JP2002155317A - Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance - Google Patents

Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance

Info

Publication number
JP2002155317A
JP2002155317A JP2000348971A JP2000348971A JP2002155317A JP 2002155317 A JP2002155317 A JP 2002155317A JP 2000348971 A JP2000348971 A JP 2000348971A JP 2000348971 A JP2000348971 A JP 2000348971A JP 2002155317 A JP2002155317 A JP 2002155317A
Authority
JP
Japan
Prior art keywords
mass
hot
steel
deep drawability
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000348971A
Other languages
Japanese (ja)
Inventor
Takashi Iwama
隆史 岩間
Saiji Matsuoka
才二 松岡
Tetsuo Shimizu
哲雄 清水
Kazuaki Kyono
一章 京野
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000348971A priority Critical patent/JP2002155317A/en
Publication of JP2002155317A publication Critical patent/JP2002155317A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength galvanized steel sheet which has excellent deep drawability, secondary working brittleness resistance and plating characteristics, and further has a tensile strength of about >=400 MPa. SOLUTION: A steel slab having a composition containing, by mass, 0.0005 to 0.008% C, 0.1 to 1.5% Si, 0.5 to 3.0% Mn, 0.02 to 0.2% P, <=0.02% S, 0.005 to 0.20% Al, <=0.01% N, 0.0005 to 0.008% B, 0.05 to 2.0% Mo and Nb of 0.001 to 0.2%, and also, in the range satisfying 0.3×(C/12)<=Nb/93<=3.0×(C/12) is heated and soaked at a temp. of 950 to 1,300 deg.C. After hot rolling is finished at a temp. of 650 to 1,000 deg.C, the steel is coiled at a temp. of 400 to 850 deg.C. The steel is next annealed in the temperature range of 600 to 900 deg.C for >=10 min as black film scale is adhered thereto. The steel is pickled and is subjected to cold rolling at a draft of 50 to 95%. Thereafter, the steel sheet is subjected to recrystallization annealing at a temp. of 700 to 950 deg.C and is subjected to galvanizing in continuous galvanizing equipment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車の車体用
鋼板等のように、曲げ加工やプレス成形加工、絞り加工
などが施される用途に用いて好適な高強度溶融亜鉛めっ
き鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength hot-dip galvanized steel sheet suitable for use in applications where bending, press forming, drawing and the like are performed, such as a steel sheet for an automobile body. It is about.

【0002】[0002]

【従来の技術】近年、環境問題による自動車の排気ガス
規制などから、燃費向上のために車体の軽量化に対する
要請が高まっている。また、自動車の安全性向上も重要
な課題となっている。そこで、かような問題の対応策の
一つとして、引張り強さが 400 MPa程度以上で、しかも
優れたプレス成形性を有する高強度溶融亜鉛めっき鋼板
が要求されている。
2. Description of the Related Art In recent years, there has been an increasing demand for reducing the weight of a vehicle body in order to improve fuel efficiency due to regulations on exhaust gas from automobiles due to environmental problems. Also, improving the safety of automobiles has become an important issue. Therefore, as one of the measures against such a problem, a high-strength hot-dip galvanized steel sheet having a tensile strength of about 400 MPa or more and excellent press formability is required.

【0003】しかしながら、一般に冷延鋼板は、高強度
化に伴って深絞り性すなわちランクフォード値(r値)
や、引張り強さ(TS)と延性(El)のバランスが劣化
し、まためっき特性などの表面特性も劣化する傾向にあ
る。従って、自動車用鋼板として供するためには、高強
度化と共に、深絞り性およびめっき特性を向上させるこ
とが重要になる。
[0003] However, cold-rolled steel sheets generally have a deep drawability, that is, a Rankford value (r value) in accordance with the increase in strength.
In addition, the balance between the tensile strength (TS) and the ductility (El) tends to deteriorate, and the surface properties such as plating properties also tend to deteriorate. Therefore, in order to provide a steel sheet for automobiles, it is important to improve the deep drawability and the plating properties as well as to increase the strength.

