JPH09112310A - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JPH09112310A
JPH09112310A JP7265545A JP26554595A JPH09112310A JP H09112310 A JPH09112310 A JP H09112310A JP 7265545 A JP7265545 A JP 7265545A JP 26554595 A JP26554595 A JP 26554595A JP H09112310 A JPH09112310 A JP H09112310A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
value
learning
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7265545A
Other languages
Japanese (ja)
Inventor
Hideaki Takahashi
秀明 高橋
Masayoshi Nishizawa
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7265545A priority Critical patent/JPH09112310A/en
Publication of JPH09112310A publication Critical patent/JPH09112310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve learning convergence while avoiding generation of convergence variation by increasing learning gain for correction if deviation more than a prescribed one is between a learned value and calculated value, in learning air-fuel ratio correction amount based on the detected output of an oxygen sensor on the downstream side of a catalyst. SOLUTION: According to the output of the first oxygen sensor on the upstream side, the first air-fuel ratio correction amount, or air-fuel ratio feedback correction coefficient α is set by proportional integral control. The second air-fuel ratio correction amount, or correction value PHOS is set according to the output of the second oxygen sensor on the downstream side. Learning gain is increased for correction by a prescribed period if deviation more than a prescribed value is between the learning value PHOSA and correction value PHOS.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の空燃比制
御装置に関し、詳しくは、触媒の上流側及び下流側にそ
れぞれ酸素センサを備え、これら酸素センサの検出結果
に基づいて空燃比を制御する一方、下流側に備えられた
酸素センサの検出結果に基づく空燃比補正量を学習する
構成の空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more specifically, it has oxygen sensors on the upstream side and the downstream side of a catalyst, respectively, and controls the air-fuel ratio based on the detection results of these oxygen sensors. On the other hand, the present invention relates to an air-fuel ratio control device configured to learn an air-fuel ratio correction amount based on a detection result of an oxygen sensor provided on the downstream side.

【0002】[0002]

【従来の技術】従来から、排気通路に設けられた排気浄
化用の三元触媒の上流側及び下流側にそれぞれ酸素セン
サを設け、これらの酸素センサの検出値を用いて、実際
の空燃比を目標空燃比に制御する空燃比制御装置が知ら
れている。例えば特開平4−72438号公報に開示さ
れる空燃比制御装置では、上流側酸素センサの検出結果
に基づいて比例・積分制御によって空燃比フィードバッ
ク補正係数を設定する一方、下流側酸素センサで検出さ
れる目標空燃比に対する実際の空燃比のリッチ・リーン
に基づき、前記比例・積分制御における比例操作量の補
正値を設定することにより、上流側酸素センサの検出結
果に基づく空燃比フィードバック制御の制御点のずれを
修正する構成となっている。
2. Description of the Related Art Conventionally, an oxygen sensor is provided on each of an upstream side and a downstream side of a three-way catalyst for exhaust gas purification provided in an exhaust passage, and an actual air-fuel ratio is calculated by using detection values of these oxygen sensors. An air-fuel ratio control device that controls to a target air-fuel ratio is known. For example, in the air-fuel ratio control device disclosed in Japanese Patent Laid-Open No. 4-72438, the air-fuel ratio feedback correction coefficient is set by proportional / integral control based on the detection result of the upstream oxygen sensor, while it is detected by the downstream oxygen sensor. Based on the rich / lean of the actual air-fuel ratio with respect to the target air-fuel ratio, by setting the correction value of the proportional operation amount in the proportional / integral control, the control point of the air-fuel ratio feedback control based on the detection result of the upstream oxygen sensor. It is configured to correct the deviation.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記下流側
酸素センサの検出結果に基づいて設定される比例操作量
の補正値を学習させる場合、学習ゲインを大きくする
と、収束は速くなるものの、収束ばらつきが大きくなっ
てしまうという問題があるため、学習ゲインを比較的小
さくする必要があった。
By the way, in the case of learning the correction value of the proportional manipulated variable set based on the detection result of the downstream side oxygen sensor, if the learning gain is increased, the convergence becomes faster, but the convergence variation. However, the learning gain needs to be relatively small because of the problem that the value becomes large.

【0004】このため、学習値が初期値にクリアされた
場合や、酸素センサの交換等によって比例操作量の補正
要求が大幅に変化したときに、学習が収束するまでに時
間がかかり、この間に所期の空燃比制御精度を充分に得
ることができないという問題があった。本発明は上記問
題点に鑑みなれたものであり、触媒下流側の酸素センサ
の検出結果に基づく空燃比補正制御において、収束ばら
つきが発生することを回避しつつ、学習の収束性を向上
させることを目的とする。
Therefore, when the learning value is cleared to the initial value, or when the correction request for the proportional manipulated variable changes significantly due to replacement of the oxygen sensor or the like, it takes time for the learning to converge, and during this time. There has been a problem that the desired accuracy of the air-fuel ratio control cannot be obtained. The present invention has been made in view of the above problems, and in the air-fuel ratio correction control based on the detection result of the oxygen sensor on the downstream side of the catalyst, improving convergence of learning while avoiding occurrence of convergence variation. With the goal.

【0005】[0005]

【課題を解決するための手段】そのため請求項1記載の
発明にかかる内燃機関の空燃比制御装置は、図1に示す
ように構成される。図1において、第1及び第2酸素セ
ンサは、内燃機関の排気通路に設けられた排気浄化触媒
の上流側及び下流側にそれぞれ設けられ、排気中の酸素
濃度に感応して出力値が変化する酸素センサである。
Therefore, an air-fuel ratio control system for an internal combustion engine according to the invention of claim 1 is constructed as shown in FIG. In FIG. 1, a first oxygen sensor and a second oxygen sensor are provided on the upstream side and the downstream side of an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and their output values change in response to the oxygen concentration in exhaust gas. It is an oxygen sensor.

【0006】そして、第1空燃比補正量演算手段は、前
記上流側の第1酸素センサの出力値に応じて第1空燃比
補正量を演算する。また、第2空燃比補正量演算手段
は、前記下流側の第2酸素センサの出力値に応じて第2
空燃比補正量を演算する。更に、学習手段は、第2空燃
比補正量演算手段で演算された第2空燃比補正量を学習
する。
The first air-fuel ratio correction amount calculation means calculates the first air-fuel ratio correction amount according to the output value of the upstream first oxygen sensor. Further, the second air-fuel ratio correction amount calculation means is configured to change the second air-fuel ratio correction amount calculation means to the second
The air-fuel ratio correction amount is calculated. Further, the learning unit learns the second air-fuel ratio correction amount calculated by the second air-fuel ratio correction amount calculation unit.

【0007】空燃比調整手段は、前記第1,第2空燃比
補正量、第2空燃比補正量の学習値に基づいて機関の空
燃比を調整する。一方、学習ゲイン増大修正手段は、学
習手段による第2空燃比補正値の学習値と、第2空燃比
補正量演算手段で演算された第2空燃比補正値とが所定
以上の偏差を有するときに、学習手段における学習ゲイ
ンを所定期間だけ増大修正する。
The air-fuel ratio adjusting means adjusts the air-fuel ratio of the engine based on the learned values of the first and second air-fuel ratio correction amounts and the second air-fuel ratio correction amount. On the other hand, the learning gain increase correction means, when the learning value of the second air-fuel ratio correction value by the learning means and the second air-fuel ratio correction value calculated by the second air-fuel ratio correction amount calculation means have a deviation of a predetermined value or more. Then, the learning gain in the learning means is increased and corrected by a predetermined period.

