KR20040045592A - A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property - Google Patents

A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property Download PDF

Info

Publication number
KR20040045592A
KR20040045592A KR1020020073415A KR20020073415A KR20040045592A KR 20040045592 A KR20040045592 A KR 20040045592A KR 1020020073415 A KR1020020073415 A KR 1020020073415A KR 20020073415 A KR20020073415 A KR 20020073415A KR 20040045592 A KR20040045592 A KR 20040045592A
Authority
KR
South Korea
Prior art keywords
steel
temperature
heat treatment
less
weight
Prior art date
Application number
KR1020020073415A
Other languages
Korean (ko)
Other versions
KR100940664B1 (en
Inventor
김재익
김영우
김병수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020073415A priority Critical patent/KR100940664B1/en
Publication of KR20040045592A publication Critical patent/KR20040045592A/en
Application granted granted Critical
Publication of KR100940664B1 publication Critical patent/KR100940664B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method for manufacturing steel sheet for dummy having superior weldability and repeated heat treatment characteristics is provided to secure stable operation temperature by properly controlling constituents and manufacturing process. CONSTITUTION: The method comprises a step of hot finish rolling to a temperature of 910 to 930 deg.C a steel slab comprising 0.002 to 0.005 wt.% of C, 0.1 to 0.5 wt.% of Mn, 0.04 wt.% or less of Si, 0.015 wt.% or less of S, 0.03 to 0.10 wt.% of Al, 0.003 wt.% or less of N, 0.03 to 0.15 wt.% of Mo, 0.04 to 0.10 wt.% of Nb, 0.0005 to 0.003 wt.% of B and a balance of Fe and other inevitable impurities, wherein atomic ratio of (Nb+Mo)/C is 4.0 to 5.9, and weight ratio of B/N is 0.6 to 1.1; a step of coiling the hot finish rolled steel sheet at a temperature of 580 to 680 deg.C; and a step of cold rolling the coiled steel sheet to a reduction ratio of 80 to 90%, wherein content of B is 0.001 to 0.002 wt.%, and wherein the cold rolling step is performed to a reduction ratio of 84 to 86%.

Description

저항 용접성 및 반복 열처리성이 우수한 더미용 강판의 제조방법{A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property}A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property}

본 발명은 연속소둔 공정에서 소재의 소둔온도를 조절하기 위하여 소재에 연결되는 더미용 냉연강판에 관한 것으로, 보다 상세하게는 극저탄소 베이스(Base)의 알루미늄-킬드(Al-killed)강에 탄질화물 형성원소인 Mo, Nb, B의 단독 첨가량 및 (Nb+Mo)/C 원자비, B/N 중량비를 적절히 관리함과 아울러 열연조건, 권취온도 및 냉간압하율의 최적화를 통한 저항 용접성 및 반복 작업성이 우수한 더미(dummy)용 강판의 제조방법에 관한 것이다.The present invention relates to a cold-rolled steel sheet for a pile connected to the material in order to control the annealing temperature of the material in the continuous annealing process, more specifically carbon nitride in the aluminum-killed steel of the ultra-low carbon base (Base) Properly manage the addition amount of Mo, Nb, and B, the (Nb + Mo) / C atomic ratio, and B / N weight ratio as well as resistance weldability and repeatability by optimizing hot rolling condition, winding temperature and cold reduction rate It is related with the manufacturing method of this excellent dummy steel plate.

캔(can)과 같은 용기용 소재로 사용되는 철강 소재인 주석도금 원판(Black plate, BP)은 대부분 소재의 두께가 얇으므로 로크웰(Rockwell) 표면 경도값인 HR30T에 기초한 조질도(Temper grade)에 의해 T1(HR30T 46~52)~T6(HR30T 67~73)의 재질로 구분되고 있다. 주석도금 원판을 이용하여 내용물을 저장하는 캔을 만들기 위해서는원판의 표면에 주석(Tin, 원소기호 Sn) 등을 도금하여 내식성을 부여하고, 일정한 크기로 절단한 후 원형 또는 각형으로 가공한다. 용기를 가공하는 방법은 크게 용기가 뚜껑과 몸체(Body)의 2부분으로 구성되는 2-피스(Piece) 캔과 같이 용접을 하지 않고 가공하는 방법과 캔의 구성이 몸통, 위 뚜껑(End) 및 아래 뚜껑(Bottom)의 3부분으로 이루어진 3-피스 캔과 같이 용접 또는 접합에 의해 몸통을 체결하는 방법으로 나누어 진다.Black plate (BP), which is a steel material used for container materials such as cans, is mostly thin in thickness, so it is suitable for the temper grade based on the Rockwell surface hardness value HR30T. It is classified into material of T1 (HR30T 46-52)-T6 (HR30T 67-73). To make cans for storing contents by using tin-plated discs, tin (Tin, element symbol Sn), etc. is coated on the surface of the disc to give corrosion resistance, cut to a certain size, and then processed into round or square. The method of processing a container is a method of processing without welding, such as a two-piece can in which the container is composed of two parts of a lid and a body, and the configuration of the can is a body, an upper lid, The three-piece can consists of three parts of the bottom lid, and is divided into a method of fastening the body by welding or bonding.

가공도가 크게 요구되는 용도에 적용되는 조질도 T3(HR30T 54~60)급 이하의 연질 주석도금 원판은 주로 상소둔법으로 제조되며, 내압특성 등이 요구되는 용도에 사용되는 T4(HR30T 58~64)급 이상의 경질 주석도금 원판은 연속소둔 공정으로 제조하여 왔다. 그러나, 냉연강판에서 목표로 하는 가공성 및 특성을 부여하는 소둔 공정 중 연속소둔 방식은 상소둔법에 비하여 제품 생산비가 낮을 뿐만 아니라 재질 균일성, 평탄도 및 표면 특성이 우수하다는 장점을 가지므로 많은 소재들을 연속소둔 공정에서 생산하기 위한 노력들이 이루어 지고 있다. 저탄소강을 연속소둔 공정을 이용하여 주석 도금 원판을 제조하면 강중에 고용 상태로 존재하는 탄소 및 질소 등에 의해 제관 작업시 각형으로 꺽임이 발생하는 프루팅(Fluting)이나 스트레쳐 스트레인(Stretcher Strain)과 같은 가공 결함을 유발한다. 또한, 강중 고용 원소 및 탄소에 의한 결정립 미세화 효과에 의해 조질도 T2(HR30T 50~56)급 이하의 연질 소재를 제조하기 곤란한 문제점이 있다.Soft tin plated discs of T3 (HR30T 54 ~ 60) grade or less applied to applications requiring high workability are mainly manufactured by the annealing method, and T4 (HR30T 58 ~ 64) used for applications requiring pressure resistance characteristics. Hard tin-plated discs of) or higher grades have been manufactured by a continuous annealing process. However, the continuous annealing method in the annealing process that imparts the target workability and characteristics in cold rolled steel sheet has the advantages of lower product production cost and superior material uniformity, flatness and surface characteristics compared to the annealing method. Efforts have been made to produce a continuous annealing process. When the tin-plated disc is manufactured by continuous annealing process of low carbon steel, it is necessary to produce the fluting or stretcher strain, Cause the same machining defects. In addition, there is a problem in that it is difficult to produce a soft material of the T2 (HR30T 50 ~ 56) grade or less due to the grain refinement effect by solid solution elements and carbon in steel.