【0004】これまで、高強度化に伴って劣化する傾向
にあった深絞り性を改善するため、各種の方法が提案さ
れている。例えば、特開昭63−100158号公報には、Cを
低減した極低炭素鋼をベースとして、加工性と時効性を
改善するために炭窒化物形成成分であるTi, Nbなどを添
加し、さらに加工性に悪影響を及ぼさない元素であるS
i, Mn, Pの添加によって主に高強度化を図り、これに
よって、成形性を向上させた高強度冷延鋼板が提案され
ている。
[0004] Various methods have been proposed to improve the deep drawability, which has tended to deteriorate with increasing strength. For example, in JP-A-63-100158, based on an ultra-low carbon steel with reduced C, in order to improve workability and aging, Ti, Nb and the like, which are carbonitride forming components, are added. S, an element that does not adversely affect processability
A high-strength cold-rolled steel sheet has been proposed in which the strength is mainly increased by adding i, Mn, and P, thereby improving the formability.

【0005】Siは、r値やElなどを劣化させることなく
高強度化を図る上では有効な成分ではあるものの、多量
のSiを含有させると表面特性の劣化が避け難く、めっき
特性が著しく劣化するという問題がある。また、Pは、
特に極低炭素鋼においては、耐2次加工脆性を劣化させ
るという問題があった。さらに、Mnは、その含有量によ
っては、めっき特性を劣化させたり材質を劣化させる等
の不都合が発生するという問題があった。
Although Si is an effective component for increasing the strength without deteriorating the r value or El, if a large amount of Si is contained, deterioration of the surface characteristics is unavoidable, and the plating characteristics are significantly deteriorated. There is a problem of doing. P is
In particular, ultra-low carbon steel has a problem of deteriorating secondary work brittleness. Furthermore, Mn has a problem that, depending on the content of Mn, inconveniences such as deterioration of plating characteristics and deterioration of material occur.

【0006】また、特開平5−339641号公報には、極低
炭素鋼にNbを添加し、さらに高強度化を図るためにSi,
Mn, Pを適量添加した鋼を、フェライト域にて潤滑熱延
を行うことによってr値を向上させた、高強度冷延鋼板
および溶融亜鉛めっき鋼板の製造方法が開示されてい
る。この技術によれば、引張り強さが 400 MPa程度以上
で、しかも高いr値を有する深絞り用高強度鋼板の製造
が可能とはなるものの、熱間圧延時に潤滑圧延を施さな
ければならないため、圧延時のスリップや噛み込み不良
等の問題が発生するおそれがある。また、上述したSi添
加に伴うめっき特性の劣化に関しては、なんら言及され
ておらず、めっき特性に関する記述さえもない。
Further, Japanese Patent Application Laid-Open No. Hei 5-339641 discloses that Nb is added to an ultra-low carbon steel and Si,
A method for producing a high-strength cold-rolled steel sheet and a hot-dip galvanized steel sheet in which r-value is improved by lubricating hot-rolling a steel to which an appropriate amount of Mn and P is added in a ferrite region. According to this technique, although it is possible to produce a high-strength steel sheet for deep drawing having a tensile strength of about 400 MPa or more and a high r-value, lubricating rolling must be performed during hot rolling, There is a possibility that problems such as slippage during rolling and poor biting may occur. Further, there is no mention of the above-mentioned deterioration of plating characteristics due to the addition of Si, and there is no description about plating characteristics.

【0007】一方、合金化溶融亜鉛めっき用の鋼板を高
強度化する手段としては、特開平5−255807号公報に開
示されているように、Siを0.03wt%以下に制限し、強化
成分として主にP, Mnを用いる方法が一般的であった。
しかしながら、多量のPの添加は、溶融亜鉛めっき鋼板
の合金化を遅延させるとともに、耐2次加工脆性が劣化
するという問題があった。また、Mnも、めっき特性への
影響は少ないとはいえ、Siが 0.1wt%以下に制限された
状態では、Mn量が1wt%以上になるとめっき特性が劣化
し始め、多量に含有させると変態点が低下して熱延板が
硬化したり、焼鈍時に再結晶しない等の材質劣化につな
がる不都合が発生するという問題があった。
On the other hand, as means for increasing the strength of a steel sheet for galvannealing, as disclosed in JP-A-5-255807, Si is limited to 0.03 wt% or less, and A method mainly using P and Mn was generally used.
However, there is a problem that addition of a large amount of P delays alloying of a hot-dip galvanized steel sheet and deteriorates secondary work brittleness resistance. Mn also has a small effect on plating characteristics, but when Si is limited to 0.1 wt% or less, plating characteristics begin to deteriorate when the amount of Mn is 1 wt% or more, and transformation is caused when a large amount is contained. There is a problem that the points are lowered and the hot-rolled sheet is hardened, and inconveniences such as not recrystallizing at the time of annealing, which lead to deterioration of the material occur.

