JP2020026756A - Engine control device and engine control method - Google Patents

Engine control device and engine control method Download PDF

Info

Publication number
JP2020026756A
JP2020026756A JP2018150982A JP2018150982A JP2020026756A JP 2020026756 A JP2020026756 A JP 2020026756A JP 2018150982 A JP2018150982 A JP 2018150982A JP 2018150982 A JP2018150982 A JP 2018150982A JP 2020026756 A JP2020026756 A JP 2020026756A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
concentration value
nox concentration
engine control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018150982A
Other languages
Japanese (ja)
Inventor
宗平 山本
Sohei Yamamoto
宗平 山本
学 沖中
Manabu Okinaka
学 沖中
壮一 川口
Soichi Kawaguchi
壮一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018150982A priority Critical patent/JP2020026756A/en
Publication of JP2020026756A publication Critical patent/JP2020026756A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an engine control device and an engine control method capable of accurately controlling an air-fuel ratio of an engine even under a condition out of a theoretical air-fuel ratio.SOLUTION: In an engine control device 100 including a catalyst device 6 composed of a three-way catalyst or an oxidation catalyst provided in an exhaust system 4 of a gasoline engine 2, a total region air-fuel ratio sensor 10 provided in an upstream-side exhaust system of the catalyst device, a NOx sensor 12 provided in a downstream-side exhaust system of the catalyst device, and engine control means 20 for controlling an air-fuel ratio of an air-fuel mixture supplied to the gasoline engine so that the air-fuel ratio calculated on the basis of an oxygen concentration value detected by the total region air-fuel ratio sensor becomes a prescribed target air-fuel ratio, the engine control means corrects the calculated air-fuel ratio or the target air fuel ratio so that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value detected by the NOx sensor is out of the prescribed target NOx concentration value.SELECTED DRAWING: Figure 1

Description

本発明は、ガソリンエンジンに供給される混合気の空燃比を制御するエンジン制御装置及エンジン制御方法に関する。   The present invention relates to an engine control device and an engine control method for controlling an air-fuel ratio of an air-fuel mixture supplied to a gasoline engine.

内燃機関の排気系に酸素センサ(λセンサ)を設置して排気ガス中の酸素濃度を検出し、この検出値が理論空燃比になるように、混合気の空燃比をフィードバック制御する技術が広く知られている。
又、酸素センサの経時劣化により空燃比制御の精度が低下する問題を改善するため、酸素センサの下流側に設置された三元触媒の下流に第2の酸素センサ(λセンサ)を設置し、下流側酸素センサの出力に応じて、劣化した上流側酸素センサの出力を補正し、空燃比を精度よく制御することも行われている。
さらに、三元触媒の上流及び下流にそれぞれNOxセンサを設置し、各NOxセンサの出力から触媒の劣化度(浄化率)を算出し、この浄化率が所定範囲になるように、上流側酸素センサの出力を補正し、空燃比を理論空燃比に維持して触媒性能を確保する技術も開発されている(特許文献1参照)。
2. Description of the Related Art A technology for installing an oxygen sensor (λ sensor) in an exhaust system of an internal combustion engine to detect an oxygen concentration in exhaust gas and performing feedback control of an air-fuel ratio of an air-fuel mixture so that the detected value becomes a stoichiometric air-fuel ratio is widely used. Are known.
Further, in order to improve the problem that the accuracy of the air-fuel ratio control is reduced due to the deterioration with time of the oxygen sensor, a second oxygen sensor (λ sensor) is installed downstream of the three-way catalyst installed downstream of the oxygen sensor. In some cases, the output of the deteriorated upstream oxygen sensor is corrected in accordance with the output of the downstream oxygen sensor, and the air-fuel ratio is accurately controlled.
Further, NOx sensors are installed upstream and downstream of the three-way catalyst, respectively, and the degree of deterioration (purification rate) of the catalyst is calculated from the output of each NOx sensor, and the upstream oxygen sensor is set so that the purification rate falls within a predetermined range. A technique has been developed to correct the output and to maintain the air-fuel ratio at the stoichiometric air-fuel ratio to ensure catalyst performance (see Patent Document 1).

特許2503391号公報Japanese Patent No. 2503391

ところで、酸素センサ(λセンサ)は理論空燃比付近で出力がステップ状に急激に変化するため、例えばリーンバーンエンジン等の理論空燃比から外れた条件で内燃機関を運転する場合、空燃比制御を精度よく行えないという問題がある。
これに対し、広い範囲の空燃比を検出できる全領域空燃比センサが知られており、λセンサに代えて全領域空燃比センサを触媒の上流側に設置して空燃比制御を行うことが想定される。
By the way, since the output of the oxygen sensor (λ sensor) rapidly changes stepwise near the stoichiometric air-fuel ratio, for example, when the internal combustion engine is operated under a condition deviating from the stoichiometric air-fuel ratio such as a lean burn engine, the air-fuel ratio control is performed. There is a problem that it cannot be performed accurately.
On the other hand, a full-range air-fuel ratio sensor capable of detecting a wide range of air-fuel ratio is known, and it is assumed that an air-fuel ratio control is performed by installing a full-range air-fuel ratio sensor instead of the λ sensor on the upstream side of the catalyst. Is done.

ここで、図5に示すように、全領域空燃比センサは、酸素濃度に対してセンサ出力が比例することを利用している。しかしながら、検出した酸素濃度を空燃比に換算すると、図6に示すように、リーン側で出力変化が小さくなり、分解能、ひいては検出精度が低下するという問題がある。このため、空燃比の測定が不正確になりやすい。
そして、例えばリーン側の所定の空燃比A/Fで内燃機関を運転しようとした場合に、A/Fからリーン側に外れると燃焼が不安定になり、A/Fからリッチ側に外れると排気ガス中のNOxが増大する。
Here, as shown in FIG. 5, the full range air-fuel ratio sensor utilizes the fact that the sensor output is proportional to the oxygen concentration. However, when the detected oxygen concentration is converted into an air-fuel ratio, as shown in FIG. 6, there is a problem that the output change becomes small on the lean side, and the resolution and, consequently, the detection accuracy decrease. For this reason, the measurement of the air-fuel ratio tends to be inaccurate.
For example, when the internal combustion engine is operated at a predetermined air-fuel ratio A / F on the lean side, the combustion becomes unstable when the air-fuel ratio deviates from the A / F to the lean side, and when the air-fuel ratio deviates from the A / F to the rich side, the exhaust gas is exhausted. NOx in the gas increases.

従って、本発明は、理論空燃比から外れた条件でもエンジンの空燃比を精度よく制御することが可能なエンジン制御装置及エンジン制御方法の提供を目的とする。   Therefore, an object of the present invention is to provide an engine control device and an engine control method capable of accurately controlling the air-fuel ratio of an engine even under conditions deviating from the stoichiometric air-fuel ratio.

上記課題を解決するため、本発明のエンジン制御装置は、ガソリンエンジンの排気系に設けられる三元触媒又は酸化触媒からなる触媒装置と、前記触媒装置の上流側の前記排気系に設けられる全領域空燃比センサと、前記触媒装置の下流側の前記排気系に設けられるNOxセンサと、前記全領域空燃比センサが検出した酸素濃度値に応じて算出した算出空燃比が所定の目標空燃比になるよう、前記ガソリンエンジンに供給される混合気の空燃比を制御するエンジン制御手段と、を備えたエンジン制御装置であって、前記エンジン制御手段は、前記NOxセンサが検出したNOx濃度値が所定の目標NOx濃度値を外れた場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比又は前記目標空燃比を補正する。   In order to solve the above problems, an engine control device according to the present invention includes a catalyst device including a three-way catalyst or an oxidation catalyst provided in an exhaust system of a gasoline engine, and an entire region provided in the exhaust system on the upstream side of the catalyst device. An air-fuel ratio sensor, a NOx sensor provided in the exhaust system downstream of the catalyst device, and a calculated air-fuel ratio calculated according to the oxygen concentration value detected by the full-range air-fuel ratio sensor become a predetermined target air-fuel ratio. An engine control means for controlling an air-fuel ratio of an air-fuel mixture supplied to the gasoline engine, wherein the engine control means determines that a NOx concentration value detected by the NOx sensor is a predetermined value. When the target NOx concentration value deviates from the target NOx concentration value, the calculated air-fuel ratio or the target air-fuel ratio is corrected so that the NOx concentration value becomes the target NOx concentration value.

ガソリンエンジンの排気系に酸素センサ(λセンサ)を取り付けて空燃比制御をする場合、理論空燃比から外れた条件ではλセンサの特性から空燃比制御を精度よく行えない。これに対し、広い範囲の空燃比を検出できる全領域空燃比センサにより空燃比制御を行うことが想定されるが、全領域空燃比センサが検出した酸素濃度を空燃比に換算するとリーン側で検出精度が低下し、空燃比の測定が不正確になる場合がある。
そこで、このエンジン制御装置によれば、空燃比に関わらず、NOx濃度を精度よく検出できるNOxセンサを用い、全領域空燃比センサの検出精度の低下を、NOxセンサの検出値で補正することで空燃比を正確に見積もることができ、理論空燃比から外れた条件でもエンジンの空燃比を精度よく制御することが可能となる。具体的には、NOxセンサが検出したNOx濃度値が所定の目標NOx濃度値を外れた場合、NOx濃度値が目標NOx濃度値になるよう、目標空燃比を補正する。
又、ガソリンエンジンの触媒装置の下流でNOx濃度を監視するので、空燃比がリッチ側に変化してNOx濃度が増加したときに、直ちにNOx濃度を目標値まで減少させる制御を行うので、NOxの排出量を低減できる。
When an oxygen sensor (λ sensor) is attached to an exhaust system of a gasoline engine to perform air-fuel ratio control, air-fuel ratio control cannot be performed with high accuracy due to the characteristics of the λ sensor under conditions deviating from the stoichiometric air-fuel ratio. On the other hand, it is assumed that the air-fuel ratio control is performed by the full-range air-fuel ratio sensor that can detect the air-fuel ratio in a wide range, but when the oxygen concentration detected by the full-range air-fuel ratio sensor is converted into the air-fuel ratio, it is detected on the lean side. Accuracy may be reduced and air-fuel ratio measurement may be inaccurate.
Therefore, according to this engine control device, a reduction in the detection accuracy of the air-fuel ratio sensor in all regions is corrected by the detection value of the NOx sensor using a NOx sensor capable of accurately detecting the NOx concentration regardless of the air-fuel ratio. The air-fuel ratio can be accurately estimated, and the air-fuel ratio of the engine can be accurately controlled even under conditions deviating from the stoichiometric air-fuel ratio. Specifically, when the NOx concentration value detected by the NOx sensor deviates from a predetermined target NOx concentration value, the target air-fuel ratio is corrected so that the NOx concentration value becomes the target NOx concentration value.
Further, since the NOx concentration is monitored downstream of the catalyst device of the gasoline engine, when the air-fuel ratio changes to the rich side and the NOx concentration increases, control is performed to immediately reduce the NOx concentration to the target value. Emissions can be reduced.

本発明のエンジン制御装置において、前記エンジン制御手段は、前記NOx濃度値が前記目標NOx濃度値よりも減少した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリーン側に、又は、前記目標空燃比を現在値よりもリッチ側に補正してもよい。
このエンジン制御装置によれば、NOx濃度値に応じて算出空燃比又は目標空燃比を速やかに補正して、空燃比を精度よく制御できる。
In the engine control device of the present invention, the engine control means may adjust the calculated air-fuel ratio such that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value is lower than the target NOx concentration value. The target air-fuel ratio may be corrected to the lean side or to the rich side from the current value.
According to this engine control device, the calculated air-fuel ratio or the target air-fuel ratio can be quickly corrected in accordance with the NOx concentration value, and the air-fuel ratio can be accurately controlled.

本発明のエンジン制御装置において、前記エンジン制御手段は、前記NOx濃度値が前記目標NOx濃度値よりも増加した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリッチ側に、又は、前記目標空燃比を現在値よりもリーン側に補正してもよい。
このエンジン制御装置によれば、NOx濃度値に応じて算出空燃比又は目標空燃比を速やかに補正して、空燃比を精度よく制御できる。
In the engine control device of the present invention, the engine control means may adjust the calculated air-fuel ratio such that the NOx concentration value becomes equal to the target NOx concentration value when the NOx concentration value exceeds the target NOx concentration value. The target air-fuel ratio may be corrected to a rich side or a lean side from a current value.
According to this engine control device, the calculated air-fuel ratio or the target air-fuel ratio can be quickly corrected in accordance with the NOx concentration value, and the air-fuel ratio can be accurately controlled.

本発明のエンジン制御方法は、ガソリンエンジンの排気系に設けられる三元触媒又は酸化触媒からなる触媒装置と、前記触媒装置の上流側の前記排気系に設けられる全領域空燃比センサと、前記触媒装置の下流側の前記排気系に設けられるNOxセンサと、
を備えたエンジンシステムの制御方法であって、前記全領域空燃比センサが検出した酸素濃度値に応じて算出した算出空燃比が所定の目標空燃比になるよう、前記ガソリンエンジンに供給される混合気の空燃比を制御するエンジン制御過程を有し、前記エンジン制御過程は、前記NOxセンサが検出したNOx濃度値が所定の目標NOx濃度値を外れた場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比又は前記目標空燃比を補正する。
An engine control method according to the present invention includes a catalyst device including a three-way catalyst or an oxidation catalyst provided in an exhaust system of a gasoline engine; a full-range air-fuel ratio sensor provided in the exhaust system on the upstream side of the catalyst device; A NOx sensor provided in the exhaust system downstream of the device,
A control method for the engine system, comprising: a step of mixing the mixture supplied to the gasoline engine such that a calculated air-fuel ratio calculated according to the oxygen concentration value detected by the full-range air-fuel ratio sensor becomes a predetermined target air-fuel ratio. An engine control step of controlling the air-fuel ratio of the air, wherein the engine control step includes the step of, when the NOx concentration value detected by the NOx sensor deviates from a predetermined target NOx concentration value, setting the NOx concentration value to the target NOx concentration. The calculated air-fuel ratio or the target air-fuel ratio is corrected so as to be a concentration value.

本発明のエンジン制御方法において、前記エンジン制御過程は、前記NOx濃度値が前記目標NOx濃度値よりも減少した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリーン側に、又は、前記目標空燃比を現在値よりもリッチ側に補正してもよい。   In the engine control method according to the present invention, the engine control step includes the step of: calculating the calculated air-fuel ratio such that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value is lower than the target NOx concentration value. The target air-fuel ratio may be corrected to the lean side or to the rich side from the current value.

本発明のエンジン制御方法において、前記エンジン制御過程は、前記NOx濃度値が前記目標NOx濃度値よりも増加した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリッチ側に、又は、前記目標空燃比を現在値よりもリーン側に補正してもよい。   In the engine control method according to the aspect of the invention, the engine control step may include calculating the calculated air-fuel ratio such that when the NOx concentration value is greater than the target NOx concentration value, the NOx concentration value becomes the target NOx concentration value. The target air-fuel ratio may be corrected to a rich side or a lean side from a current value.

この発明によれば、理論空燃比から外れた条件でもエンジンの空燃比を精度よく制御することができる。   According to the present invention, the air-fuel ratio of the engine can be accurately controlled even under conditions deviating from the stoichiometric air-fuel ratio.

本発明の実施形態に係るエンジン制御装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of an engine control device concerning an embodiment of the present invention. NOxセンサの出力とNOx濃度との関係を示す模式図である。It is a schematic diagram which shows the relationship between the output of a NOx sensor and NOx concentration. エンジン制御手段による処理フローを示す図である。FIG. 4 is a diagram showing a processing flow by an engine control means. NOx濃度と空燃比との関係を示す模式図である。It is a schematic diagram which shows the relationship between NOx concentration and air-fuel ratio. 全領域空燃比センサの出力と酸素濃度との関係を示す模式図である。It is a schematic diagram which shows the relationship between the output of the full area air-fuel ratio sensor and the oxygen concentration. 全領域空燃比センサの出力と空燃比との関係を示す模式図である。It is a schematic diagram which shows the relationship between the output of the full area air-fuel ratio sensor and the air-fuel ratio.

以下、本発明の実施形態について説明する。
図1は、本発明の実施形態に係るエンジン制御装置100の一例を示す概略構成図、図2はNOxセンサ12の出力特性を示す模式図、図3はエンジン制御手段20による処理フローを示す図である。
エンジン制御装置100はガソリンエンジン2に適用され、ガソリンエンジン2の排気系(マフラー)4に設けられる三元触媒又は酸化触媒からなる触媒装置6と、全領域空燃比センサ10と、NOxセンサ12と、エンジン制御手段20と、を備えている。
又、ガソリンエンジン2には燃料制御系8が設置され、燃料制御系8は、混合気の空燃比を調整してガソリンエンジン2に供給する。燃料制御系8は、エンジンの吸入空気量を調整するためのスロットルバルブや、燃料を噴射するインジェクタ(燃料噴射弁)等から構成することができる。
触媒装置6は、少なくとも一酸化炭素(CO)と、未燃炭化水素(THC)を除去することができる。又、三元触媒の場合、NOxも除去してもよい。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic configuration diagram showing an example of an engine control device 100 according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing output characteristics of a NOx sensor 12, and FIG. It is.
The engine control device 100 is applied to the gasoline engine 2, and includes a catalyst device 6 including a three-way catalyst or an oxidation catalyst provided in an exhaust system (muffler) 4 of the gasoline engine 2, a full-range air-fuel ratio sensor 10, a NOx sensor 12, , An engine control means 20.
Further, a fuel control system 8 is installed in the gasoline engine 2, and the fuel control system 8 adjusts the air-fuel ratio of the air-fuel mixture and supplies the mixture to the gasoline engine 2. The fuel control system 8 can be composed of a throttle valve for adjusting the intake air amount of the engine, an injector (fuel injection valve) for injecting fuel, and the like.
The catalyst device 6 can remove at least carbon monoxide (CO) and unburned hydrocarbons (THC). In the case of a three-way catalyst, NOx may also be removed.

エンジン制御手段20は、例えばECUの一部として構成され、ECUはガソリンエンジン2の全体の制御も行う。エンジン制御手段20を含むECUは、公知のCPU、ROM、RAMなどを備えている。ROMには、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPUは、ROMに記憶された各種制御プログラムやマップに基づいて各種の演算処理を実行する。また、RAMは、CPUでの演算結果や各センサから入力されたデータ等を一時的に記憶する。
そして、ECUは、上記した各種センサの検出信号に基づいて、ガソリンエンジン2の各種制御の他、後述する空燃比フィードバック制御を実行する。さらに、ECUは、後述する補正を行う。
The engine control unit 20 is configured as, for example, a part of an ECU, and the ECU also controls the entire gasoline engine 2. The ECU including the engine control means 20 includes a known CPU, ROM, RAM, and the like. The ROM stores various control programs, maps referred to when the various control programs are executed, and the like. The CPU executes various arithmetic processes based on various control programs and maps stored in the ROM. In addition, the RAM temporarily stores the result of calculation by the CPU, data input from each sensor, and the like.
The ECU executes air-fuel ratio feedback control, which will be described later, in addition to various controls of the gasoline engine 2 based on the detection signals of the various sensors described above. Further, the ECU performs correction described below.

全領域空燃比センサ10は、触媒装置6の上流側の排気系4に設けられ、理論空燃比(λ=1)付近だけでなく、理論空燃比から外れた広い範囲の空燃比を検出することができる。
NOxセンサ12は、触媒装置6の下流側の排気系4に設けられ、NOx濃度値を検出する。
なお、特許請求の範囲の「酸素濃度値、NOx濃度値」は、酸素濃度やNOx濃度そのものに限らず、各センサ10,12が検出した出力(検出電流、検出電圧等)も含む。
The full-range air-fuel ratio sensor 10 is provided in the exhaust system 4 on the upstream side of the catalyst device 6 and detects an air-fuel ratio not only near the stoichiometric air-fuel ratio (λ = 1) but also in a wide range outside the stoichiometric air-fuel ratio. Can be.
The NOx sensor 12 is provided in the exhaust system 4 on the downstream side of the catalyst device 6, and detects a NOx concentration value.
The “oxygen concentration value, NOx concentration value” in the claims is not limited to the oxygen concentration or the NOx concentration itself, but also includes the output (detection current, detection voltage, etc.) detected by each of the sensors 10 and 12.

そして、エンジン制御手段20は、全領域空燃比センサ10が検出した酸素濃度値(図5参照)に応じて算出空燃比(図6参照)を算出する。又、エンジン制御手段20は、算出空燃比が所定の目標空燃比になるよう、燃料制御系8を制御してガソリンエンジン2に供給される混合気の空燃比をフィードバック制御する。   Then, the engine control means 20 calculates the calculated air-fuel ratio (see FIG. 6) according to the oxygen concentration value (see FIG. 5) detected by the full-range air-fuel ratio sensor 10. Further, the engine control means 20 controls the fuel control system 8 to feedback-control the air-fuel ratio of the mixture supplied to the gasoline engine 2 so that the calculated air-fuel ratio becomes a predetermined target air-fuel ratio.

ここで、上述のように、全領域空燃比センサ10は広い範囲の空燃比を検出できるものの、センサが出力した酸素濃度を空燃比に換算するため、特にリーン側で出力変化が小さくなって分解能、ひいては検出精度が低下する。
一方、図2に示すように、NOxセンサ12はNox濃度に対してセンサ出力が比例するので、空燃比(特にリーン側)に関わらず、Nox濃度を精度よく検出できる。
そこで、本発明においては、空燃比制御に用いる全領域空燃比センサ10の検出精度の低下を、NOxセンサ12の検出値で補正することで空燃比を正確に見積もることができ、理論空燃比から外れた条件でもエンジンの空燃比を精度よく制御することが可能となる。
Here, as described above, the full-range air-fuel ratio sensor 10 can detect a wide range of air-fuel ratio. However, since the oxygen concentration output by the sensor is converted into an air-fuel ratio, the output change is reduced particularly on the lean side, and the resolution is reduced. As a result, the detection accuracy decreases.
On the other hand, as shown in FIG. 2, since the sensor output of the NOx sensor 12 is proportional to the NOx concentration, the NOx concentration can be accurately detected regardless of the air-fuel ratio (particularly on the lean side).
Therefore, in the present invention, the air-fuel ratio can be accurately estimated by correcting the decrease in the detection accuracy of the entire region air-fuel ratio sensor 10 used for the air-fuel ratio control with the detection value of the NOx sensor 12, and the stoichiometric air-fuel ratio can be obtained. It is possible to accurately control the air-fuel ratio of the engine even under the off-condition.

具体的には、図1、図3に示すようにして、エンジン制御手段20は空燃比を制御する。
ここで、ガソリンエンジン2をリーン側で運転する場合を考える。このとき、ガソリンエンジン2を運転するリーン側の所定の目標空燃比、及びこの目標空燃比でガソリンエンジン2を運転したときに排出されると想定される目標NOx濃度値を予め定めておく。
今、図3(i)に示すように、実際の空燃比がリッチ側に変化したとする。このとき、全領域空燃比センサ10は上記したように、分解能が低くなって空燃比を正確に検出できない。
一方、図4に示すように、空燃比がリッチ側になるとNOx濃度は増加する傾向にある。従って、図3(ii)に示すように、実際の空燃比がリッチ側に変化するとNOx濃度が増加して目標NOx濃度値を外れる。
Specifically, as shown in FIGS. 1 and 3, the engine control means 20 controls the air-fuel ratio.
Here, consider the case where the gasoline engine 2 is operated on the lean side. At this time, a predetermined lean-side target air-fuel ratio for operating the gasoline engine 2 and a target NOx concentration value assumed to be emitted when the gasoline engine 2 is operated at the target air-fuel ratio are determined in advance.
Now, suppose that the actual air-fuel ratio has changed to the rich side as shown in FIG. At this time, as described above, the full-range air-fuel ratio sensor 10 has a low resolution and cannot accurately detect the air-fuel ratio.
On the other hand, as shown in FIG. 4, when the air-fuel ratio becomes richer, the NOx concentration tends to increase. Therefore, as shown in FIG. 3 (ii), when the actual air-fuel ratio changes to the rich side, the NOx concentration increases and deviates from the target NOx concentration value.

この場合、空燃比がリーン側になるように燃料制御系8を制御すれば、NOx濃度が低下して図3(iv)に示すように、NOx濃度値が目標NOx濃度値に収束することになる。
そこで、図3(iii)に示すように、エンジン制御手段20は、目標空燃比をさらにリーン側に補正する。
これにより、全領域空燃比センサ10による算出空燃比が目標空燃比になるような上述のフィードバック制御が、よりリーン側になるまで行われるので、結果として、図3(v)に示すように、実際の空燃比が初期の目標空燃比に収束することになる。
In this case, if the fuel control system 8 is controlled so that the air-fuel ratio becomes lean, the NOx concentration decreases, and as shown in FIG. 3 (iv), the NOx concentration value converges to the target NOx concentration value. Become.
Therefore, as shown in FIG. 3 (iii), the engine control means 20 further corrects the target air-fuel ratio to the lean side.
As a result, the above-described feedback control is performed until the air-fuel ratio calculated by the full-range air-fuel ratio sensor 10 becomes the target air-fuel ratio until the air-fuel ratio becomes leaner. As a result, as shown in FIG. The actual air-fuel ratio converges on the initial target air-fuel ratio.

以上のように、NOxセンサ12が検出したNOx濃度値が所定の目標NOx濃度値を外れた場合、エンジン制御手段20はNOx濃度値が目標NOx濃度値になるよう、目標空燃比を補正する。
これにより、理論空燃比から外れた条件でもエンジンの空燃比を精度よく制御することが可能となる。
又、ガソリンエンジン2の触媒装置6の下流でNOx濃度を監視するので、空燃比がリッチ側に変化してNOx濃度が増加したときに、直ちにNOx濃度を目標値まで減少させる制御を行うので、NOxの排出量を低減できる。
As described above, when the NOx concentration value detected by the NOx sensor 12 deviates from the predetermined target NOx concentration value, the engine control means 20 corrects the target air-fuel ratio so that the NOx concentration value becomes the target NOx concentration value.
This makes it possible to accurately control the air-fuel ratio of the engine even under conditions deviating from the stoichiometric air-fuel ratio.
Further, since the NOx concentration is monitored downstream of the catalyst device 6 of the gasoline engine 2, when the air-fuel ratio changes to the rich side and the NOx concentration increases, control is performed to immediately reduce the NOx concentration to the target value. NOx emissions can be reduced.

なお、実際の空燃比がリーン側に変化した場合は、図3(i)〜(v)の上下が逆になる。例えば、図3(iii)で目標空燃比をリッチ側に補正する。   When the actual air-fuel ratio changes to the lean side, the upper and lower sides of FIGS. 3 (i) to (v) are reversed. For example, in FIG. 3 (iii), the target air-fuel ratio is corrected to the rich side.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
上記した補正として、目標空燃比を補正する他、全領域空燃比センサ10が検出した酸素濃度値から算出する算出空燃比を補正してもよい。算出空燃比を補正する場合は、目標空燃比が初期のままでリーン側に補正するよう、算出空燃比をリッチ側に補正することになる。
It goes without saying that the present invention is not limited to the above embodiments, but extends to various modifications and equivalents included in the spirit and scope of the present invention.
As the above correction, in addition to correcting the target air-fuel ratio, a calculated air-fuel ratio calculated from the oxygen concentration value detected by the full-range air-fuel ratio sensor 10 may be corrected. When correcting the calculated air-fuel ratio, the calculated air-fuel ratio is corrected to the rich side so that the target air-fuel ratio is corrected to the lean side while keeping the initial value.

又、NOxセンサ12よりも排気系4の下流側に、NOxを除去する後処理触媒を設置してもよい。後処理触媒としては、LNT(吸蔵型窒素酸化物還元触媒)、SCR(選択(的)触媒還元装置)が挙げられる。ここで、本発明においては、上述のようにNOx濃度を監視するのでNOxの排出量を低減できるため、これら後処理触媒の触媒量を低減したり、場合によっては後処理触媒を不要とできる利点がある。
又、触媒装置6とNOxセンサ12との間に粒子(パティキュレート)フィルタを設置してもよい。
Further, a post-treatment catalyst for removing NOx may be provided downstream of the NOx sensor 12 in the exhaust system 4. Examples of the post-treatment catalyst include LNT (storage type nitrogen oxide reduction catalyst) and SCR (selective catalyst reduction device). Here, in the present invention, since the NOx concentration is monitored as described above, the emission amount of NOx can be reduced, so that the catalyst amount of these post-treatment catalysts can be reduced, and in some cases, the post-treatment catalyst becomes unnecessary. There is.
Further, a particle (particulate) filter may be provided between the catalyst device 6 and the NOx sensor 12.

2 ガソリンエンジン
4 排気系
6 触媒装置
10 全領域空燃比センサ
12 NOxセンサ
20 エンジン制御手段
100 エンジン制御装置
2 Gasoline engine 4 Exhaust system 6 Catalyst device 10 Full range air-fuel ratio sensor 12 NOx sensor 20 Engine control means 100 Engine control device

Claims (6)

ガソリンエンジンの排気系に設けられる三元触媒又は酸化触媒からなる触媒装置と、
前記触媒装置の上流側の前記排気系に設けられる全領域空燃比センサと、
前記触媒装置の下流側の前記排気系に設けられるNOxセンサと、
前記全領域空燃比センサが検出した酸素濃度値に応じて算出した算出空燃比が所定の目標空燃比になるよう、前記ガソリンエンジンに供給される混合気の空燃比を制御するエンジン制御手段と、
を備えたエンジン制御装置であって、
前記エンジン制御手段は、前記NOxセンサが検出したNOx濃度値が所定の目標NOx濃度値を外れた場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比又は前記目標空燃比を補正するエンジン制御装置。
A catalyst device comprising a three-way catalyst or an oxidation catalyst provided in an exhaust system of a gasoline engine;
An all-area air-fuel ratio sensor provided in the exhaust system on the upstream side of the catalyst device,
A NOx sensor provided in the exhaust system downstream of the catalyst device;
Engine control means for controlling the air-fuel ratio of the air-fuel mixture supplied to the gasoline engine so that the calculated air-fuel ratio calculated according to the oxygen concentration value detected by the full-range air-fuel ratio sensor becomes a predetermined target air-fuel ratio,
An engine control device comprising:
The engine control means is configured to control the calculated air-fuel ratio or the target air-fuel ratio such that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value detected by the NOx sensor deviates from a predetermined target NOx concentration value. Engine control device that corrects fuel ratio.
前記エンジン制御手段は、前記NOx濃度値が前記目標NOx濃度値よりも減少した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリーン側に、又は、前記目標空燃比を現在値よりもリッチ側に補正する請求項1に記載のエンジン制御装置。   The engine control means sets the calculated air-fuel ratio to the lean side or sets the target air-fuel ratio so that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value becomes lower than the target NOx concentration value. 2. The engine control device according to claim 1, wherein the air-fuel ratio is corrected to be richer than the current value. 前記エンジン制御手段は、前記NOx濃度値が前記目標NOx濃度値よりも増加した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリッチ側に、又は、前記目標空燃比を現在値よりもリーン側に補正する請求項1に記載のエンジン制御装置。   The engine control means sets the calculated air-fuel ratio to a rich side or sets the target air-fuel ratio such that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value is higher than the target NOx concentration value. The engine control device according to claim 1, wherein the air-fuel ratio is corrected to be leaner than the current value. ガソリンエンジンの排気系に設けられる三元触媒又は酸化触媒からなる触媒装置と、
前記触媒装置の上流側の前記排気系に設けられる全領域空燃比センサと、
前記触媒装置の下流側の前記排気系に設けられるNOxセンサと、
を備えたエンジンシステムの制御方法であって、
前記全領域空燃比センサが検出した酸素濃度値に応じて算出した算出空燃比が所定の目標空燃比になるよう、前記ガソリンエンジンに供給される混合気の空燃比を制御するエンジン制御過程を有し、
前記エンジン制御過程は、前記NOxセンサが検出したNOx濃度値が所定の目標NOx濃度値を外れた場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比又は前記目標空燃比を補正するエンジン制御方法。
A catalyst device comprising a three-way catalyst or an oxidation catalyst provided in an exhaust system of a gasoline engine;
An all-area air-fuel ratio sensor provided in the exhaust system on the upstream side of the catalyst device,
A NOx sensor provided in the exhaust system downstream of the catalyst device;
An engine system control method comprising:
An engine control step of controlling the air-fuel ratio of the air-fuel mixture supplied to the gasoline engine so that the calculated air-fuel ratio calculated according to the oxygen concentration value detected by the full-range air-fuel ratio sensor becomes a predetermined target air-fuel ratio. And
The engine control process includes the step of calculating the calculated air-fuel ratio or the target air-fuel ratio such that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value detected by the NOx sensor deviates from a predetermined target NOx concentration value. An engine control method that corrects the fuel ratio.
前記エンジン制御過程は、前記NOx濃度値が前記目標NOx濃度値よりも減少した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリーン側に、又は、前記目標空燃比を現在値よりもリッチ側に補正する請求項4に記載のエンジン制御方法。   The engine control process may include setting the calculated air-fuel ratio to a lean side or the target value so that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value is lower than the target NOx concentration value. 5. The engine control method according to claim 4, wherein the air-fuel ratio is corrected to be richer than the current value. 前記エンジン制御過程は、前記NOx濃度値が前記目標NOx濃度値よりも増加した場合に、前記NOx濃度値が前記目標NOx濃度値になるよう、前記算出空燃比をリッチ側に、又は、前記目標空燃比を現在値よりもリーン側に補正する請求項4に記載のエンジン制御方法。   The engine control process may include setting the calculated air-fuel ratio to a rich side or the target air-fuel ratio so that the NOx concentration value becomes the target NOx concentration value when the NOx concentration value is higher than the target NOx concentration value. The engine control method according to claim 4, wherein the air-fuel ratio is corrected to be leaner than the current value.
JP2018150982A 2018-08-10 2018-08-10 Engine control device and engine control method Pending JP2020026756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018150982A JP2020026756A (en) 2018-08-10 2018-08-10 Engine control device and engine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150982A JP2020026756A (en) 2018-08-10 2018-08-10 Engine control device and engine control method

Publications (1)

Publication Number Publication Date
JP2020026756A true JP2020026756A (en) 2020-02-20

Family

ID=69619757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150982A Pending JP2020026756A (en) 2018-08-10 2018-08-10 Engine control device and engine control method

Country Status (1)

Country Link
JP (1) JP2020026756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151217A (en) * 2021-11-29 2022-03-08 一汽解放汽车有限公司 Vehicle DPF protection method and protection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125938A (en) * 1995-11-07 1997-05-13 Hitachi Ltd Engine control device
JP2019183733A (en) * 2018-04-09 2019-10-24 株式会社デンソー Air-fuel ratio control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125938A (en) * 1995-11-07 1997-05-13 Hitachi Ltd Engine control device
JP2019183733A (en) * 2018-04-09 2019-10-24 株式会社デンソー Air-fuel ratio control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151217A (en) * 2021-11-29 2022-03-08 一汽解放汽车有限公司 Vehicle DPF protection method and protection system
CN114151217B (en) * 2021-11-29 2023-12-22 一汽解放汽车有限公司 Vehicle DPF protection method and protection system

Similar Documents

Publication Publication Date Title
US8899015B2 (en) Catalyst degradation detection device
US8249793B2 (en) Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
US7836758B2 (en) Deterioration diagnosis system for an air-fuel ratio sensor
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP2016031041A (en) Control device for internal combustion engine
JP2014227843A (en) Device and method for estimating stoichiometric air-fuel ratio in internal combustion engine, method of estimating oxygen storage amount of catalyst, internal combustion engine device, and motorcycle mounted with internal combustion engine device
JP2010007561A (en) Air-fuel ratio control device and air-fuel ratio control method
KR20210088239A (en) System of controlling air fuel ratio for flex fuel vehicle using oxyzen storage amount of catalyst and method thereof
JP5515967B2 (en) Diagnostic equipment
US10161343B2 (en) Correction device for air/fuel ratio sensor
JP2020026756A (en) Engine control device and engine control method
JP2011196317A (en) Abnormal condition diagnosis device
JP4353070B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009092002A (en) Air-fuel ratio control device for internal combustion engine
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JP5761127B2 (en) Catalyst deterioration diagnosis device
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
JP4072412B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007247412A (en) Air-fuel ratio control device of internal combustion engine
JP2005207249A (en) Abnormality diagnosing device for oxygen sensor
JP2010048184A (en) Air fuel ratio control device of engine
JP3775570B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007239462A (en) Air fuel ratio control device for internal combustion engine
JP2023175080A (en) Catalyst capacity detection device
JP2022154625A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230206