【0008】かかる構成によると、第1酸素センサ及び
第2酸素センサの検出出力に基づいてそれぞれに空燃比
補正値が設定され、これらの空燃比補正値に基づいて空
燃比が調整される。一方、下流側の第2酸素センサの検
出出力に基づいて演算された第2空燃比補正量を学習す
るに当たって、学習済みの値と、第2酸素センサの出力
に基づいて演算された値との間に所定以上の偏差がある
場合には、収束応答性を確保すべく、学習ゲインが増大
修正されるが、偏差が充分に小さい場合には、学習ゲイ
ンが増大修正がキャンセルされ、収束ばらつきの発生が
回避される。
According to this structure, the air-fuel ratio correction values are set based on the detection outputs of the first oxygen sensor and the second oxygen sensor, and the air-fuel ratio is adjusted based on these air-fuel ratio correction values. On the other hand, in learning the second air-fuel ratio correction amount calculated based on the detection output of the second oxygen sensor on the downstream side, the learned value and the value calculated based on the output of the second oxygen sensor If there is a deviation greater than a predetermined value, the learning gain is increased and corrected to ensure convergence responsiveness, but if the deviation is sufficiently small, the learning gain increase and correction are canceled and the convergence variation Occurrence is avoided.

【0009】請求項2記載の発明では、学習ゲイン増大
修正手段が、学習手段により学習値が所定回数だけ更新
される間において学習ゲインを増大修正する構成とし
た。かかる構成によると、学習値を、第2酸素センサの
出力に基づいて演算された値(第2空燃比補正量)に近
づけるのに必要充分な更新回数だけ、学習ゲインが増大
修正させることができる。
According to the second aspect of the present invention, the learning gain increasing / correcting means increases / corrects the learning gain while the learning value is updated a predetermined number of times by the learning means. According to such a configuration, the learning gain can be increased and corrected by the number of times of update necessary and sufficient to bring the learned value close to the value calculated based on the output of the second oxygen sensor (second air-fuel ratio correction amount). .

【0010】請求項3記載の発明では、学習ゲイン増大
修正手段が、学習手段による第2空燃比補正値の学習値
と、第2空燃比補正量演算手段で演算された第2空燃比
補正値とが、同じ方向に所定値以上の偏差を有すると判
別された回数が所定回数以上になったときに、前記学習
手段における学習ゲインを所定期間だけ増大修正する構
成とした。
According to the third aspect of the invention, the learning gain increase correction means has the learning value of the second air-fuel ratio correction value by the learning means and the second air-fuel ratio correction value calculated by the second air-fuel ratio correction amount calculation means. And, the learning gain in the learning means is increased and corrected for a predetermined period when the number of times that it is determined that there is a deviation of a predetermined value or more in the same direction becomes a predetermined number or more.

【0011】かかる構成によると、前記偏差が一時的に
大きな値を示す場合には、学習ゲインの増大修正が行わ
れず、学習値が初期値にクリアされた場合や、酸素セン
サの交換等によって比例操作量の補正要求が大幅に変化
したときのように、学習ゲインを増大修正しなければ収
束が確実に遅れる状況において、学習ゲインが増大修正
される。
According to this structure, when the deviation temporarily shows a large value, the learning gain is not increased and corrected, and the learning value is proportional to the initial value or when the oxygen sensor is replaced. The learning gain is increased and corrected in a situation where the convergence is surely delayed unless the learning gain is increased and corrected, such as when the operation amount correction request changes significantly.

【0012】請求項4記載の発明では、前記第1空燃比
補正量演算手段が、前記上流側の第1酸素センサで検出
される実際の空燃比を目標空燃比に近づけるように、第
1空燃比補正量としての空燃比フィードバック補正係数
を比例・積分制御する構成であり、前記第2空燃比補正
量演算手段が、前記下流側の第2酸素センサで検出され
る実際の空燃比を目標空燃比に近づけるように、前記比
例制御における比例操作量の補正値を第2空燃比補正量
として演算する構成とした。
According to a fourth aspect of the present invention, the first air-fuel ratio correction amount calculation means makes the first air-fuel ratio so that the actual air-fuel ratio detected by the upstream first oxygen sensor approaches the target air-fuel ratio. The air-fuel ratio feedback correction coefficient as the fuel ratio correction amount is proportionally / integrally controlled, and the second air-fuel ratio correction amount calculation means sets the actual air-fuel ratio detected by the downstream second oxygen sensor to the target air-fuel ratio. The correction value of the proportional operation amount in the proportional control is calculated as the second air-fuel ratio correction amount so as to approach the fuel ratio.

【0013】かかる構成によると、第1酸素センサの出
力に基づいて演算される空燃比フィードバック補正係数
による制御点が、第2酸素センサの出力に基づく比例操
作量の補正によって修正され、空燃比制御精度が維持さ
れる一方、前記比例操作量の補正値を学習するときに、
学習ゲインの切り換えによって収束性の確保と収束ばら
つきの抑制とが図られる。
According to this structure, the control point by the air-fuel ratio feedback correction coefficient calculated based on the output of the first oxygen sensor is corrected by the correction of the proportional operation amount based on the output of the second oxygen sensor, and the air-fuel ratio control is performed. While the accuracy is maintained, when learning the correction value of the proportional operation amount,
By switching the learning gain, it is possible to secure the convergence and suppress the convergence variation.

【0014】請求項5記載の発明では、学習手段が、前
記下流側の第2酸素センサで検出される実際の空燃比が
目標空燃比に対して反転する毎に第2空燃比補正量の平
均値を求め、該平均値とそれまでの学習値との加重平均
値を、新たな学習値として更新記憶する構成であり、学
習ゲイン増大修正手段が、前記加重平均における加重重
みを学習ゲインとして修正する構成とした。
According to the present invention, the learning means averages the second air-fuel ratio correction amount every time the actual air-fuel ratio detected by the second oxygen sensor on the downstream side is reversed with respect to the target air-fuel ratio. A value is obtained, and the weighted average value of the average value and the learning value up to that point is updated and stored as a new learning value, and the learning gain increase correction means corrects the weighted weight in the weighted average as a learning gain. It was configured to do.

【0015】かかる構成によると、第2酸素センサで検
出される空燃比の反転毎、即ち、第2空燃比補正量のピ
ーク値に基づいて第2空燃比補正量の平均値を精度良く
求め、該平均値とそまれでの学習値との加重平均値を新
たな学習値として更新記憶し、第2空燃比補正値による
補正要求を精度良く学習する。ここで、前記加重平均に
おける加重重みを、最新の第2空燃比補正値に対する重
み付けをより重くする方向に修正することで、学習ゲイ
ンが増大修正され、収束応答が改善される。
According to this structure, every time the air-fuel ratio detected by the second oxygen sensor is inverted, that is, the average value of the second air-fuel ratio correction amount is accurately obtained based on the peak value of the second air-fuel ratio correction amount. The weighted average value of the average value and the rare learning value is updated and stored as a new learning value, and the correction request by the second air-fuel ratio correction value is accurately learned. Here, the learning gain is increased and corrected and the convergence response is improved by correcting the weighted weight in the weighted average in the direction in which the weighting for the latest second air-fuel ratio correction value is made heavier.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。システム構成を示す図2において、内燃機関1に
は、エアクリーナ2で濾過された空気が、コレクタ5及
びインテークマニホールド6を介して吸入される。スロ
ットル弁4で調整される機関1の吸入空気流量は、エア
フローメータ3で計測される。
Embodiments of the present invention will be described below. In FIG. 2 showing the system configuration, the air filtered by the air cleaner 2 is sucked into the internal combustion engine 1 through the collector 5 and the intake manifold 6. The intake air flow rate of the engine 1 adjusted by the throttle valve 4 is measured by the air flow meter 3.

【0017】前記インテークマニホールド6には、各気
筒別にインジェクタ7が設けられ、該インジェクタ7か
ら噴射される燃料によって形成される混合気が、吸気弁
8を介してシリンダ内に吸引され、点火プラグ9によっ
て着火燃焼される。尚、図2において、11はピストンで
ある。燃焼排気は、排気弁10,排気ポート12を介して触
媒(排気浄化触媒)14に導かれ、該触媒14でCO,H
C,NOxが浄化されて大気中に排出される。
The intake manifold 6 is provided with an injector 7 for each cylinder, and the air-fuel mixture formed by the fuel injected from the injector 7 is sucked into the cylinder through the intake valve 8 and the spark plug 9 is introduced. Is ignited and burned by. In FIG. 2, 11 is a piston. The combustion exhaust gas is guided to a catalyst (exhaust gas purification catalyst) 14 via an exhaust valve 10 and an exhaust port 12, and the catalyst 14 emits CO, H
C and NOx are purified and discharged into the atmosphere.

【0018】前記触媒14の上流側と下流側には、それぞ
れ第1,第2酸素センサ13,17が設けられている。前記
第1,第2酸素センサ13,17は、排気中の酸素濃度に感
応して出力値が変化するセンサであり、具体的には、基
準気体としての大気中の酸素濃度と排気中の酸素濃度と
の比に応じて起電力を発生する酸素濃淡電池型のセンサ
である。
First and second oxygen sensors 13 and 17 are provided on the upstream side and the downstream side of the catalyst 14, respectively. The first and second oxygen sensors 13 and 17 are sensors whose output values change in response to the oxygen concentration in the exhaust gas, and specifically, the oxygen concentration in the atmosphere as the reference gas and the oxygen concentration in the exhaust gas. It is an oxygen concentration cell type sensor that generates an electromotive force according to the ratio with the concentration.

【0019】前記インジェクタ7による燃料噴射量及び
点火プラグ9による点火時期を制御するコントロールユ
ニット16には、前記エアフローメータ3,第1,第2酸
素センサ13,17からの検出出力が入力されると共に、機
関1の冷却水温度を検出する水温センサ15からの検出信
号や、スタータスイッチ信号,車速信号VSP,機関回
転速度信号N等が入力される。
The control unit 16 for controlling the fuel injection amount by the injector 7 and the ignition timing by the ignition plug 9 is supplied with the detection outputs from the air flow meter 3, the first and second oxygen sensors 13, 17. A detection signal from a water temperature sensor 15 that detects the cooling water temperature of the engine 1, a starter switch signal, a vehicle speed signal VSP, an engine rotation speed signal N, etc. are input.

【0020】ここにおいて、コントロールユニット16
は、図3〜図6のフローチャートにそれぞれ示すプログ
ラムに従って、前記インジェクタ7による燃料噴射量を
制御し、以て、機関吸入混合気の空燃比を調整する。
尚、本実施例において、第1空燃比補正量演算手段,第
2空燃比補正量演算手段,学習手段,空燃比調整手段,
学習ゲイン増大修正手段としての機能は、前記図3〜図
6のフローチャートに示すようにコントロールユニット
16がソフトウェア的に備えている。
Here, the control unit 16
Controls the fuel injection amount by the injector 7 according to the programs shown in the flow charts of FIGS. 3 to 6, thereby adjusting the air-fuel ratio of the engine intake air-fuel mixture.
In the present embodiment, the first air-fuel ratio correction amount calculation means, the second air-fuel ratio correction amount calculation means, the learning means, the air-fuel ratio adjustment means,
The function as the learning gain increasing / correcting means is as shown in the flow charts of FIGS.
16 are equipped with software.

【0021】図3のフローチャートは、燃料噴射量TI
の演算を示す。S1では、エアフローメータ3で検出さ
れる吸入空気流量Qや機関回転速度N等を読み込む。S
2では、基本燃料噴射量TP を、前記吸入空気流量Qと
機関回転速度Nとに基づいて、TP =Q/N×K(Kは
定数)として算出する。
The flowchart of FIG. 3 shows that the fuel injection amount T I
Is shown. In S1, the intake air flow rate Q, the engine speed N, etc. detected by the air flow meter 3 are read. S
In 2, the basic fuel injection amount T P is calculated as T P = Q / N × K (K is a constant) based on the intake air flow rate Q and the engine rotation speed N.

【0022】S3では、燃料噴射量TI を、TI =TP
×COEF×α+Tsとして算出する。ここで、TP
前記S2で算出した値であり、COEFは冷却水温度T
w等に基づいて設定される各種補正係数、αは空燃比フ
ィードバック補正係数、Tsはバッテリ電圧による無効
噴射時間の補正するための補正分である。前記空燃比フ
ィードバック補正係数α(第1空燃比補正量)は、図4
のフローチャートに従って比例・積分制御によって設定
される。
In S3, the fuel injection amount T I is set to T I = T P
It is calculated as × COEF × α + Ts. Here, T P is the value calculated in S2, and COEF is the cooling water temperature T
Various correction coefficients set based on w, etc., α is an air-fuel ratio feedback correction coefficient, and Ts is a correction amount for correcting the invalid injection time by the battery voltage. The air-fuel ratio feedback correction coefficient α (first air-fuel ratio correction amount) is shown in FIG.
It is set by the proportional / integral control according to the flowchart of.

【0023】S11では、空燃比フィードバック制御条件
が成立しているか否かを判別し、制御条件が成立してい
ない場合には、S12へ進んで、空燃比フィードバック補
正係数αを初期値の1.0 として本プログラムを終了させ
る。一方、制御条件が成立しているときには、S13へ進
み、上流側の第1酸素センサ13の出力OSR1をA/D
変換して読み込む。
At S11, it is judged whether or not the air-fuel ratio feedback control condition is satisfied. If the control condition is not satisfied, the routine proceeds to S12, where the air-fuel ratio feedback correction coefficient α is set to 1.0 as the initial value. Close this program. On the other hand, when the control conditions are satisfied, the routine proceeds to S13, where the output OSR1 of the upstream first oxygen sensor 13 is set to A / D.
Convert and read.

【0024】次のS14では、前記出力OSR1と目標空
燃比(例えば理論空燃比)相当の所定値SLFとを比較
することで、実際の空燃比の目標空燃比に対するリッチ
・リーンを判別する。前記出力OSR1が所定値SLF
以下であるときには、目標空燃比よりもリーンであると
判断し、S15へ進んで、フラグF1 に0をセットする。
一方、前記出力OSR1が所定値SLFを越えていると
きには、目標空燃比よりもリッチであると判断し、S16
へ進んで、フラグF1 に1をセットする。
In the next step S14, the output OSR1 is compared with a predetermined value SLF corresponding to the target air-fuel ratio (for example, the theoretical air-fuel ratio) to determine the rich lean of the actual air-fuel ratio with respect to the target air-fuel ratio. The output OSR1 is a predetermined value SLF
When it is less than the target air-fuel ratio, it is judged to be leaner than the target air-fuel ratio, the routine proceeds to S15, and 0 is set to the flag F 1 .
On the other hand, when the output OSR1 exceeds the predetermined value SLF, it is determined that the output OSR1 is richer than the target air-fuel ratio, and S16
Proceed to and set 1 to the flag F 1 .

【0025】S17では、今回のフラグF1 設定によって
フラグF1 が反転したか否か、即ち、実際の空燃比の目
標空燃比に対するリッチ・リーン状態が反転したか否か
を判別する。空燃比の反転時であるときには、S18へ進
んで、前記フラグF1 が0であるか否か、換言すれば、
リッチからリーンに反転した状態であるか否かを判別す
る。
In S17, it is determined whether or not the flag F 1 is reversed by the present flag F 1 setting, that is, whether the rich / lean state of the actual air-fuel ratio with respect to the target air-fuel ratio is reversed. When the air-fuel ratio is being reversed, the routine proceeds to S18, where it is determined whether or not the flag F 1 is 0, in other words,
It is determined whether or not the state is reversed from rich to lean.

【0026】リッチからリーンに反転したときには、S
19へ進み、空燃比フィードバック補正係数αの比例・積
分制御における比例操作量PL,PRを補正するための
補正値PHOSの設定を行う。かかる補正値PHOSの
設定については、後述する。次のステップ20では、前回
までの空燃比フィードバック補正係数αに、比例操作量
PLと前記補正値PHOSとを加算し、該加算結果を最
新の補正係数αとする比例制御を行う(α=α+PL+
PHOS)。
When reversing from rich to lean, S
Proceeding to 19, the correction value PHOS for correcting the proportional manipulated variables PL, PR in the proportional / integral control of the air-fuel ratio feedback correction coefficient α is set. The setting of the correction value PHOS will be described later. In the next step 20, the proportional operation amount PL and the correction value PHOS are added to the air-fuel ratio feedback correction coefficient α up to the previous time, and proportional control is performed in which the addition result is the latest correction coefficient α (α = α + PL +
PHOS).

【0027】一方、S18で、フラグF1 が0でないと判
別されたとき、即ち、リーンからリッチへの反転時にお
いては、S21へ進んで、補正値PHOSの設定を行った
後、S22へ進んで、α=α−PR+PHOSとして補正
係数αを比例制御する。また、S17で、空燃比の反転時
でないと判別されたときには、S23へ進み、前記フラグ
1 を判別することで、現在の空燃比のリッチ・リーン
を判別する。
On the other hand, when it is determined at S18 that the flag F 1 is not 0, that is, when the lean-to-rich reverse operation is performed, the routine proceeds to S21, where the correction value PHOS is set, and then the routine proceeds to S22. Then, the correction coefficient α is proportionally controlled with α = α-PR + PHOS. Further, in S17, if it is determined not to be reversed when the air-fuel ratio, the process proceeds to S23, by determining the flag F 1, to determine the rich lean current air-fuel ratio.

【0028】フラグF1 が0であって空燃比がリーンで
あるときには、S24へ進み、前回までの補正係数αに積
分操作量ILを加算して更新し、フラグF1 が1であっ
て空燃比がリッチであるときには、S25へ進み、前回ま
での補正係数αから積分操作量IRを減算して更新す
る。図5のフローチャートは、前記図4のフローチャー
トのS19,21における補正値PHOS(第2空燃比補正
量)設定の様子を示すものである。
When the flag F 1 is 0 and the air-fuel ratio is lean, the routine proceeds to S24, where the integral operation amount IL is added to the correction coefficient α up to the previous time to update, and the flag F 1 is 1 and the air-fuel ratio is empty. When the fuel ratio is rich, the routine proceeds to S25, where the integrated manipulated variable IR is subtracted from the correction coefficient α up to the previous time and updated. The flowchart of FIG. 5 shows how the correction value PHOS (second air-fuel ratio correction amount) is set in S19 and S21 of the flowchart of FIG.

【0029】S31では、第2酸素センサ17による空燃比
制御領域であるか否かを判別し、制御領域でないときに
は、S32へ進んで、制御領域において学習された学習値
PHOSAを補正値PHOSとし、学習値PHOSAに
基づいて比例操作量PL,PRが補正されるようにす
る。尚、前記補正値PHOSの学習については、後述す
る。
In S31, it is determined whether or not it is in the air-fuel ratio control region by the second oxygen sensor 17, and if it is not in the control region, the process proceeds to S32, in which the learned value PHOSA learned in the control region is set as the correction value PHOS, The proportional operation amounts PL and PR are corrected based on the learned value PHOSA. The learning of the correction value PHOS will be described later.

【0030】一方、制御領域であると判別されたときに
は、S33へ進み、第2酸素センサ17の出力OSR2と所
定値SLRとを比較して、第2酸素センサ17で検出され
る空燃比が目標空燃比に対してリッチであるかリーンで
あるかを判別する。そして、出力OSR2が所定値SL
R以下であって空燃比がリーンであるときには、S34へ
進んでフラグF2 に0をセットする一方、出力OSR2
が所定値SLRを越えていて空燃比がリッチであるとき
には、S35へ進んでフラグF2 に1をセットする。
On the other hand, when it is judged to be in the control region, the routine proceeds to S33, the output OSR2 of the second oxygen sensor 17 is compared with a predetermined value SLR, and the air-fuel ratio detected by the second oxygen sensor 17 is set to the target. It is determined whether the air-fuel ratio is rich or lean. Then, the output OSR2 is the predetermined value SL
When the air-fuel ratio is leaner than R and lean, the routine proceeds to S34, where the flag F 2 is set to 0, while the output OSR2
Is above the predetermined value SLR and the air-fuel ratio is rich, the routine proceeds to S35, where the flag F 2 is set to 1.

【0031】S36では、前記フラグF2 が反転したか否
かに基づいて、第2酸素センサ17で検出される空燃比が
反転したか否かを判別する。そして、空燃比の反転時に
は、S37へ進み、フラグF2 の判別を行う。フラグF2
が0であって、空燃比がリーンであるときには、S38へ
進み、前回までの補正値PHOSをPHOS1にセット
する。S38で空燃比がリーンであると判別されたときに
は、空燃比がリッチからリーンに反転したときであり、
空燃比のリッチ状態においては、後述するように前記補
正値PHOSが積分制御によって徐々に減少されるよう
になっているので、前記PHOS1は補正値PHOSが
増大制御される直前のピーク値(最小値)を示すことに
なる。
In S36, it is determined whether or not the air-fuel ratio detected by the second oxygen sensor 17 has been reversed, based on whether or not the flag F 2 has been reversed. Then, when the air-fuel ratio is reversed, the routine proceeds to S37, where the flag F 2 is discriminated. Flag F 2
Is 0 and the air-fuel ratio is lean, the routine proceeds to S38, where the previous correction value PHOS is set to PHOS1. When it is determined in S38 that the air-fuel ratio is lean, it means that the air-fuel ratio is reversed from rich to lean.
In the air-fuel ratio rich state, the correction value PHOS is gradually decreased by the integral control as will be described later, so the PHOS1 is the peak value (minimum value) immediately before the correction value PHOS is controlled to increase. ) Will be shown.

【0032】次のS39では、前回までの補正値PHOS
に比例操作量PPHOSLを加算し、該加算結果を今回
の補正値PHOSとする比例制御を行う。一方、S37で
フラグF2 が0でないと判別されたとき、即ち、空燃比
がリーンからリッチに反転したときには、S40へ進み、
減少制御に転じる直前のピーク値(最大値)として前回
までの補正値PHOSをPHOS2にセットする。
In the next S39, the correction value PHOS up to the previous time is calculated.
Is added to the proportional operation amount PPHOSL, and proportional control is performed with the addition result as the current correction value PHOS. On the other hand, when it is determined at S37 that the flag F 2 is not 0, that is, when the air-fuel ratio is reversed from lean to rich, the routine proceeds to S40,
As the peak value (maximum value) immediately before turning to the decrease control, the correction value PHOS up to the previous time is set in PHOS2.

【0033】次のS41では、前回までの補正値PHOS
から比例操作量PPHOSRを減算し、該加算結果を今
回の補正値PHOSとする比例制御を行う。そして、S
42では、前記補正値PHOSの学習を行うが、かかる学
習制御については後述する。S36で、フラグF2 の反転
時でないと判別されたときには、S43へ進み、フラグF
2 を判別する。
In the next S41, the correction value PHOS up to the previous time is calculated.
A proportional operation amount PPHOSR is subtracted from the proportional operation amount PHOSR, and proportional control is performed by setting the addition result as the current correction value PHOS. And S
At 42, the correction value PHOS is learned. Such learning control will be described later. In S36, if it is determined not to be reversed when the flag F 2 proceeds to S43, the flag F
Determine 2

【0034】フラグF2 が0であって空燃比がリーンで
あるときには、S44へ進んで、前回までの補正値PHO
Sに積分操作量IPHOSLを加算する一方、フラグF
2 が1であって空燃比がリッチであるときには、S45へ
進んで、前回までの補正値PHOSから積分操作量IP
HOSRを減算して、補正値PHOSを更新する。図6
のフローチャートは、前記図5のフローチャートのS42
における補正値PHOSの学習を示すものである。
When the flag F 2 is 0 and the air-fuel ratio is lean, the routine proceeds to S44, where the correction value PHO up to the previous time is set.
While adding the integral manipulated variable IPHOSL to S, the flag F
When 2 is 1 and the air-fuel ratio is rich, the routine proceeds to S45, where the integrated manipulated variable IP is calculated from the previous correction value PHOS.
The correction value PHOS is updated by subtracting HOSR. FIG.
The flowchart of FIG. 5 is S42 of the flowchart of FIG.
3 shows learning of the correction value PHOS in FIG.

【0035】S51では、補正値PHOSの平均値と、現
在の学習値PHOSAとの比較を行う。具体的には、前
記図5のフローチャートのS38,40で設定した上下のピ
ーク値PHOS1,PHOS2の単純平均値(PHOS
1+PHOS2)/2から学習値PHOSAを減算した
値、即ち、(PHOS1+PHOS2)/2−PHOS
Aがマイナスの所定値LPHOS以下であるか否かを判
別する。
In S51, the average value of the correction value PHOS and the current learning value PHOSA are compared. Specifically, the simple average value (PHOS) of the upper and lower peak values PHOS1 and PHOS2 set in S38 and S40 of the flowchart of FIG.
1 + PHOS2) / 2 minus learning value PHOSA, that is, (PHOS1 + PHOS2) / 2-PHOS
It is determined whether or not A is equal to or less than the negative predetermined value LPHOS.

【0036】前記判別は、学習値PHOSAが、最新の
補正値PHOSよりも所定値以上に大きい状態であるか
否かを判別するものであり、(PHOS1+PHOS
2)/2−PHOSAが所定値LPHOS以下であると
きには、S52へ進んで、学習ゲインの増大回数をカウン
トするカウンタCPHOSが0であるか否かを判別す
る。
The above-mentioned determination is to determine whether or not the learning value PHOSA is larger than the latest correction value PHOS by a predetermined value or more, and (PHOS1 + PHOS
2) / 2-PHOSA is equal to or less than the predetermined value LPHOS, the process proceeds to S52, and it is determined whether or not the counter CPHOS for counting the number of increase of the learning gain is zero.

【0037】尚、前記カウンタCPHOSは、学習ゲイ
ンを増大修正するときに所定値mがセットされ、その後
学習更新が行われる毎に1ずつ減少設定され、0にまで
減少した時点で学習ゲインを通常値に戻すようになって
いる。前記カウンタCPHOSが0であって、学習ゲイ
ンの増大制御中でない場合には、S53へ進み、前記(P
HOS1+PHOS2)/2−PHOSAが所定値LP
HOS以下であったことを計数するカウンタCPHOS
Lを1アップさせる。
The counter CPHOS is set to a predetermined value m when the learning gain is increased and corrected, and is set to be decremented by 1 each time the learning update is performed. When the learning gain is reduced to 0, the learning gain is normally set. It is supposed to return to the value. When the counter CPHOS is 0 and the learning gain increase control is not being performed, the process proceeds to S53 and the (P
HOS1 + PHOS2) / 2-PHOSA is a predetermined value LP
Counter CPHOS that counts that it was less than or equal to HOS
Increase L by 1.

【0038】また、前記カウンタCPHOSが0でない
ときには、前記S53をシャンプしてS55へ進む。一方、
(PHOS1+PHOS2)/2−PHOSAが所定値
LPHOS以下でない場合には、S54へ進み、前記カウ
ンタCPHOSLをゼロリセットする。従って、前記カ
ウンタCPHOSLは、(PHOS1+PHOS2)/
2−PHOSAが所定値LPHOS以下である状態が継
続していることを条件として、1を越える値にカウント
アップされることなる。
When the counter CPHOS is not 0, S53 is shampooed and the process proceeds to S55. on the other hand,
If (PHOS1 + PHOS2) / 2-PHOSA is not equal to or less than the predetermined value LPHOS, the process proceeds to S54 and the counter CPHOSL is reset to zero. Therefore, the counter CPHOSL is (PHOS1 + PHOS2) /
2-PHOSA is counted up to a value exceeding 1 on the condition that the state in which 2-PHOSA is equal to or lower than the predetermined value LPHOS continues.

【0039】S55では、(PHOS1+PHOS2)/
2−PHOSAがプラスの所定値HPHOS以上である
か否かを判別し、以て、学習値PHOSAが、最新の補
正値PHOSよりも所定値以上に小さい状態であるか否
かを判別する。そして、前記同様に、(PHOS1+P
HOS2)/2−PHOSAがプラスの所定値HPHO
S以上であれば、前記カウンタCPHOSが0であるこ
とを条件に(S56)、(PHOS1+PHOS2)/2
−PHOSAがプラスの所定値HPHOS以上であると
判別された回数をカウントするカウンタCPHOSHを
カウントアップし(S57)、(PHOS1+PHOS
2)/2−PHOSAがプラスの所定値HPHOS以上
でないときには、前記カウンタCPHOSHをゼロリセ
ットする(S58)。
At S55, (PHOS1 + PHOS2) /
It is determined whether or not 2-PHOSA is greater than or equal to the positive predetermined value HPHOS, and thus it is determined whether or not the learning value PHOSA is smaller than the latest correction value PHOS by a predetermined value or more. Then, similarly to the above, (PHOS1 + P
HOS2) / 2-PHOSA is a positive predetermined value HPHO
If S or more, the condition is that the counter CPHOS is 0 (S56), (PHOS1 + PHOS2) / 2
-Count up the counter CPHOSH that counts the number of times PHOSA is determined to be greater than or equal to the plus predetermined value HPHOS (S57), (PHOS1 + PHOS
2) / 2-PHOSA is not greater than the predetermined plus value HPHOS, the counter CPHOSH is reset to zero (S58).

【0040】S59では、前記カウンタCPHOSL,C
PHOSHのいずれか一方が所定値n以上になっている
か否かを判別することで、学習値PHOSAと補正値P
HOSとの偏差が同じ方向に所定値以上になっていると
判別された回数が所定回数以上になったか否かを判別す
る。そして、前記カウンタCPHOSL,CPHOSH
のいずれか一方が所定値n以上になっている場合には、
S60へ進んで、前記カウンタCPHOSL,CPHOS
Hをそれぞれゼロリセットした後、S61で補正値PHO
Sの学習ゲインを決定する重み付け定数(加重重み)G
PHOSとして、学習ゲインを比較的大きくする値であ
るGPHOS1をセットする。更に、S62では、前記カ
ウンタCPHOSに所定値mをセットする。
At S59, the counters CPHOSL, C
By determining whether or not one of PHOSH is greater than or equal to the predetermined value n, the learning value PHOSA and the correction value P
It is determined whether or not the number of times that the deviation from the HOS is equal to or greater than a predetermined value in the same direction is equal to or greater than a predetermined number. Then, the counters CPHOSL and CPHOSH
If either of the above is greater than or equal to the predetermined value n,
Go to S60, the counter CPHOSL, CPHOS
After resetting each H to zero, in S61, the correction value PHO
Weighting constant (weighting weight) G that determines the learning gain of S
As PHOS, GPHOS1 which is a value that makes the learning gain relatively large is set. Further, in S62, a predetermined value m is set in the counter CPHOS.

【0041】一方、S59で、前記カウンタCPHOS
L,CPHOSHのいずれもが所定値n未満であると判
別されたときには、S63へ進み、前記カウンタCPHO
Sが0であるか否かを判別する。そして、前記カウンタ
CPHOSが0であれば、S64へ進み、前記重み付け定
数GPHOSとして、学習ゲインを比較的小さくする値
であるGPHOS2をセットし、前記カウンタCPHO
Sが0でない場合には、前記重み付け定数GPHOSと
してGPHOS1がセットされた状態を保持して、S65
へ進む。
On the other hand, in S59, the counter CPHOS
When it is determined that both L and CPHOSH are less than the predetermined value n, the process proceeds to S63 and the counter CPHO is set.
It is determined whether S is 0 or not. If the counter CPHOS is 0, the process proceeds to S64, the weighting constant GPHOS is set to GPHOS2 which is a value that makes the learning gain relatively small, and the counter CPHO is set.
If S is not 0, the state in which GPHOS1 is set as the weighting constant GPHOS is held and S65 is set.
Proceed to.

【0042】S65では、前記カウンタCPHOSを1だ
け減少させる。ここで、カウンタCPHOSが所定値m
から0にまでカウントダウンされるまでの期間におい
て、前記重み付け定数GPHOSとして学習ゲインを比
較的大きくする値であるGPHOS1がセットされた状
態が保持されることになる。S66では、下記の加重平均
に従って学習値PHOSAの更新学習を行う。
At S65, the counter CPHOS is decremented by one. Here, the counter CPHOS has a predetermined value m.
During the period from the countdown to 0, the state in which GPHOS1 which is a value that makes the learning gain relatively large as the weighting constant GPHOS is set is held. In S66, the learning value PHOSA is updated and learned according to the following weighted average.

【0043】PHOSA=GPHOS×(PHOS1+
PHOS2)/2+(1−GPHOS)×PHOSA 上記学習演算式において、重み付け定数(加重重み)G
PHOS(<1.0 )が大きいときほど、最新の補正値P
HOSに学習値PHOSAが速く追従することになり、
高い学習ゲインを示すことになるから、前記重み付け定
数GPHOS1,GPHOS2が、1.0 >GPHOS1
>GPHOS2>0となるように予め設定しておくこと
で、学習値PHOSAと補正値PHOSとの偏差が大き
いときに、かかる偏差を速やかに解消することが可能で
ある。
PHOSA = GPHOS × (PHOS1 +
PHOS2) / 2 + (1-GPHOS) × PHOSA In the above learning calculation formula, a weighting constant (weighting weight) G
The larger the PHOS (<1.0), the latest correction value P
The learning value PHOSA follows HOS quickly,
Since the learning gain is high, the weighting constants GPHOS1 and GPHOS2 are 1.0> GPHOS1
By setting in advance such that>GPHOS2> 0, when the deviation between the learning value PHOSA and the correction value PHOS is large, the deviation can be promptly eliminated.

【0044】例えば学習値が初期値にクリアされた場合
や、酸素センサ13,17の交換等によって補正値PHOS
による補正要求が大幅に変化したときには、学習値PH
OSAと補正値PHOSとの偏差が大きくなるが、前記
重み付け定数GPHOSの切り換え設定によって、偏差
が大きいときに学習ゲイン(重み付け定数GPHOS)
が増大修正されるから、前記偏差を速やかに解消させる
ことができ、以て、収束するまでの空燃比制御精度の低
下を最小限に抑制できる(図7参照)。一方、学習値P
HOSAと補正値PHOSとの偏差が比較的小さくなる
と、学習ゲインとして比較的小さな値に戻されるから、
収束ばらつきの発生を抑制できることになる(図8参
照)。
For example, when the learning value is cleared to the initial value or when the oxygen sensors 13 and 17 are replaced, the correction value PHOS
When the correction request due to changes significantly, the learning value PH
The deviation between the OSA and the correction value PHOS becomes large, but the learning gain (weighting constant GPHOS) is set when the deviation is large due to the switching setting of the weighting constant GPHOS.
Is increased and corrected, the above deviation can be promptly eliminated, and thus the decrease in the air-fuel ratio control accuracy until the convergence can be suppressed to the minimum (see FIG. 7). On the other hand, the learning value P
When the deviation between the HOSA and the correction value PHOS becomes relatively small, the learning gain is returned to a relatively small value.
The occurrence of convergence variation can be suppressed (see FIG. 8).

【0045】尚、上記の実施の形態では、第1酸素セン
サ13の出力に基づく空燃比フィードバック補正係数αの
比例・積分制御における比例操作量を、第2酸素センサ
17の出力に基づいて補正する構成としたが、第2酸素セ
ンサ17の出力に基づいて演算される第2空燃比補正量を
前記比例操作量の補正値PHOSに限定するものではな
く、例えば、補正係数αの比例制御のディレー時間を第
2酸素センサ17の出力に基づいて設定し、該ディレー時
間を学習する構成や、第1酸素センサ13の出力OSR1
に基づくリッチ・リーン判定において前記出力OSR1
と比較される所定値SLFを第2酸素センサ17の出力に
基づいて補正し、該補正値を学習する構成などであって
も良い。
In the above embodiment, the proportional operation amount in the proportional / integral control of the air-fuel ratio feedback correction coefficient α based on the output of the first oxygen sensor 13 is used as the second oxygen sensor.
Although the correction is performed based on the output of 17, the second air-fuel ratio correction amount calculated based on the output of the second oxygen sensor 17 is not limited to the correction value PHOS of the proportional operation amount. The delay time for proportional control of the correction coefficient α is set based on the output of the second oxygen sensor 17, and the delay time is learned, and the output OSR1 of the first oxygen sensor 13 is set.
Output OSR1 in rich / lean determination based on
The predetermined value SLF to be compared with may be corrected based on the output of the second oxygen sensor 17, and the correction value may be learned.

【0046】[0046]

【発明の効果】以上説明したように請求項1記載の発明
によると、下流側の第2酸素センサの検出出力に基づい
て演算された第2空燃比補正量を学習するに当たって、
学習済みの値と、第2酸素センサの出力に基づいて演算
された値との間に所定以上の偏差がある場合に学習ゲイ
ンを増大修正するので、学習値が初期値にクリアされた
場合や酸素センサの交換等によって比例操作量の補正要
求が大幅に変化したときに、学習値を早期に収束させる
ことができる一方、前記偏差が充分に小さい場合には学
習ゲインを比較的小さくして収束ばらつきの発生を回避
できるという効果がある。
As described above, according to the invention of claim 1, in learning the second air-fuel ratio correction amount calculated based on the detection output of the downstream second oxygen sensor,
The learning gain is increased and corrected when there is a deviation of a predetermined value or more between the learned value and the value calculated based on the output of the second oxygen sensor. Therefore, when the learning value is cleared to the initial value, When the request for correction of the proportional manipulated variable changes significantly due to replacement of the oxygen sensor, etc., the learning value can be converged at an early stage, while when the deviation is sufficiently small, the learning gain is made relatively small and converges. There is an effect that the occurrence of variations can be avoided.

【0047】請求項2記載の発明によると、第2酸素セ
ンサの出力に基づいて演算された値に学習値を近づける
のに必要充分な期間に限って、学習ゲインの増大修正を
行わせることができるという効果がある。請求項3記載
の発明によると、学習値が初期値にクリアされた場合や
酸素センサの交換等によって比例操作量の補正要求が大
幅に変化したときのように、学習ゲインの増大修正が必
要とされる状況に限って学習ゲインを増大させることが
できるという効果がある。
According to the second aspect of the present invention, the learning gain can be increased and corrected only during a period necessary and sufficient to bring the learning value close to the value calculated based on the output of the second oxygen sensor. The effect is that you can do it. According to the invention as set forth in claim 3, it is necessary to increase and correct the learning gain as in the case where the learning value is cleared to the initial value or the request for correction of the proportional manipulated variable significantly changes due to replacement of the oxygen sensor or the like. There is an effect that the learning gain can be increased only in the situation described above.

【0048】請求項4記載の発明によると、第1酸素セ
ンサの出力に基づいて演算される空燃比フィードバック
補正係数による制御点が、第2酸素センサの出力に基づ
く比例操作量の補正によって修正され、然も、前記比例
操作量の補正値学習を、収束性良くかつ収束ばらつきを
抑制して行わせることができるという効果がある。請求
項5記載の発明によると、第2空燃比補正量の平均値と
そまれでの学習値との加重平均値を新たな学習値として
更新記憶する構成において、学習ゲインに相当する前記
加重平均における加重重みを、学習値と第2空燃比補正
値との偏差が大きいときに学習ゲインが増大する方向に
修正することで、学習値を早期に収束させることができ
るという効果がある。
According to the present invention, the control point by the air-fuel ratio feedback correction coefficient calculated based on the output of the first oxygen sensor is corrected by the correction of the proportional manipulated variable based on the output of the second oxygen sensor. Of course, there is an effect that the correction value learning of the proportional operation amount can be performed with good convergence and with suppressed convergence variation. According to the invention of claim 5, in a configuration in which a weighted average value of the average value of the second air-fuel ratio correction amount and a rare learning value is updated and stored as a new learning value, the weighted average corresponding to the learning gain is obtained. There is an effect that the learning value can be converged at an early stage by correcting the weighted weight in the direction so that the learning gain increases when the deviation between the learning value and the second air-fuel ratio correction value is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明の構成ブロック図。FIG. 1 is a configuration block diagram of the invention according to claim 1.

【図2】実施の形態のシステム構成図。FIG. 2 is a system configuration diagram of the embodiment.

【図3】燃料噴射量の演算の様子を示すフローチャー
ト。
FIG. 3 is a flowchart showing how the fuel injection amount is calculated.

【図4】空燃比フィードバック補正係数α(第1空燃比
補正量)の比例・積分制御の様子を示すフローチャー
ト。
FIG. 4 is a flowchart showing a state of proportional / integral control of an air-fuel ratio feedback correction coefficient α (first air-fuel ratio correction amount).

【図5】補正係数αの比例操作量の補正値PHOS(第
2空燃比補正量)の設定制御を示すフローチャート。
FIG. 5 is a flowchart showing setting control of a correction value PHOS (second air-fuel ratio correction amount) of a proportional operation amount of a correction coefficient α.

【図6】前記補正値PHOSの学習の様子を示すフロー
チャート。
FIG. 6 is a flowchart showing how the correction value PHOS is learned.

【図7】学習ゲインと収束性との相関を示す線図。FIG. 7 is a diagram showing a correlation between learning gain and convergence.

【図8】学習ゲインと収束ばらつきとの相関を示す線
図。
FIG. 8 is a diagram showing a correlation between learning gain and convergence variation.

【符号の説明】[Explanation of symbols]

1 内燃機関 3 エアフローメータ 7 インジェクタ 13 第1酸素センサ 14 触媒 16 コントロールユニット 17 第2酸素センサ 1 Internal Combustion Engine 3 Air Flow Meter 7 Injector 13 First Oxygen Sensor 14 Catalyst 16 Control Unit 17 Second Oxygen Sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気通路に設けられた排気浄化
触媒と、 該排気浄化触媒の上流側及び下流側にそれぞれ設けら
れ、排気中の酸素濃度に感応して出力値が変化する第1
及び第2酸素センサと、 前記上流側の第1酸素センサの出力値に応じて第1空燃
比補正量を演算する第1空燃比補正量演算手段と、 前記下流側の第2酸素センサの出力値に応じて第2空燃
比補正量を演算する第2空燃比補正量演算手段と、 該第2空燃比補正量演算手段で演算された第2空燃比補
正量を学習する学習手段と、 前記第1,第2空燃比補正量、第2空燃比補正量の学習
値に基づいて機関の空燃比を調整する空燃比調整手段
と、 前記学習手段による第2空燃比補正値の学習値と、前記
第2空燃比補正量演算手段で演算された第2空燃比補正
値とが所定以上の偏差を有するときに、前記学習手段に
おける学習ゲインを所定期間だけ増大修正する学習ゲイ
ン増大修正手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
制御装置。
1. An exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and an exhaust purification catalyst which is provided upstream and downstream of the exhaust purification catalyst and whose output value changes in response to oxygen concentration in exhaust gas.
And a second oxygen sensor, first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to the output value of the upstream first oxygen sensor, and output of the downstream second oxygen sensor Second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount according to the value; learning means for learning the second air-fuel ratio correction amount calculated by the second air-fuel ratio correction amount calculation means; Air-fuel ratio adjustment means for adjusting the air-fuel ratio of the engine based on the learned values of the first and second air-fuel ratio correction amounts and the second air-fuel ratio correction amount; and a learned value of the second air-fuel ratio correction value by the learning means, Learning gain increase correction means for increasing and correcting the learning gain in the learning means when the second air-fuel ratio correction amount calculated by the second air-fuel ratio correction amount calculation means has a deviation of a predetermined value or more; Air-fuel ratio control of an internal combustion engine characterized by including Apparatus.
【請求項2】前記学習ゲイン増大修正手段が、前記学習
手段により学習値が所定回数だけ更新される間において
学習ゲインを増大修正することを特徴とする請求項1記
載の内燃機関の空燃比制御装置。
2. The air-fuel ratio control of an internal combustion engine according to claim 1, wherein the learning gain increase correction means increases and corrects the learning gain while the learning value is updated a predetermined number of times by the learning means. apparatus.
【請求項3】前記学習ゲイン増大修正手段が、前記学習
手段による第2空燃比補正値の学習値と、前記第2空燃
比補正量演算手段で演算された第2空燃比補正値とが、
同じ方向に所定値以上の偏差を有すると判別された回数
が所定回数以上になったときに、前記学習手段における
学習ゲインを所定期間だけ増大修正することを特徴とす
る請求項1又は2に記載の内燃機関の空燃比制御装置。
3. The learning gain increase correction means, the learning value of the second air-fuel ratio correction value by the learning means, and the second air-fuel ratio correction value calculated by the second air-fuel ratio correction amount calculation means,
The learning gain in the learning means is increased and corrected by a predetermined period when the number of times it is determined that the deviation in the same direction is greater than or equal to a predetermined value is greater than or equal to a predetermined number. Air-fuel ratio controller for internal combustion engine.
【請求項4】前記第1空燃比補正量演算手段が、前記上
流側の第1酸素センサで検出される実際の空燃比を目標
空燃比に近づけるように、第1空燃比補正量としての空
燃比フィードバック補正係数を比例・積分制御する構成
であり、前記第2空燃比補正量演算手段が、前記下流側
の第2酸素センサで検出される実際の空燃比を目標空燃
比に近づけるように、前記比例制御における比例操作量
の補正値を第2空燃比補正量として演算する構成である
ことを特徴とする請求項1〜3のいずれか1つに記載の
内燃機関の空燃比制御装置。
4. The first air-fuel ratio correction amount calculating means calculates the air-fuel ratio as the first air-fuel ratio correction amount so that the actual air-fuel ratio detected by the upstream first oxygen sensor approaches a target air-fuel ratio. It is configured to perform proportional / integral control of the fuel ratio feedback correction coefficient, and the second air-fuel ratio correction amount calculation means makes the actual air-fuel ratio detected by the second oxygen sensor on the downstream side close to the target air-fuel ratio. The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 3, wherein a correction value of a proportional operation amount in the proportional control is calculated as a second air-fuel ratio correction amount.
【請求項5】前記学習手段が、前記下流側の第2酸素セ
ンサで検出される実際の空燃比が目標空燃比に対して反
転する毎に第2空燃比補正量の平均値を求め、該平均値
とそれまでの学習値との加重平均値を、新たな学習値と
して更新記憶する構成であり、前記学習ゲイン増大修正
手段が、前記加重平均における加重重みを学習ゲインと
して修正することを特徴とする請求項4記載の内燃機関
の空燃比制御装置。
5. The learning means obtains an average value of the second air-fuel ratio correction amount every time the actual air-fuel ratio detected by the second oxygen sensor on the downstream side is reversed with respect to the target air-fuel ratio, The weighted average value of the average value and the learning value up to that point is updated and stored as a new learning value, and the learning gain increase correction means corrects the weighted weight in the weighted average as a learning gain. The air-fuel ratio control device for an internal combustion engine according to claim 4.
JP7265545A 1995-10-13 1995-10-13 Air-fuel ratio controller for internal combustion engine Pending JPH09112310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7265545A JPH09112310A (en) 1995-10-13 1995-10-13 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7265545A JPH09112310A (en) 1995-10-13 1995-10-13 Air-fuel ratio controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09112310A true JPH09112310A (en) 1997-04-28

Family

ID=17418612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7265545A Pending JPH09112310A (en) 1995-10-13 1995-10-13 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09112310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046823A (en) * 2002-11-28 2004-06-05 현대자동차주식회사 A method of air fuel raio control learning on vehicle engine
JP2006307806A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009138676A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2010242633A (en) * 2009-04-07 2010-10-28 Denso Corp Engine control device
JP5246456B2 (en) * 2009-10-29 2013-07-24 トヨタ自動車株式会社 Internal combustion engine system control device
JP2014152611A (en) * 2013-02-05 2014-08-25 Denso Corp Learning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046823A (en) * 2002-11-28 2004-06-05 현대자동차주식회사 A method of air fuel raio control learning on vehicle engine
JP2006307806A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4501769B2 (en) * 2005-05-02 2010-07-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2009138676A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2010242633A (en) * 2009-04-07 2010-10-28 Denso Corp Engine control device
JP5246456B2 (en) * 2009-10-29 2013-07-24 トヨタ自動車株式会社 Internal combustion engine system control device
US8554447B2 (en) 2009-10-29 2013-10-08 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system controller
JP2014152611A (en) * 2013-02-05 2014-08-25 Denso Corp Learning device

Similar Documents

Publication Publication Date Title
WO1991017349A1 (en) Method of controlling air-fuel ratio in internal combustion engine and system therefor
JPH04365947A (en) Air-fuel ratio controller for engine
JPH04321740A (en) Engine air fuel ratio control device
US5762055A (en) Air-to-fuel ratio control apparatus for an internal combustion engine
JPH09112310A (en) Air-fuel ratio controller for internal combustion engine
JPH0783150A (en) Ignition timing control device for internal combustion engine
JPH0642409A (en) Combustion control device for internal combustion engine
JPH03134241A (en) Air-fuel ratio controller of internal combustion engine
JP2666528B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62253932A (en) Air-fuel ratio control device for engine
JP3460354B2 (en) Air-fuel ratio control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2521037B2 (en) Engine air-fuel ratio control device
JP6472403B2 (en) Air-fuel ratio control device and air-fuel ratio control method for internal combustion engine
JPH06200809A (en) Air-fuel ratio control device of internal combustion engine
JP2609126B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine
JPH09317531A (en) Air fuel ratio feedback controller for engine
JPH0777090A (en) Air-fuel ratio control device with larning function for internal combustion engine
JPH0569971B2 (en)
JPH05156988A (en) Air fuel ratio control device of internal combustion engine
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine
JPH05118242A (en) Air-fuel ratio control device for internal combustion engine
JPS63189656A (en) Fuel control device for engine
JPS6254989B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525