상기와 같은 문제점을 해결하기 위한 종래기술로는 일본 공개특허공보 평7-11333호가 있다. 상기 종래기술은 연질의 주석 도금원판을 연속소둔 방법으로 제조하기 위하여 극저탄소강에 Ti 또는 Nb 등의 탄질화물 형성 원소를 첨가하거나 탈탄 소둔 등을 통해 강내 고용원소양을 낮춤으로써 시효 및 고용강화 효과를 억제하는 방법에 관한 것이다. 그러나, 연질의 주석 도금원판은 중저탄소강을 소재로 한 경질재에 비하여 연속소둔 설비에서의 작업온도가 70~100℃ 정도 높으므로 동일한 연속소둔 설비에서 이들 소재들을 같이 생산하려면 작업 온도를 확보하기 위해 극박의 연결용 코일인 더미(Dummy)재를 투입하고 있다. 상기 극박의 연결용 코일은 열처리로에서의 연속적인 통판을 위하여 앞, 뒤 코일을 저항용접에 의해 연결하기 위한 것으로, 용접성을 확보하는 것이 중요하다. 또한, 연결용 코일은 사용 특성상 다양한 온도 영역을 통과할 뿐만 아니라 이들 작업이 반복적으로 이루어지므로 고온 소둔에 의한 재질 연화가 적을수록 유리하다. 따라서, 연결용 소재의 재결정 온도는 높을수록 바람직하다. 그러나, 중저탄소강 또는 극저탄소강에 Ti를 첨가한 기존의 연결용 코일은 소재의 재결정온도가 낮아 연속소둔 공정에서의 반복 작업성 및 소둔 작업성이 떨어졌을 뿐만 아니라 작업 온도에 따라 제품의 재질이 급격히 변화하여 재질 편차가 유발되는 문제점이 있다.The prior art for solving the above problems is Japanese Patent Laid-Open No. 7-11333. The prior art adds carbon nitride forming elements such as Ti or Nb to ultra low carbon steel or lowers the amount of solid solution in the steel through decarburization annealing in order to manufacture soft tin plated discs by continuous annealing. It is about how to suppress. However, soft tin-plated discs have a higher operating temperature in the continuous annealing plant than 70 ~ 100 ℃ compared to hard materials made of medium and low carbon steel. Therefore, to produce these materials together in the same continuous annealing unit, Dummy material, which is an ultra-thin connecting coil, is injected. The ultra-thin connecting coil is for connecting the front and rear coils by resistance welding for continuous plate in the heat treatment furnace, and it is important to secure weldability. In addition, the connection coil not only passes through various temperature ranges due to the characteristics of use, but since these operations are repeatedly performed, the less material softening caused by high temperature annealing is advantageous. Therefore, the higher the recrystallization temperature of the connecting material, the better. However, the existing connection coils in which Ti is added to the low and low carbon steels have low recrystallization temperature of the material, thereby reducing the repetitive workability and annealing workability in the continuous annealing process. There is a problem that the variation in material caused.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 극저탄소 알루미늄-킬드강에 탄질화물 형성원소인 Mo, Nb, B의 단독 첨가량 및 (Nb+Mo)/C 원자비, B/N 중량비를 적절히 관리함과 아울러 열연조건, 권취온도 및 냉간압하율의 최적화를 통하여 소재의 저항 용접성을 개선하고 소재의 재결정 거동을 지연시킴으로써 반복 열처리성을 향상시킨 더미용 강판을 제조하는 방법을 제공하는데, 그 목적이 있다.The present invention is to solve the above problems, and the amount of carbon nitride forming elements, the addition amount of Mo, Nb, B alone, (Nb + Mo) / C atomic ratio, B / N weight ratio, In addition, the present invention provides a method of manufacturing a dummy steel sheet having improved cyclic heat treatment properties by improving resistance weldability and delaying recrystallization of materials by optimizing hot rolling conditions, winding temperature and cold rolling rate. have.

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.002~0.005%, Mn: 0.1~0.5%, Si: 0.04% 이하, S: 0.015% 이하, Al: 0.03~0.10%, N: 0.003% 이하, Mo: 0.03~0.15%, Nb: 0.04~0.10%, B: 0.0005~0.003%, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, (Nb+Mo)/C 원자비: 4.0~5.9 및 B/N 중량비: 0.6~1.1을 만족하는 강을 910~930℃로 마무리 열간압연한 다음 580~680℃에서 권취한 후, 80~90%의 압하율로 냉간압연하는 것을 포함하여 이루어진다.The present invention for achieving the above object is by weight, C: 0.002-0.005%, Mn: 0.1-0.5%, Si: 0.04% or less, S: 0.015% or less, Al: 0.03-0.10%, N: 0.003 % Or less, Mo: 0.03 to 0.15%, Nb: 0.04 to 0.10%, B: 0.0005 to 0.003%, remaining Fe and other inevitable impurities, (Nb + Mo) / C atomic ratio: 4.0 to 5.9 and B / N weight ratio: after the hot-rolled steel to satisfy the 0.6 ~ 1.1 at 910 ~ 930 ℃ hot-rolled at 580 ~ 680 ℃, and cold rolling at a reduction ratio of 80 ~ 90%.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 연결용 더미 코일로 사용되는 극박의 냉연강판에 관한 것으로, 연결용 더미 코일에 요구되는 저항 용접성 및 반복 열처리성을 향상시키기 위한 것이다.The present invention relates to an ultra-thin cold rolled steel sheet used as a connecting dummy coil, and to improve the resistance weldability and repeated heat treatment required for the connecting dummy coil.

먼저, 본 발명의 성분한정 이유부터 설명한다.First, the reason for component limitation of this invention is demonstrated.

