 (en) Engine exhaust purification device
JP4877246B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0417747A (en) Air-fuel ratio control system of internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP3625163B2 (en) Exhaust purification catalyst deterioration detection device
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP2005048724A (en) Fuel injection control device for engine
JP2007247426A (en) Air-fuel ratio control device of internal combustion engine
JP3788497B2 (en) Air-fuel ratio control device for internal combustion engine
JP4636214B2 (en) Air-fuel ratio control device for internal combustion engine
JP3939026B2 (en) Three-way catalyst oxygen storage control device
JP3826997B2 (en) Air-fuel ratio control device for internal combustion engine
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JP4155662B2 (en) Three-way catalyst oxygen storage control device
JP4314551B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004036396A (en) Air fuel ratio control device of internal combustion engine
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine
JP4072412B2 (en) Air-fuel ratio control device for internal combustion engine
JP4247730B2 (en) Air-fuel ratio control device for internal combustion engine
JP4374518B2 (en) Exhaust gas purification control device for internal combustion engine
JP4362835B2 (en) Exhaust gas purification control device for internal combustion engine
JP3775570B2 (en) Air-fuel ratio control device for internal combustion engine
JP2022071890A (en) Method and device for controlling internal combustion engine
JP2006016972A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees