JP2023175080A - Catalyst capacity detection device - Google Patents

Catalyst capacity detection device Download PDF

Info

Publication number
JP2023175080A
JP2023175080A JP2022087342A JP2022087342A JP2023175080A JP 2023175080 A JP2023175080 A JP 2023175080A JP 2022087342 A JP2022087342 A JP 2022087342A JP 2022087342 A JP2022087342 A JP 2022087342A JP 2023175080 A JP2023175080 A JP 2023175080A
Authority
JP
Japan
Prior art keywords
catalyst
oxygen concentration
fuel ratio
air
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022087342A
Other languages
Japanese (ja)
Inventor
匡彦 増渕
Masahiko Masubuchi
大 小林
Masaru Kobayashi
圭一郎 青木
Keiichiro Aoki
俊博 森
Toshihiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022087342A priority Critical patent/JP2023175080A/en
Publication of JP2023175080A publication Critical patent/JP2023175080A/en
Pending legal-status Critical Current

Links

Abstract

To determine capacity of a catalyst while suppressing increase in toxic substances in an exhaust gas.SOLUTION: A catalyst capacity detection device 10 includes: a catalyst 31 disposed in an exhaust passage 3 of an internal combustion engine 1 and having oxygen storage capacity; and an A/F sensor 32 disposed downstream from the catalyst 31 in the exhaust passage 3 to detect an oxygen concentration of an exhaust gas corresponding to an air-fuel ratio of a combustion chamber of the internal combustion engine 1. The catalyst capacity detection device calculates an inclination in correlation between the oxygen concentration and an oxygen density change speed from a value of the oxygen concentration detected by the A/F sensor 32 and determines capacity of the catalyst from the change of the inclination.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気通路に設けられた触媒の能力を判定する触媒能力検出装置に関する。 The present invention relates to a catalyst performance detection device that determines the performance of a catalyst provided in an exhaust passage of an internal combustion engine.

特許文献1及び特許文献2には、理論空燃比よりリッチ及びリーンに空燃比を交互に切り換えるように強制的に変化させるアクティブ制御を実行することにより、内燃機関の排気通路に設けられた触媒の酸素吸蔵能力の劣化を判定する触媒劣化診断装置が開示されている。 Patent Document 1 and Patent Document 2 disclose that the catalyst installed in the exhaust passage of an internal combustion engine is controlled by executing active control that forcibly changes the air-fuel ratio to alternately switch richer and leaner than the stoichiometric air-fuel ratio. A catalyst deterioration diagnostic device for determining deterioration of oxygen storage capacity is disclosed.

特開2012-067636号公報JP2012-067636A 国際公開第2012/160650号International Publication No. 2012/160650

特許文献1及び特許文献2に開示された触媒劣化診断装置のように、理論空燃比よりリッチ及びリーンに空燃比を交互に切り換えるように強制的に変化させるアクティブ制御を実行する場合、理論空燃比となるようにインジェクタの噴射量を制御する通常制御における空燃比の変動より振幅や周期が大きい空燃比の変動が必要となる。そのため、上記のアクティブ制御を実行中に、大気へ排出される有害物質が増加することがある。特に、上記のアクティブ制御において空燃比をリーンの状態として触媒の最大酸素吸蔵量を計測するためには、上記の通常制御ではあり得ないほど理論空燃比から掛け離れたリーンの状態を長時間に渡って維持する必要があり、その期間中、窒素酸化物の排出量が増加した状態が継続することになる。 When performing active control that forcibly changes the air-fuel ratio to alternately switch richer and leaner than the stoichiometric air-fuel ratio, as in the catalyst deterioration diagnostic devices disclosed in Patent Document 1 and Patent Document 2, the stoichiometric air-fuel ratio The air-fuel ratio needs to fluctuate with a larger amplitude and period than the air-fuel ratio fluctuation in normal control that controls the injection amount of the injector so that Therefore, during the execution of the above active control, the amount of harmful substances discharged into the atmosphere may increase. In particular, in order to measure the maximum oxygen storage amount of the catalyst with the air-fuel ratio in a lean state in the active control described above, it is necessary to maintain the air-fuel ratio in a lean state for a long time, which is far from the stoichiometric air-fuel ratio, which is impossible with the above-mentioned normal control. During this period, nitrogen oxide emissions will continue to increase.

そこで、本発明は、排気ガス中の有害物質の増加を抑制しつつ触媒の能力を判定できる触媒能力検出装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a catalyst ability detection device that can determine the ability of a catalyst while suppressing an increase in harmful substances in exhaust gas.

本発明に係る触媒能力検出装置は、内燃機関の排気通路に配置され、酸素吸蔵能力を有する触媒と、前記排気通路の前記触媒より下流側に配置され、前記内燃機関の燃焼室の空燃比に対応する排気中の酸素濃度を検出するA/Fセンサと、を備える触媒能力検出装置であって、前記A/Fセンサで検出した酸素濃度の値から、酸素濃度と酸素濃度変化速度との相関における傾きを算出し、前記傾きの変化から前記触媒の能力を判定することを特徴とする。 The catalytic ability detection device according to the present invention includes a catalyst that is disposed in an exhaust passage of an internal combustion engine and has an oxygen storage capacity, and a catalyst that is disposed downstream of the catalyst in the exhaust passage and that detects an air-fuel ratio in a combustion chamber of the internal combustion engine. A catalytic ability detection device comprising: an A/F sensor that detects the oxygen concentration in a corresponding exhaust gas; The method is characterized in that the slope is calculated, and the ability of the catalyst is determined from the change in the slope.

本発明は、理論空燃比よりリッチ及びリーンに空燃比を交互に切り換えるアクティブ制御を実行することなく、理論空燃比となるようにインジェクタを制御する通常制御で得られるA/Fセンサ32の検出値から触媒の酸素吸蔵能力を判定するため、排気ガス中の有害物質の増加を抑制しつつ触媒の能力を判定することができる。 The present invention provides a detection value of the A/F sensor 32 obtained by normal control that controls the injector to maintain the stoichiometric air-fuel ratio without executing active control that alternately switches the air-fuel ratio to richer and leaner than the stoichiometric air-fuel ratio. Since the oxygen storage capacity of the catalyst is determined from the above, the capacity of the catalyst can be determined while suppressing the increase in harmful substances in the exhaust gas.

本開示の実施形態の触媒能力検出装置の制御系統を示す図である。FIG. 2 is a diagram showing a control system of a catalyst ability detection device according to an embodiment of the present disclosure. 本実施形態の触媒能力検出装置の制御装置が触媒の能力を判定するために実行する制御ルーチンの一例を示すフローチャートである。2 is a flowchart illustrating an example of a control routine that is executed by the control device of the catalyst capability detection device of the present embodiment to determine the capability of the catalyst. 触媒より下流側の排気ガスの酸素濃度と酸素濃度変化速度の分布の一例を示す相関図である。FIG. 2 is a correlation diagram showing an example of the distribution of the oxygen concentration of exhaust gas downstream of the catalyst and the oxygen concentration change rate.

以下、図1~3を参照しながら、本実施形態の触媒能力検出装置10について説明する。図1は、触媒能力検出装置10の制御系統を示す図である。触媒能力検出装置10は、内燃機関1の燃焼室に接続する排気通路3に設けられた三元触媒31の酸素吸蔵能力を判定する装置である。図1に示すように、内燃機関1の燃焼室には、吸気通路2及び排気通路3が接続されている。吸気通路2には、吸気通路2を流れる吸入空気の流量を検出するエアフローメータ21と、吸入空気の流量を調整するスロットル弁22と、スロットル弁22の開度を検出するスロットル弁開度センサ23が設けられている。そして、吸気通路2には、燃焼室の近傍に燃料を噴射するインジェクタ24が設けられている。なお、インジェクタ24は、内燃機関1の燃焼室内へ燃料を直接噴射する位置に設けられていてもよい。 The catalytic ability detection device 10 of this embodiment will be described below with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a control system of the catalyst ability detection device 10. As shown in FIG. The catalytic capacity detection device 10 is a device that determines the oxygen storage capacity of the three-way catalyst 31 provided in the exhaust passage 3 connected to the combustion chamber of the internal combustion engine 1. As shown in FIG. 1, an intake passage 2 and an exhaust passage 3 are connected to a combustion chamber of an internal combustion engine 1. The intake passage 2 includes an air flow meter 21 that detects the flow rate of intake air flowing through the intake passage 2, a throttle valve 22 that adjusts the flow rate of intake air, and a throttle valve opening sensor 23 that detects the opening degree of the throttle valve 22. is provided. The intake passage 2 is provided with an injector 24 that injects fuel near the combustion chamber. Note that the injector 24 may be provided at a position to directly inject fuel into the combustion chamber of the internal combustion engine 1.

触媒能力検出装置10は、排気通路3に設けられた三元触媒31及びA/Fセンサ32を備える。三元触媒31は、酸素吸蔵能力を有し、排気ガス中の炭化水素を水と二酸化炭素に酸化し、一酸化炭素を二酸化炭素に酸化し、窒素酸化物を窒素に還元する。そのため、三元触媒31は排気ガス中の炭化水素、一酸化炭素及び窒素酸化物を除去する機能を有する。三元触媒31は、内燃機関1の燃焼室の空燃比が理論空燃比の状態の時に排気浄化機能を最も発揮する。A/Fセンサ32は、排気通路3の三元触媒31より下流側に設けられており、三元触媒31より下流側の排気ガスの酸素濃度を検出することができる。A/Fセンサ32で検出する酸素濃度は内燃機関1の燃焼室の空燃比に対応するため、A/Fセンサ32は内燃機関1の燃焼室の空燃比のモニターの用途に用いることができる。 The catalytic ability detection device 10 includes a three-way catalyst 31 and an A/F sensor 32 provided in the exhaust passage 3. The three-way catalyst 31 has an oxygen storage capacity, oxidizes hydrocarbons in exhaust gas into water and carbon dioxide, oxidizes carbon monoxide into carbon dioxide, and reduces nitrogen oxides to nitrogen. Therefore, the three-way catalyst 31 has a function of removing hydrocarbons, carbon monoxide, and nitrogen oxides from the exhaust gas. The three-way catalyst 31 exhibits its exhaust purification function to its fullest when the air-fuel ratio in the combustion chamber of the internal combustion engine 1 is at the stoichiometric air-fuel ratio. The A/F sensor 32 is provided downstream of the three-way catalyst 31 in the exhaust passage 3 and can detect the oxygen concentration of the exhaust gas downstream of the three-way catalyst 31. Since the oxygen concentration detected by the A/F sensor 32 corresponds to the air-fuel ratio in the combustion chamber of the internal combustion engine 1, the A/F sensor 32 can be used for monitoring the air-fuel ratio in the combustion chamber of the internal combustion engine 1.

触媒能力検出装置10は、制御装置としてECU(Electronic Control Unit)20を備える。ECU20には、内燃機関1のクランク角センサ11、アクセル開度センサ4、エアフローメータ21、スロットル弁開度センサ23及びA/Fセンサ32から出力信号が入力される。そして、スロットル弁22及びインジェクタ24はECU20によって制御される。 The catalyst ability detection device 10 includes an ECU (Electronic Control Unit) 20 as a control device. Output signals are input to the ECU 20 from the crank angle sensor 11, accelerator opening sensor 4, air flow meter 21, throttle valve opening sensor 23, and A/F sensor 32 of the internal combustion engine 1. The throttle valve 22 and the injector 24 are controlled by the ECU 20.

ECU20は、アクセル開度センサ4により検出されたアクセル開度に基づいてスロットル弁22の開度を制御する。そして、ECU20は、A/Fセンサ32で検出した排気ガスの酸素濃度の値から内燃機関1の燃焼室の空燃比を算出して、理論空燃比となるようにインジェクタ24の燃料噴射量を調整するフィードバック制御を行う。そのため、スロットル弁22の開度に応じて大気から吸入された空気は、内燃機関1の燃焼室内の空燃比が理論空燃比となるようにインジェクタ24から噴射された燃料と混合されて、内燃機関1の燃焼室内へ吸入される。そして、内燃機関1の燃焼室内で混合気を燃焼させた後、燃焼室内から排気通路3へ排出された排気ガスが三元触媒31で浄化されて排気通路3から大気へ放出される。 The ECU 20 controls the opening of the throttle valve 22 based on the accelerator opening detected by the accelerator opening sensor 4 . Then, the ECU 20 calculates the air-fuel ratio of the combustion chamber of the internal combustion engine 1 from the value of the oxygen concentration of the exhaust gas detected by the A/F sensor 32, and adjusts the fuel injection amount of the injector 24 so that the stoichiometric air-fuel ratio is achieved. performs feedback control. Therefore, the air taken in from the atmosphere according to the opening degree of the throttle valve 22 is mixed with the fuel injected from the injector 24 so that the air-fuel ratio in the combustion chamber of the internal combustion engine 1 becomes the stoichiometric air-fuel ratio, and the internal combustion engine 1 1 into the combustion chamber. After the air-fuel mixture is combusted in the combustion chamber of the internal combustion engine 1, exhaust gas discharged from the combustion chamber to the exhaust passage 3 is purified by the three-way catalyst 31 and discharged from the exhaust passage 3 to the atmosphere.

ECU20は、演算処理部であるCPUと、RAM及びROM等の記憶部を有し、RAMの一次記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、触媒能力検出装置10を制御する。内燃機関1の燃焼室内の空燃比が理論空燃比となるようにインジェクタ24の燃料噴射量を制御する制御ルーチンのプログラムはECU20のROMに保持されており、例えば数msec程度の極めて短いサイクルタイムで繰り返し実行される。 The ECU 20 has a CPU, which is an arithmetic processing unit, and storage units such as RAM and ROM.The ECU 20 uses the primary storage function of the RAM and performs signal processing according to a program stored in advance in the ROM. Control 10. A control routine program for controlling the fuel injection amount of the injector 24 so that the air-fuel ratio in the combustion chamber of the internal combustion engine 1 becomes the stoichiometric air-fuel ratio is stored in the ROM of the ECU 20, and is executed in an extremely short cycle time of, for example, several milliseconds. executed repeatedly.

ECU20は、内燃機関1の燃焼室内の空燃比が理論空燃比となるようにインジェクタ24の燃料噴射量を制御する制御ルーチンと並行して、三元触媒31の酸素吸蔵能力を判定するための制御ルーチンも実行する。図2は、ECU20が三元触媒31の酸素吸蔵能力を判定するために実行する制御ルーチンの一例を示すフローチャートである。図2に示す制御ルーチンのプログラムはECU20のROMに保持されており、例えば数msec程度の極めて短いサイクルタイムで繰り返し実行される。 The ECU 20 performs control to determine the oxygen storage capacity of the three-way catalyst 31 in parallel with a control routine that controls the fuel injection amount of the injector 24 so that the air-fuel ratio in the combustion chamber of the internal combustion engine 1 becomes the stoichiometric air-fuel ratio. Also execute routines. FIG. 2 is a flowchart showing an example of a control routine that the ECU 20 executes to determine the oxygen storage capacity of the three-way catalyst 31. The control routine program shown in FIG. 2 is held in the ROM of the ECU 20, and is repeatedly executed in an extremely short cycle time of, for example, several milliseconds.

図2に示す制御ルーチンは、内燃機関1が始動してから停止するまで実行される。図2に示す制御ルーチンでは、まずステップS1において、A/Fセンサ32から排気ガスの酸素濃度を検出する。 The control routine shown in FIG. 2 is executed after the internal combustion engine 1 is started until it is stopped. In the control routine shown in FIG. 2, first in step S1, the oxygen concentration of the exhaust gas is detected from the A/F sensor 32.

次に、ステップS2へ進み、内燃機関1の燃焼室の空燃比が理論空燃比の近傍であるか判定する。具体的には、ステップS1で検出した酸素濃度の値が、理論空燃比に対応する値から上下の所定の範囲内に入っているか判定する。そして、ステップS1で検出した酸素濃度の値が所定の範囲内でない場合はステップS3へ進み、ステップS1で検出した酸素濃度の値が所定の範囲内の場合はステップS3へ進まずに制御ルーチンを終了する。 Next, the process proceeds to step S2, where it is determined whether the air-fuel ratio in the combustion chamber of the internal combustion engine 1 is near the stoichiometric air-fuel ratio. Specifically, it is determined whether the oxygen concentration value detected in step S1 is within a predetermined range above and below the value corresponding to the stoichiometric air-fuel ratio. If the oxygen concentration value detected in step S1 is not within a predetermined range, the process proceeds to step S3; if the oxygen concentration value detected in step S1 is within the predetermined range, the control routine is executed without proceeding to step S3. finish.

ステップS2からステップS3へ進んだ場合、ステップS3において、酸素濃度変化速度を算出する。酸素濃度変化速度は、ステップS1で検出した酸素濃度の値と、以前に実行された制御ルーチンで検出した排気ガスの酸素濃度の値から算出する。 When the process proceeds from step S2 to step S3, the rate of change in oxygen concentration is calculated in step S3. The oxygen concentration change rate is calculated from the oxygen concentration value detected in step S1 and the oxygen concentration value of the exhaust gas detected in the previously executed control routine.

ステップS3で酸素濃度変化速度を算出した後、ステップS4へ進み、ステップS1で検出した酸素濃度の値とステップS3で算出した酸素濃度変化速度の値と、以前に実行された複数の制御ルーチンで同様に得られた酸素濃度及び酸素濃度変化速度の値から、図3に示すように回帰直線を算出する。図3は、酸素濃度と酸素濃度変化速度の分布の一例を示す相関図である。図3の横軸はA/Fセンサ32で検出した酸素濃度であり、縦軸は酸素濃度変化速度である。図3では、劣化していない新品の状態の三元触媒31で算出した回帰直線を点線L1で示しており、劣化して酸素吸蔵能力が低下した三元触媒31で算出した回帰直線を実線L2と実線L3で示している。 After calculating the rate of change in oxygen concentration in step S3, the process proceeds to step S4, where the value of the oxygen concentration detected in step S1, the value of the rate of change in oxygen concentration calculated in step S3, and the previously executed control routines are used. From the similarly obtained values of oxygen concentration and rate of change in oxygen concentration, a regression line is calculated as shown in FIG. 3. FIG. 3 is a correlation diagram showing an example of the distribution of oxygen concentration and oxygen concentration change rate. The horizontal axis of FIG. 3 is the oxygen concentration detected by the A/F sensor 32, and the vertical axis is the oxygen concentration change rate. In FIG. 3, the regression line calculated for the three-way catalyst 31 in a new state that has not deteriorated is shown by the dotted line L1, and the regression line calculated for the three-way catalyst 31 whose oxygen storage capacity has decreased due to deterioration is shown by the solid line L2. is indicated by a solid line L3.

なお、理論空燃比近傍の範囲内はステップS2で除外されるため、図3で灰色に着色された長方形の領域内にプロットされた点は、ステップS4の回帰直線の算出には用いられない。図3で灰色に着色された長方形の領域の外側にプロットされた点のみが、ステップS4の回帰直線の算出に用いられる。理論空燃比近傍の範囲内は、三元触媒31が劣化して酸素吸蔵量が低下していても、排気ガスの酸素濃度変化速度に与える影響が少ないため、ステップS4の回帰直線の算出の対象から外している。 Note that since the range near the stoichiometric air-fuel ratio is excluded in step S2, the points plotted within the rectangular area colored gray in FIG. 3 are not used in calculating the regression line in step S4. Only the points plotted outside the rectangular area colored gray in FIG. 3 are used to calculate the regression line in step S4. In the range near the stoichiometric air-fuel ratio, even if the three-way catalyst 31 deteriorates and the oxygen storage amount decreases, there is little effect on the rate of change in the oxygen concentration of the exhaust gas, so this is the target for calculating the regression line in step S4. It is removed from

ステップS4で回帰直線を算出後、ステップS5で、ステップS4で算出した回帰直線の傾きから三元触媒31の酸素吸蔵能力を判定する。一般的な三元触媒では、触媒被毒やシンタリングにより酸素吸蔵能力が低下すると、酸素の吸放出速度が低下するため、酸素濃度変化速度が低下し、図3の点線L1から実線L2となるように回帰直線の傾きが小さくなる。そのため、ステップS4で算出した回帰直線の傾きの大きさから三元触媒31の酸素吸蔵能力を判定することができる。ステップS5では、ステップS4で算出した回帰直線の傾きの大きさが所定の閾値より小さくなった場合に、三元触媒31が劣化したと判定してもよい。ただし、触媒諸元によっては、劣化すると、図3の点線L1から実線L3となるように回帰直線の傾きが大きくなることもある。そのため、ステップS5で、ステップS4で算出した回帰直線の傾きの大きさが所定の閾値より大きくなった場合に、三元触媒31が劣化したと判定してもよい。 After calculating the regression line in step S4, in step S5, the oxygen storage capacity of the three-way catalyst 31 is determined from the slope of the regression line calculated in step S4. In a typical three-way catalyst, when the oxygen storage capacity decreases due to catalyst poisoning or sintering, the oxygen adsorption/release rate decreases, and the oxygen concentration change rate decreases, changing from the dotted line L1 to the solid line L2 in Fig. 3. The slope of the regression line becomes smaller. Therefore, the oxygen storage capacity of the three-way catalyst 31 can be determined from the magnitude of the slope of the regression line calculated in step S4. In step S5, it may be determined that the three-way catalyst 31 has deteriorated when the magnitude of the slope of the regression line calculated in step S4 becomes smaller than a predetermined threshold value. However, depending on the catalyst specifications, when the catalyst deteriorates, the slope of the regression line may increase from the dotted line L1 to the solid line L3 in FIG. Therefore, in step S5, it may be determined that the three-way catalyst 31 has deteriorated when the magnitude of the slope of the regression line calculated in step S4 becomes larger than a predetermined threshold value.

このように本実施形態の触媒能力検出装置10は、理論空燃比よりリッチ及びリーンに空燃比を交互に切り換えるように強制的に変化させるアクティブ制御を実行することなく、理論空燃比となるようにインジェクタ24を制御する通常制御で得られるA/Fセンサ32の検出値から三元触媒31の酸素吸蔵能力を判定するため、排気ガス中の有害物質の増加を抑制しつつ触媒の能力を判定することができる。 In this way, the catalyst performance detection device 10 of this embodiment maintains the stoichiometric air-fuel ratio without executing active control that forcibly changes the air-fuel ratio to alternately switch the air-fuel ratio to richer and leaner than the stoichiometric air-fuel ratio. Since the oxygen storage capacity of the three-way catalyst 31 is determined from the detection value of the A/F sensor 32 obtained through normal control of the injector 24, the ability of the catalyst is determined while suppressing the increase in harmful substances in the exhaust gas. be able to.

また、触媒能力検出装置10は、ステップS4で算出した回帰直線の傾きの変化から、内燃機関1の燃焼室内の空燃比が理論空燃比となるようにインジェクタ24を制御する制御ルーチンに用いる三元触媒31の酸素吸蔵量を補正することにより、内燃機関1の燃焼室内の空燃比を更に高い精度で理論空燃比に近づけることができる。 In addition, the catalytic ability detection device 10 detects the ternary factor used in the control routine to control the injector 24 so that the air-fuel ratio in the combustion chamber of the internal combustion engine 1 becomes the stoichiometric air-fuel ratio based on the change in the slope of the regression line calculated in step S4. By correcting the amount of oxygen stored in the catalyst 31, the air-fuel ratio in the combustion chamber of the internal combustion engine 1 can be brought closer to the stoichiometric air-fuel ratio with even higher precision.

<実施形態の補足>
本開示の触媒能力検出装置は、上述した形態に限定されず、本開示の要旨の範囲内において種々の形態にて実施できる。例えば、排気通路3の三元触媒31より上流側にもA/Fセンサが設けられていてもよい。この場合、三元触媒31より上流側に設けられたA/Fセンサの検出値を用いてインジェクタ24の噴射量を調整するフィードバック制御を行ってもよい。また、排気通路3に配置される触媒の特性により、図2に示す制御ルーチンのステップS4で回帰曲線を算出する方が適切な場合は、ステップS4で回帰直線を算出する代わりに回帰曲線を算出してもよい。
<Supplementary information on the embodiment>
The catalyst ability detection device of the present disclosure is not limited to the above-mentioned form, but can be implemented in various forms within the scope of the gist of the present disclosure. For example, an A/F sensor may be provided in the exhaust passage 3 upstream of the three-way catalyst 31 as well. In this case, feedback control may be performed to adjust the injection amount of the injector 24 using the detected value of the A/F sensor provided upstream of the three-way catalyst 31. Furthermore, if it is appropriate to calculate the regression curve in step S4 of the control routine shown in FIG. 2 due to the characteristics of the catalyst disposed in the exhaust passage 3, the regression curve is calculated instead of calculating the regression line in step S4. You may.

1 内燃機関、2 吸気通路、3 排気通路、4 アクセル開度センサ、10 触媒能力検出装置、11 クランク角センサ、20 ECU、21 エアフローメータ、22 スロットル弁、23 スロットル弁開度センサ、24 インジェクタ、31 三元触媒、32 A/Fセンサ。
1 internal combustion engine, 2 intake passage, 3 exhaust passage, 4 accelerator opening sensor, 10 catalytic capacity detection device, 11 crank angle sensor, 20 ECU, 21 air flow meter, 22 throttle valve, 23 throttle valve opening sensor, 24 injector, 31 three-way catalyst, 32 A/F sensor.

Claims (1)

内燃機関の排気通路に配置され、酸素吸蔵能力を有する触媒と、
前記排気通路の前記触媒より下流側に配置され、前記内燃機関の燃焼室の空燃比に対応する排気中の酸素濃度を検出するA/Fセンサと、
を備える触媒能力検出装置であって、
前記A/Fセンサで検出した酸素濃度の値から、酸素濃度と酸素濃度変化速度との相関における傾きを算出し、前記傾きの変化から前記触媒の能力を判定することを特徴とする触媒能力検出装置。
a catalyst disposed in an exhaust passage of an internal combustion engine and having oxygen storage capacity;
an A/F sensor that is disposed downstream of the catalyst in the exhaust passage and detects an oxygen concentration in exhaust gas that corresponds to an air-fuel ratio in a combustion chamber of the internal combustion engine;
A catalytic ability detection device comprising:
Catalytic ability detection characterized by calculating the slope of the correlation between the oxygen concentration and the oxygen concentration change rate from the oxygen concentration value detected by the A/F sensor, and determining the ability of the catalyst from the change in the slope. Device.
JP2022087342A 2022-05-30 2022-05-30 Catalyst capacity detection device Pending JP2023175080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022087342A JP2023175080A (en) 2022-05-30 2022-05-30 Catalyst capacity detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022087342A JP2023175080A (en) 2022-05-30 2022-05-30 Catalyst capacity detection device

Publications (1)

Publication Number Publication Date
JP2023175080A true JP2023175080A (en) 2023-12-12

Family

ID=89121271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022087342A Pending JP2023175080A (en) 2022-05-30 2022-05-30 Catalyst capacity detection device

Country Status (1)

Country Link
JP (1) JP2023175080A (en)

Similar Documents

Publication Publication Date Title
US6901744B2 (en) Air-fuel ratio control apparatus of internal combustion engine
US8141345B2 (en) Method and device for regulating the fuel/air ratio of a combustion process
US8899015B2 (en) Catalyst degradation detection device
JP4497132B2 (en) Catalyst degradation detector
JP2010190089A (en) Abnormality diagnostic device for multicylinder internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
US10859018B1 (en) Exhaust gas purification system using three-way catalyst and method of controlling the same
JP2016031041A (en) Control device for internal combustion engine
JP3759567B2 (en) Catalyst degradation state detection device
US8205435B2 (en) Deterioration determination device for catalyst, catalyst deterioration determining method, and engine control unit
JP2014227843A (en) Device and method for estimating stoichiometric air-fuel ratio in internal combustion engine, method of estimating oxygen storage amount of catalyst, internal combustion engine device, and motorcycle mounted with internal combustion engine device
JP2005180201A (en) Catalyst degradation diagnosis device for internal combustion engine
US11242786B2 (en) Control device for exhaust purging system
JPH0941948A (en) Catalyst deterioration discriminating device of internal combustion engine
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP2023175080A (en) Catalyst capacity detection device
JP3225787B2 (en) O2 sensor control device for internal combustion engine
JP2009092002A (en) Air-fuel ratio control device for internal combustion engine
JPH09126012A (en) Air-fuel ratio control device of internal combustion engine
JP2017031833A (en) Catalyst deterioration diagnosis device of internal combustion engine
JP2020026756A (en) Engine control device and engine control method
US11879406B2 (en) Method, computing unit, and computer program for operating an internal-combustion engine
JP2001098981A (en) Device for determining catalyst deterioration for internal combustion engine
JP7204426B2 (en) Fuel injection control device for internal combustion engine
JP5308870B2 (en) Catalyst deterioration judgment device