C: 0.002~0.005중량%C: 0.002-0.005 wt%

상기 C는 시효 열화 및 결정립 미세화에 의해 재질 경화를 초래하는 원소로, 상기 C의 함량이 0.002중량% 미만이면 열간압연 단계에서 결정립 이상성장이 발생하여 냉간 압연시 두께 편차에 의한 재질 편차를 유발할 뿐만 아니라 미세 탄화물계 석출물의 석출이 억제되어 고온 소둔 작업성 확보가 어렵고, 0.005중량%를 초과하면시효 열화 및 결정립 미세화에 의해 재질 경화를 초래할 뿐만 아니라 제강공정시 탈탄에 의한 추가적인 제조 원가 상승을 초래하므로, 그 함량을 0.002~0.005중량%로 제한하는 것이 바람직하다.The C is an element that causes hardening of the material by aging deterioration and grain refinement. If the C content is less than 0.002% by weight, abnormal grain growth occurs during the hot rolling step, which causes material variation due to thickness variation during cold rolling. In addition, precipitation of fine carbide-based precipitates is suppressed, making it difficult to secure high-temperature annealing workability, and when it exceeds 0.005% by weight, it not only causes hardening of the material by aging deterioration and grain refinement, but also increases additional manufacturing cost due to decarburization during the steelmaking process. It is preferable to limit the content to 0.002 to 0.005% by weight.

Mn: 0.1~0.5중량%Mn: 0.1-0.5 wt%

상기 Mn은 황에 의한 적열 취성을 억제하는데 유효한 성분으로, 상기 효과를 얻기 위해서는 0.1중량% 이상 첨가하여야 한다. 그러나, 상기 Mn 첨가량이 0.5중량%를 초과하면 소입성을 증가시켜 베이나이트와 같은 경한 2상 조직을 형성하여 재질 편차를 유발할 뿐만 아니라 미소 편석(micro-segregation)을 발생시켜 냉간 압연성 및 성형성을 열화시키므로, 그 함량을 0.1~0.5중량%로 제한하는 것이 바람직하다.The Mn is an effective ingredient for suppressing red brittleness by sulfur, and in order to obtain the effect, it should be added at least 0.1 wt%. However, when the amount of Mn added exceeds 0.5% by weight, the hardenability is increased to form a hard two-phase structure such as bainite, which causes material variation, and also causes micro-segregation to cause cold rolling and formability. Since it deteriorates, it is preferable to limit the content to 0.1 to 0.5% by weight.

Si: 0.04중량% 이하Si: 0.04 wt% or less

상기 Si는 산소와 결합하여 강판 표면에 산화층을 형성하므로써 착색 불량 등의 결함을 유발하여 도금 작업성을 열화시킬 뿐만 아니라 0.04중량%를 초과하여 첨가되면 소재가 취화되어 냉간압연시 파단을 유발시켜 압연성을 열화시키므로, 그 함량을 0.04중량% 이하로 제한하는 것이 바람직하다.The Si bonds with oxygen to form an oxide layer on the surface of the steel sheet, causing defects such as poor coloration, thereby deteriorating plating workability, and when added in excess of 0.04% by weight, the material becomes brittle and causes fracture during cold rolling. It is preferable to limit the content to 0.04% by weight or less since it deteriorates the sex.

S: 0.015중량% 이하S: 0.015% by weight or less

상기 S는 강중 Mn과 결합하여 망간-설파이드계 석출물을 형성하는 원소로, S의 함량이 0.015중량%를 초과하면 이들 석출물의 크기가 조대화되어 재질이 급격히 연화되고 재결정온도를 낮추는 것으로 고온 소둔 작업성을 확보하기 어려워지므로, 그 함량을 0.015중량% 이하로 제한하는 것이 바람직하다.The S is an element that forms manganese-sulfide-based precipitates by combining with Mn in the steel. When the S content exceeds 0.015% by weight, these precipitates are coarsened and the material softens rapidly and the recrystallization temperature is lowered. Since it becomes difficult to ensure the property, it is preferable to limit the content to 0.015% by weight or less.

Al: 0.03~0.10중량Al: 0.03-0.10 weight

상기 Al은 알루미늄-킬드강에서 탈산제 및 시효에 의한 재질 열화를 방지할 목적으로 첨가되는 원소로서, 상기 효과를 얻기 위해서는 0.03중량% 이상 첨가하여야 하나, 0.10중량%를 초과하여 첨가되면 탈산효과가 포화될 뿐만 아니라 알루미늄-옥사이드(Al2O3)와 같은 표면 개재물이 급증하여 연주 및 열연재의 표면특성을 열화시키므로, 그 함량을 0.03~0.10중량%로 제한하는 것이 바람직하다.The Al is an element added to prevent material deterioration due to deoxidizer and aging in aluminum-kilted steel, and in order to obtain the above effect, Al should be added at least 0.03% by weight. In addition, since surface inclusions such as aluminum oxide (Al 2 O 3 ) increase rapidly to deteriorate the surface properties of the performance and hot rolled material, it is preferable to limit the content to 0.03 to 0.10% by weight.

N: 0.003중량% 이하N: 0.003 wt% or less

상기 N은 강내에 침입하여 강화 특성을 나타내는 대표적인 침입형 원소로, 0.003중량%를 초과하여 첨가되면 연질의 소재를 제조할 수 없을 뿐만 아니라 변형시효를 일으켜 가공결함의 요인으로 작용하므로, 그 함량을 0.003중량% 이하로 제한하는 것이 바람직하다.The N is a representative intrusion type element that exhibits reinforcing characteristics by invading steel, and when added in excess of 0.003% by weight, it is not only able to manufacture a soft material, but also causes deformation aging and acts as a factor of processing defects. It is desirable to limit it to 0.003% by weight or less.

Mo: 0.03~0.15중량%Mo: 0.03-0.15 wt%

상기 Mo는 탄소 등과 반응하여 석출되는 석출물의 크기를 작게 하여 강의 재결정을 지연시키는 효과를 나타내는 핵심적인 원소로, 본 발명에서 목표로 하는 재결정 거동을 확보하기 위해서는 0.03중량% 이상 첨가되어야 하나, 0.15중량%를 초과하여 첨가되면 재결정 온도 상승효과는 포화되고 고가인 Mo이 과다 첨가에 의한 제조 원가 상승을 초래할 뿐만 아니라 소입성이 증가하여 마르텐사이트(Martensite)상과 같은 경질상의 형성을 촉진하여 냉간 압연성을 악화시키므로, 그 함량을 0.03~0.15중량%로 제한하는 것이 바람직하다.The Mo is a key element exhibiting the effect of delaying the recrystallization of the steel by reducing the size of the precipitate precipitated by reacting with carbon, etc., in order to secure the recrystallization target of the present invention should be added at least 0.03% by weight, 0.15% by weight When added in excess of%, the recrystallization temperature synergistic effect is not only to increase the production cost due to excessive addition of saturated and expensive Mo, but also to increase the hardenability to promote the formation of a hard phase such as martensite phase, which is cold rollable. Since it worsens, it is preferable to limit the content to 0.03 to 0.15 weight%.

Nb: 0.04~0.10중량%Nb: 0.04-0.10 wt%

상기 Nb는 강내 고용 원소인 탄소와 결합하여 니오븀 카바이드(Nb carbide)와 같은 석출물을 형성하여 연결용 강판의 고온소둔 특성을 개선할 목적으로 첨가되는 핵심적인 원소로, 상기 효과를 얻기 위해서는 0.04중량% 이상 첨가되어야 하나, 0.10중량%를 초과하여 첨가되면 고온소둔 특성의 개선은 크지 않으면서 열연판 재질의 강도가 급격히 상승하여 높은 냉간압하율이 필요한 극박 연결용 강판의 냉간 압연성의 확보가 어려우므로, 그 함량을 0.04~0.10중량%로 제한하는 것이 바람직하다.The Nb is a key element added to improve the high temperature annealing properties of the connecting steel sheet by forming a precipitate such as niobium carbide by combining with carbon, which is a solid solution element in the steel, and in order to obtain the effect, 0.04 wt% It should be added above, but if it is added in excess of 0.10% by weight, the strength of the hot-rolled sheet material is not significantly improved, but the strength of the hot-rolled sheet material is rapidly increased, so it is difficult to secure the cold rolling property of the ultra-thin connection steel sheet which requires a high cold rolling rate. It is preferable to limit the content to 0.04 to 0.10% by weight.

B: 0.0005~0.003중량%B: 0.0005 to 0.003 wt%

상기 B는 강내 질소와 결합하여 석출물을 형성함으로써 강의 재결정을 지연시키는데 유효한 핵심적인 원소로 재질 연화에도 효과적이다. 상기 B의 함량이 0.0005중량% 미만이면 고용 상태로 존재하는 B은 저항 용접공정에서 결정립계(grain boundary)를 강화시켜 용접 열영향부의 결정립 성장을 억제하여 코일 연결 부위에서의 판 파단을 억제하는 효과를 얻을 수 없으며, 0.003%를 초과하여 첨가되면 강의 재결정 지연 효과가 포화되어 고온 작업성 개선 효과가 포화될 뿐만 아니라 제품의 가공성을 현저히 저하시키는 문제점이 있으므로, 그 함량을 0.0005~0.003중량%로 제한하는 것이 바람직하다. 상기 B의 함량을 0.001~0.002중량%로 관리하면 결정립계 강화에 따른 강의 재결정 지연 효과를 보다 향상시키므로, 보다 바람직하다.B is a key element effective in delaying recrystallization of steel by combining with nitrogen in the steel to form a precipitate, and is effective in softening the material. When the content of B is less than 0.0005% by weight, B, which is present in solid solution, strengthens grain boundaries in the resistance welding process, thereby suppressing grain growth at the weld heat affected zone, thereby suppressing plate breakage at the coil connection site. If it is added in excess of 0.003%, the recrystallization delay effect of the steel is saturated, and the effect of improving the workability of the high temperature is not only saturated, but also the workability of the product is remarkably lowered. Therefore, the content is limited to 0.0005 to 0.003% by weight. It is preferable. When the content of B is controlled to 0.001 to 0.002% by weight, the recrystallization retardation effect of the steel according to grain boundary reinforcement is further improved, and therefore, more preferable.

상기 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above composition, the remainder is composed of Fe and other unavoidable impurities.

한편, 본 발명에서는 강 내에 존재하는 탄소, 질소와 같은 고용 원소를 효과적으로 제어하여 저항 용접성 및 소둔 공정에서의 고온 작업성을 확보하기 위해서 이들 원소들과 화합물을 형성하는 원소들과의 관계를 고려하여 첨가비를 관리하는 것도 필요하다.Meanwhile, in the present invention, in order to effectively control solid solution elements such as carbon and nitrogen present in the steel to ensure resistance weldability and high temperature workability in the annealing process, the relationship between these elements and the elements forming the compound is considered. It is also necessary to manage the addition ratio.

(Nb+Mo)/C 원자비: 4.0~5.9(Nb + Mo) / C atomic ratio: 4.0 to 5.9

Nb, Mo와 C의 경우, 목표 특성을 확보하기 위해서는 각각의 원소별 첨가 양을 만족함과 아울러 탄화물을 형성하는 원소들인 Nb와 Mo에 대한 C의 원자비, 즉 (Nb+Mo) /C를 관리함으로써 재결정 거동 억제에 유리한 탄화물계 석출물의 석출을 촉진시킬 수 있다. 상기 (Nb+Mo)/C 원자비가 4.0 미만이면 강중 고용 탄소들이 충분히 탄화물 형태로 석출되지 않아 시효에 의한 재질 열화를 유발하는 요인이 된다. 또한, 미세 석출물의 형성이 촉진되지 않아 재결정 지연 효과가 감소하여 연속소둔 공정에서의 고온 작업성 확보가 곤란하다. 반면에 (Nb+Mo)/C 원자비가 5.9를 초과하면 미세 석출물에 의한 강의 재결정 지연 효과는 포화되고 과잉의 첨가 원소들이 석출물의 조대화를 촉진시켜 고온 반복 작업성 확보 측면에 좋지 못한 결과를 초래한다. 또한, 고가의 Nb 및 Mo 첨가량이 증가함에 의해 제조 원가를 상승시키며, 열연 재질이 경화되어 냉간압연성을 열화시킨다. 따라서, 상기 (Nb+Mo)/C 원자비는 4.0~5.9로 제한하는 것이 바람직하다.In the case of Nb, Mo, and C, in order to secure the target characteristics, the amount of addition of each element is satisfied and the atomic ratio of C to Nb and Mo, that is, carbide forming elements, (Nb + Mo) / C is managed. As a result, precipitation of carbide-based precipitates, which are advantageous for suppressing recrystallization behavior, can be promoted. When the (Nb + Mo) / C atomic ratio is less than 4.0, solid carbons in the steel are not sufficiently precipitated in the form of carbide, which causes a material deterioration due to aging. In addition, since the formation of fine precipitates is not promoted, the recrystallization delay effect is reduced, making it difficult to secure high temperature workability in the continuous annealing process. On the other hand, when the (Nb + Mo) / C atomic ratio exceeds 5.9, the recrystallization delay effect of the steel due to the fine precipitate is saturated, and the excess additive elements promote coarsening of the precipitate, resulting in poor high temperature repeatability. do. In addition, the production cost is increased by increasing the amount of expensive Nb and Mo added, the hot rolled material is cured to deteriorate cold rolling. Therefore, it is preferable to limit the (Nb + Mo) / C atomic ratio to 4.0 to 5.9.

B/N 중량비: 0.6~1.1B / N weight ratio: 0.6 to 1.1

한편, 질화물계 석출물을 형성하는 B와 N의 관계에서는 B에 대한 N의 중량비를 관리함으로써 고온 작업성 및 저항 용접성을 확보할 수 있다. 상기 B/N 중량비가 0.6 미만이면 열연 단계에서 강중 모든 B가 N과 결합하여 저항 용접 공정시 용접 열영향부의 결정립 이상 성장을 억제할 수 없을 뿐만 아니라 재결정 지연 효과도 크지 않아 연결용 소재로 사용하기에는 부적합하다. 반면에 B/N 중량비가 1.1을 초과하면 질화물의 크기가 성장하여 재결정 지연 효과가 감소하여 고온 반복 작업성을 열화시킨다. 따라서, 상기 B/N 중량비는 0.6~1.1로 제한하는 것이 바람직하다.On the other hand, in the relationship between B and N for forming nitride-based precipitates, high temperature workability and resistance weldability can be secured by managing the weight ratio of N to B. When the B / N weight ratio is less than 0.6, all the B in the steel in the hot rolling step is combined with N to suppress abnormal grain growth of the weld heat affected zone during the resistance welding process, and the recrystallization delay effect is not so great to be used as a connection material. Inadequate On the other hand, when the B / N weight ratio exceeds 1.1, the size of the nitride grows and the recrystallization delay effect is reduced, thereby deteriorating high temperature repeatability. Therefore, the B / N weight ratio is preferably limited to 0.6 to 1.1.

상기와 같이 조성되는 강을 오스테나이트 단상역에서 균질화 처리한 후, 910~930℃에서 마무리 열간압연한다. 상기 균질화 처리(슬라브 재가열)는 통상적으로 초기의 오스테나이트 조직이 조대화될 수 있는 오스테나이트 단상역에서 행한다. 또한, 상기 마무리 열간압연 온도가 910℃ 미만이면 열간 압연 중에 압연 온도가 페라이트영역으로 낮아져 조대한 결정립과 미세한 결정립이 공존하는 혼립이 발생하여 재질 편차를 유발할 뿐만 아니라 냉간 압연성을 나쁘게 하는 요인으로 작용하고, 930℃를 초과하면 석출물 크기가 조대화되어 재질이 연화되고 재결정 지연 효과가 감소하여 소둔 공정에서의 고온 작업성 확보에 문제점이 있으므로, 상기 마무리 열간압연 온도는 910~930℃로 제한하는 것이 바람직하다.The steel formed as described above is homogenized in an austenitic single-phase zone, and then hot-rolled at 910-930 ° C. The homogenization treatment (slave reheating) is usually carried out in an austenite single phase region where the initial austenite structure can be coarsened. In addition, if the finishing hot rolling temperature is less than 910 ℃, the rolling temperature during the hot rolling is lowered to the ferrite region, the coexistence of coarse grains and fine grains coexist, causing material variation and also act as a factor that worsens cold rolling properties In addition, when the temperature exceeds 930 ° C, the precipitate size is coarsened, the material is softened, and the recrystallization delay effect is decreased. Thus, there is a problem in securing high temperature workability in the annealing process. Therefore, the finishing hot rolling temperature is limited to 910-930 ° C. desirable.

상기 마무리 열간압연 후, 580~680℃에서 권취한다. 상기 열연 권취공정은 AlN 석출 및 재질 연화와 밀접한 관계를 가지는 단계이다. 상기 권취 온도가 580℃ 미만이면 알루미늄계 질화물의 석출이 억제되어 재결정 억제에 큰 효과를 발휘하지 못할 뿐만 아니라 열연판 폭 방향으로의 재질 편차가 크게 발생하여 냉간 압연성을 열화시키는 요인으로 작용하고, 680℃를 초과하면 열연 결정립 및 석출물의 크기가 커져 재결정 온도가 낮아져 소둔 공정에서의 반복 열처리 작업성에 문제가 있으므로, 상기 권취온도는 580~680℃로 제한하는 것이 바람직하다.It winds up at 580-680 degreeC after the said finish hot rolling. The hot rolled winding process is a step having a close relationship with AlN precipitation and material softening. When the coiling temperature is less than 580 ° C, the precipitation of aluminum nitride is suppressed, thereby not exerting a great effect on suppression of recrystallization, and a large material deviation occurs in the hot rolled sheet width direction, which acts as a factor of deteriorating cold rolling property. If the temperature exceeds 680 ° C, hot rolled crystal grains and precipitates increase in size, thereby lowering the recrystallization temperature, thereby causing a problem in the repeated heat treatment workability in the annealing process. Therefore, the winding temperature is preferably limited to 580 to 680 ° C.

상기 권취 후, 압하율 80~90%로 냉간압연한다. 상기 냉간 압하율은 열연 작업성 및 강의 재결정 거동과 밀접한 관계를 갖는 인자이다. 냉간 압하율이 낮아짐에 따라 재결정 현상의 구동력으로 작용하는 변형에너지가 감소하여 재결정을 지연시키는 효과를 나타내지만, 두께가 얇은 소재를 연결하기 위한 목적으로 생산되는 소재의 열간압연판 두께가 얇아져야 하는 문제점이 발생한다. 얇은 두께의 열연판을 얻기 위해서는 온도 저하(Drop) 현상이 심하게 발생하여 권취 형상 제어가 곤란하고 열연공정의 부하를 증가시킬 뿐만 아니라 냉각 패턴을 변화시켜 재질 편차를 증가시키므로 냉간압연성도 저하된다. 반면에 냉간 압하율이 높아지면 소재에 축적된 변형에너지가 증가하여 재결정을 촉진하므로 열처리시 고온 반복 작업성을 확보하기 어려운 문제점이 있다. 상기 냉간 압하율이 80% 미만이면 극박의 열연재를 생산하여야 하며, 이 경우 열연공정에 부하를 줄 뿐만 아니라 냉간압연성도 나쁘게 하고, 90%를 초과하면 재결정온도가 낮아져 고온에서의 반복 작업성을 나쁘게 하므로, 상기 냉간 압하율은 80~90%로 제한하는 것이 바람직하다. 또한, 상기 냉간 압하율을 84~86%로 관리하면 열연 작업성 및 재결정 거동 관리에 보다 효과적이다.After the winding, cold rolling is performed at a reduction ratio of 80 to 90%. The cold reduction rate is a factor that is closely related to hot rolling workability and recrystallization behavior of steel. As the cold rolling reduction rate decreases, the strain energy acting as the driving force of the recrystallization phenomenon decreases, thereby retarding the recrystallization, but the thickness of the hot rolled sheet produced for the purpose of connecting thin materials should be thinner. A problem occurs. In order to obtain a thin hot rolled sheet, the temperature drop (Drop) is severely generated, it is difficult to control the winding shape, not only increase the load of the hot rolling process, but also change the cooling pattern to increase the material variation, thereby reducing the cold rolling. On the other hand, if the cold reduction rate is increased, the strain energy accumulated in the material is increased to promote recrystallization, so there is a problem that it is difficult to secure high-temperature repeatability during heat treatment. If the cold reduction rate is less than 80%, ultra-thin hot rolled material should be produced. In this case, not only the load is applied to the hot rolling process but also the cold rolling property is bad. Since it worsens, it is preferable to limit the said cold rolling reduction to 80 to 90%. In addition, managing the cold reduction rate at 84 to 86% is more effective in managing hot rolling workability and recrystallization behavior.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같이 조성된 강을 연속 주조한 슬라브를 오스테나이트 단상역에서 재가열하여, 하기 표 2와 같은 조건으로 마무리 열간압연하였다. 이후, 초당 20℃의 냉각속도로 권취단계까지 냉각하였다. 하기 표 2에 나타낸 권취온도로 권취한 후, 하기 표 2의 압하율로 냉간압연하였다. 발명강과 비교강을 이용하여 하기 표 2의 조건에 따라 제조한 발명재 및 비교재의 저항 용접성, 재결정 온도, 냉간 압연성, 고온 열처리성 및 소둔반복 작업성을 하기 표 2에 나타내었다.The slab continuously cast the steel composition as shown in Table 1 was reheated in the austenitic single-phase zone, and was finished hot rolled under the conditions shown in Table 2 below. Thereafter, it was cooled to the winding step at a cooling rate of 20 ℃ per second. After winding up to the winding temperature shown in Table 2, it was cold rolled at the reduction ratio of the following Table 2. The resistance weldability, recrystallization temperature, cold rolling property, high temperature heat treatment property, and annealing repeatability of the inventive material and the comparative material manufactured according to the conditions of Table 2 using the inventive steel and the comparative steel are shown in Table 2 below.

구분division 강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC MnMn SiSi SS AlAl NN NbNb MoMo BB (Nb+Mo)/C 원자비(Nb + Mo) / C atomic ratio B/N 중량비B / N weight ratio 발명강Invention steel 1One 0.00270.0027 0.350.35 0.0100.010 0.0080.008 0.0540.054 0.00250.0025 0.0430.043 0.0440.044 0.00160.0016 4.0994.099 0.6400.640 22 0.00350.0035 0.390.39 0.0110.011 0.0100.010 0.0390.039 0.00240.0024 0.0520.052 0.0690.069 0.00190.0019 4.3884.388 0.7920.792 33 0.00360.0036 0.310.31 0.0120.012 0.0110.011 0.0410.041 0.00270.0027 0.0640.064 0.0910.091 0.00240.0024 5.4625.462 0.8890.889 비교강Comparative steel 1One 0.00670.0067 0.570.57 0.0140.014 0.0130.013 0.0470.047 0.00540.0054 0.0270.027 -- 0.00050.0005 0.5210.521 0.0930.093 22 0.04100.0410 0.310.31 0.0110.011 0.0090.009 0.0450.045 0.00460.0046 -- 0.0550.055 0.00140.0014 0.1680.168 0.3040.304 33 0.00350.0035 0.940.94 0.6100.610 0.0100.010 0.1060.106 0.00310.0031 0.0450.045 0.0590.059 0.00240.0024 3.7723.772 0.7740.774 44 0.00250.0025 0.280.28 0.0100.010 0.0090.009 0.0330.033 0.00280.0028 0.0370.037 0.2410.241 -- 13.98113.981 00

상기 표 2에서 알 수 있는 바와 같이, 본 발명의 성분 범위를 만족하는 강을 이용하여 본 발명의 제조조건으로 제조한 발명재(1~4)의 경우, 저항 용접성, 재결정 온도, 냉간 압연성, 고온 열처리성 및 연속소둔 공정에서의 소둔반복 작업성 등이 모두 우수함을 알 수 있다.As can be seen in Table 2, in the case of the invention materials (1 to 4) manufactured under the manufacturing conditions of the present invention using steel satisfying the component range of the present invention, resistance weldability, recrystallization temperature, cold rolling property, It can be seen that both the high temperature heat treatment property and the annealing repeatability in the continuous annealing process are excellent.

또한, 냉간압하율이 84%인 발명재(3)의 경우, 냉간압하율이 88%인 발명재(4)에 비하여 재결정 온도가 높게 나타나는 것을 알 수 있다.In addition, in the case of the invention material 3 whose cold reduction rate is 84%, it turns out that recrystallization temperature appears high compared with the invention material 4 whose cold reduction rate is 88%.

반면에 본 발명의 성분 범위를 벗어나거나 제조조건으로 제조하지 않은 비교재(1~10)는 본 발명에서 목표로 하였던 특성을 만족하지 못하거나 반복 열처리시 판 파단과 같은 문제를 일으켜 극박재 연결용 강판으로 적용하기 곤란하였다.On the other hand, the comparative materials (1 to 10) that do not fall outside the component range of the present invention or manufactured under the manufacturing conditions do not satisfy the characteristics aimed at in the present invention, or cause problems such as breakage of the plate during repeated heat treatment. It was difficult to apply to a steel sheet.

C, Mo, Nb 등의 조성 및 (Nb+Mo)/C 원자비, B/N 중량비가 본 발명의 성분 범위를 만족하는 강을 이용하여 권취온도를 450℃로 본 발명의 범위 보다 낮게 한 비교재(1)의 경우, 석출물의 분포 및 크기가 재결정 억제에 효과적이지 못함에 따라 고온 소둔 작업성 확보가 어려웠으며 또한 열연판 폭 방향의 재질 편차가 심하게 발생하여 냉간압연성이 극히 나빠지는 등의 문제점이 발생하였다.Comparison in which the coiling temperature was lower than the range of the present invention at 450 ° C. using a steel having a composition of C, Mo, Nb, etc., (Nb + Mo) / C atomic ratio, and B / N weight ratio satisfying the component range of the present invention. In the case of ash (1), it was difficult to secure high temperature annealing workability due to the fact that the distribution and size of precipitates were not effective in suppressing recrystallization. A problem occurred.

또한, 권취온도가 760℃로 높은 비교재(2)의 경우에는 냉간압연성 등은 양호하였지만 석출물 조대화에 의해 재결정 온도가 750℃ 이하로 낮아져 연속 소둔공정에서의 고온 소둔 작업성을 확보할 수 없었다.In addition, in the case of the comparative material 2 having a high coiling temperature of 760 ° C, the cold rolling property and the like were good, but the recrystallization temperature was lowered to 750 ° C or lower by coarsening of precipitates, thereby ensuring high temperature annealing workability in the continuous annealing process. There was no.

또한, 냉간압하율이 75%로 낮은 비교재(3)의 경우에는 열연재의 두께가 너무 얇아짐에 따라 열연판 권취 형상이 나빠져 작업성이 현저히 떨어졌으며, 냉간 압연성을 확보하는 것이 곤란하였다.In addition, in the case of the comparative material (3) having a low cold reduction rate of 75%, as the thickness of the hot rolled material became too thin, the wound shape of the hot rolled sheet worsened, which significantly decreased the workability, and it was difficult to secure cold rollability. .

한편, 냉간압하율이 95%로 높은 비교재(4)의 경우에는 냉간압연에 의한 변형에너지가 높아져 재결정을 촉진함으로써 재결정이 750℃ 이하의 온도에서 완료되어 소둔 반복 작업성 등을 확보하는 것이 곤란하였다.On the other hand, in the case of the comparative material 4 having a high cold reduction rate of 95%, the deformation energy due to cold rolling is increased to promote recrystallization, so that recrystallization is completed at a temperature of 750 ° C. or lower, and it is difficult to secure annealing repeatability and the like. It was.

한편, 본 발명강의 화학 조성에 비하여 C, Mn, N의 함량이 많고 Mo, Nb 및 B의 함량이 적으며 (Nb+Mo)/C 원자비 및 B/N의 중량비가 본 발명의 범위를 만족하지 못하는 비교강1을 이용하여 본 발명법의 권취 및 냉연조건 제조 범위를 벗어나게 제조한 비교재(5) 및 제조 범위를 만족하는 비교재(6)은 미세 석출물의 석출이 조장되지 못함에 따라 강의 재결정은 750℃ 이하에서 완료되어 고온 열처리성 및 소둔 반복 작업성을 확보할 수 없어 목표로 하는 극박재 연결용 소재로써의 적합한 특성을 얻을 수 없었을 뿐만 아니라 용접 특성도 확보할 수 없었다.On the other hand, compared with the chemical composition of the present invention, the content of C, Mn, N is high, the content of Mo, Nb and B is low, and the weight ratio of (Nb + Mo) / C atomic ratio and B / N satisfies the scope of the present invention. The comparative material (5) manufactured outside the winding and cold rolling condition manufacturing range of the present invention method using the comparative steel 1 that cannot be compared and the comparative material (6) satisfying the manufacturing range are not prepared due to the precipitation of fine precipitates. The recrystallization was completed at 750 ° C. or lower, so that high temperature heat treatment and annealing repetitive workability could not be secured, and thus, suitable characteristics for the target ultrathin material connection material could not be obtained, and welding properties could not be obtained.

또한, C, N 및 Nb의 첨가량이 발명법의 성분 범위를 벗어나고 (Nb+Mo)/C원자비가 본 발명의 범위보다 낮은 비교강2를 이용하여 권취온도를 570℃로 낮게 한 비교재(7)은 저항 용접성의 확보는 가능하였지만, 시효 현상이 발생하여 소재의 재질 편차를 일으키는 요인으로 작용하였을 뿐만 아니라 재결정도 비교적 낮은 온도 영역인 700℃ 이하에서 완료되어 반복 열처리를 실시하는 경우 재질이 급격히 연화되어 고온 소둔 특성성이 요구되는 연결용 소재로 적용하기는 곤란하였다.In addition, a comparative material in which the addition amount of C, N and Nb was out of the component range of the inventive method and the coiling temperature was lowered to 570 ° C using Comparative Steel 2 having a (Nb + Mo) / C atomic ratio lower than that of the present invention (7 ) Was able to secure the resistance weldability, but the aging phenomenon caused the material variation of the material, and recrystallization was completed at 700 ℃ or below, which is a relatively low temperature range. Therefore, it was difficult to apply to a connection material that requires high temperature annealing characteristics.

또한, Mn, Si, Al, N의 첨가량이 발명강의 조성에 비하여 높은 비교강3을 이용하여 본 발명의 제조 범위로 제조한 비교재(8)은 재결정 특성 등은 확보할 수 있었지만, Si, Mn 등에 의해 소재의 편석이 심하게 발생하고 스케일 등의 결함이 발생하여 냉간압연성을 크게 저하시키는 요인으로 작용하였다. 그리고, 고온 열처리시 Si 등의표면 농화가 발생하여 소둔 작업성을 현저히 떨어뜨리는 문제점도 발생하였다.In addition, although the comparative material 8 manufactured in the manufacturing range of this invention using the comparative steel 3 with the addition amount of Mn, Si, Al, and N higher than the composition of the invention steel, recrystallization property etc. were securable, Si, Mn As a result, segregation of the material is severely generated and defects such as scale are generated, which acts as a factor to greatly reduce the cold rolling property. In addition, a surface thickening such as Si occurs during the high temperature heat treatment, thereby causing a problem of significantly lowering the annealing workability.

또한, 다른 성분들은 본 발명의 성분 범위를 만족하지만 Mo, B의 첨가량 및 (Nb+Mo)/C원자비와 B/N의 중량비가 발명의 범위를 벗어나는 비교강4를 이용하여 본 발명의 제조 범위로 제조한 비교재(9~10)은 저항 용접시 용접 열영향부의 조직이 현저히 조대화되어 용접부 판 파단의 요인으로 작용하여 저항 용접성이 크게 떨어졌다. 그리고, 열연시 판 두께의 헌팅(Hunting, 폭방향 두께편차)이 발생하여 냉간압연 특성을 확보할 수 없었으며, 고가의 Mo이 과다 첨가됨에 따라 제조 원가가 상승되는 문제점도 발생하였다.In addition, although the other components satisfy the component range of the present invention, the preparation of the present invention using Comparative Steel 4 in which the addition amount of Mo and B and the weight ratio of (Nb + Mo) / C atomic ratio and B / N are outside the scope of the invention. Comparative materials 9 to 10 manufactured in the range of the weld heat affected zone is significantly coarse during resistance welding, which acts as a factor of fracture of the weld plate, which greatly reduces resistance weldability. In addition, the hot rolling of the plate thickness (hunting, width direction deviation) was not able to secure the cold rolling characteristics, the production cost increases as the expensive Mo is added too much.

상술한 바와 같이, 본 발명은 적절한 성분 및 제조 공정의 제어를 통하여 저항 용접성 및 고온 소둔 특성 등을 개선함과 아울러 연결용 소재로써의 반복적인 소둔 작업성을 확보할 수 있어 안정적인 작업 온도 확보가 가능하므로 제품의 재질 편차 발생을 감소시키고 이를 통하여 재질 편차에 의한 재처리를 방지할 수 있을 뿐만 아니라 제조 원가를 절감할 수 있는 효과가 있다.As described above, the present invention improves resistance weldability and high temperature annealing characteristics and the like through the control of appropriate components and manufacturing processes, and also ensures a stable working temperature as it ensures repeated annealing workability as a connecting material. Therefore, it is possible to reduce the occurrence of material deviation of the product, thereby preventing reprocessing due to material deviation, and reducing manufacturing cost.

Claims (3)

중량%로, C: 0.002~0.005%, Mn: 0.1~0.5%, Si: 0.04% 이하, S: 0.015% 이하, Al: 0.03~0.10%, N: 0.003% 이하, Mo: 0.03~0.15%, Nb: 0.04~0.10%, B: 0.0005~0.003%, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, (Nb+Mo)/C 원자비: 4.0~5.9 및 B/N 중량비: 0.6~1.1을 만족하는 강을 910~930℃로 마무리 열간압연한 다음 580~680℃에서 권취한 후, 80~90%의 압하율로 냉간압연하는 것을 포함하여 이루어지는 저항 용접성 및 반복 열처리성이 우수한 더미용 강판의 제조방법.By weight%, C: 0.002-0.005%, Mn: 0.1-0.5%, Si: 0.04% or less, S: 0.015% or less, Al: 0.03-0.10%, N: 0.003% or less, Mo: 0.03-0.15%, Nb: 0.04 ~ 0.10%, B: 0.0005 ~ 0.003%, steel with remaining Fe and other unavoidable impurities, satisfying (Nb + Mo) / C atomic ratio: 4.0 ~ 5.9 and B / N weight ratio: 0.6 ~ 1.1 After finishing hot rolling to 910 ~ 930 ℃ and wound at 580 ~ 680 ℃, cold rolling at a reduction ratio of 80 ~ 90%, the manufacturing method of a pile steel sheet excellent in resistance weldability and repeated heat treatment. 제1항에 있어서, 상기 B의 함량이 0.001~0.002중량%임을 특징으로 하는 저항 용접성 및 반복 열처리성이 우수한 더미용 강판의 제조방법.The method of claim 1, wherein the content of the B is 0.001 to 0.002% by weight, the method for producing a pile steel sheet excellent in resistance weldability and repeated heat treatment. 제1항에 있어서, 상기 냉간압연에서 압하율이 84~86%임을 특징으로 하는 저항 용접성 및 반복 열처리성이 우수한 더미용 강판의 제조방법.The method for manufacturing a dummy steel sheet having excellent resistance weldability and repeated heat treatment property according to claim 1, wherein the cold rolling rate is 84 to 86%.
KR1020020073415A 2002-11-25 2002-11-25 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property KR100940664B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020073415A KR100940664B1 (en) 2002-11-25 2002-11-25 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020073415A KR100940664B1 (en) 2002-11-25 2002-11-25 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property

Publications (2)

Publication Number Publication Date
KR20040045592A true KR20040045592A (en) 2004-06-02
KR100940664B1 KR100940664B1 (en) 2010-02-05

Family

ID=37341373

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020073415A KR100940664B1 (en) 2002-11-25 2002-11-25 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property

Country Status (1)

Country Link
KR (1) KR100940664B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286172B1 (en) * 2009-12-04 2013-07-15 주식회사 포스코 High strength and heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR101308718B1 (en) * 2009-12-04 2013-09-13 주식회사 포스코 High strength and heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR101308717B1 (en) * 2009-12-04 2013-09-13 주식회사 포스코 High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100924A (en) * 1979-01-25 1980-08-01 Nippon Steel Corp Production of high toughness bainite high tension steel plate having excellent weldability
JPH04131357A (en) * 1990-09-21 1992-05-06 Nippon Steel Corp Steel sheet for deep drawing having excellent baking hardenability and non-aging property and production thereof
US5290370A (en) * 1991-08-19 1994-03-01 Kawasaki Steel Corporation Cold-rolled high-tension steel sheet having superior deep drawability and method thereof
JP3826442B2 (en) * 1996-06-26 2006-09-27 Jfeスチール株式会社 Manufacturing method of steel plate for can making with good workability and no rough skin
JP2002155317A (en) * 2000-11-16 2002-05-31 Kawasaki Steel Corp Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286172B1 (en) * 2009-12-04 2013-07-15 주식회사 포스코 High strength and heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR101308718B1 (en) * 2009-12-04 2013-09-13 주식회사 포스코 High strength and heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR101308717B1 (en) * 2009-12-04 2013-09-13 주식회사 포스코 High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof

Also Published As

Publication number Publication date
KR100940664B1 (en) 2010-02-05

Similar Documents

Publication Publication Date Title
KR20150075307A (en) Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
KR102020404B1 (en) Steel sheet having ultra high strength and superior ductility and method of manufacturing the same
JP5764498B2 (en) High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
US11254997B2 (en) Non-oriented electrical steel sheet and manufacturing method therefor
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
KR100940664B1 (en) A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property
KR101403215B1 (en) Ultra high strength high manganese steel sheet with excellent ductility and method of manufacturing the same
KR101786262B1 (en) Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same
KR100900649B1 (en) A Method of Manufacturing Cold Rolled Steel Sheet for Dummy
KR100340504B1 (en) A Method of Manufacturing Blackplate with Superior Formability
JPS60149719A (en) Manufacture of hot-rolled high-tension steel sheet
KR20090068906A (en) Strong steel sheet for tinning and manufacturing method thereof
KR100349155B1 (en) Manufacturing Method of Surface-treated Plating Disc with Excellent Aging and Processability
KR20110125860A (en) A high strength thin steel sheet with excellent workability and secondary working brittleness resistance, and a method for manufacturing the same
KR100910467B1 (en) Method of manufacturing double reduced steel sheet with excellent formability
KR100946132B1 (en) A manufacturing method of tinplate
JPS609097B2 (en) Ultra-low yield point steel with excellent workability and non-aging properties and its manufacturing method
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR101989251B1 (en) Structural steel and method of manufacturing the same
KR100584741B1 (en) Blackplates and method for manufacturing thereof
KR100765116B1 (en) A high strength blackplate with superior workability and a method for manufacturing it
KR100544737B1 (en) Blackplates with excellent formability and method for manufacturing thereof
KR100825559B1 (en) Method of manufacturing blackplate with excellent formability
KR20150075351A (en) Rolled steel and method of manufacturing the same
KR20230093650A (en) High-strength cold-rolled steel sheet for home appliances with excellent aging resistance and method of manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130121

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160126

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 9