【0008】耐2次加工脆性の劣化に関しては、その改
善手段としてBを添加する方法が一般的に知られてお
り、さらに特開平10−17994 号公報には、SおよびNの
積極的な添加により、合金化溶融亜鉛めっき鋼鈑の耐2
次加工脆性を改善する技術が開示されている。しかしな
がら、SおよびN成分はいずれも、スラブ加熱〜熱間圧
延〜巻取り工程において化合物を形成する傾向が見られ
る。例えば、S成分はTiS およびMnSなどの化合物を、
また、N成分はTiN,AlN およびBNなどの化合物をそれぞ
れ形成する傾向がある。
[0008] With respect to the deterioration of the secondary work brittleness resistance, a method of adding B is generally known as a means for improving the brittleness. Further, Japanese Patent Application Laid-Open No. 10-17994 discloses that the addition of S and N is aggressive. The resistance of alloyed hot-dip galvanized steel sheet is 2
A technique for improving the secondary working brittleness is disclosed. However, both the S and N components tend to form compounds during the slab heating to hot rolling to winding steps. For example, the S component includes compounds such as TiS and MnS,
Also, the N component tends to form compounds such as TiN, AlN and BN, respectively.

【0009】このように、鋼中のP、MnおよびB量の調
整だけで、深絞り性、耐2次加工脆性およびめっき特性
を維持しつつ高強度化を図るには自ずと限界があった。
As described above, there is a natural limit in achieving high strength while maintaining the deep drawability, the resistance to secondary working embrittlement, and the plating characteristics only by adjusting the amounts of P, Mn, and B in steel.

【0010】[0010]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、引張り強さが 400 MPa程度
以上で、優れた深絞り性および耐2次加工脆性を有し、
まためっき特性にも優れた、高強度溶融亜鉛めっき鋼板
の有利な製造方法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, has a tensile strength of about 400 MPa or more, has excellent deep drawability and resistance to secondary working brittleness,
It is another object of the present invention to propose an advantageous method for producing a high-strength hot-dip galvanized steel sheet having excellent plating characteristics.

【0011】[0011]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねた結果、強化成分と
してSi, Mn, Pを活用すると共に、炭化物形成元素とし
てNbを添加しかつ耐2次加工脆性向上元素としてMoを添
加した鋼を用い、かような鋼種において、深絞り性とめ
っき特性とを両立させるためには、熱延板焼鈍を黒皮ス
ケールを付着させたままで行うことが極めて有効である
ことの知見を得た。本発明は、上記の知見に立脚するも
のである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have utilized Si, Mn, and P as reinforcing components and added Nb as a carbide-forming element. In order to achieve a balance between deep drawability and plating characteristics in such a steel type, a black scale was attached to the hot-rolled sheet to make it compatible with Mo. It has been found that it is extremely effective to perform the above steps. The present invention is based on the above findings.

【0012】すなわち、本発明の要旨構成は次のとおり
である。 1.C:0.0005〜0.008 mass%、Si:0.1 〜1.5 mass
%、Mn:0.5 〜3.0 mass%、P:0.02〜0.2 mass%、
S:0.02mass%以下、Al:0.005 〜0.20mass%、N:0.
01mass%以下、B:0.0005〜0.008 mass%、Mo:0.05〜
2.0mass %、およびNb:0.001 〜0.2 mass%でかつ、0.
3 ×(C/12)≦Nb/93≦3.0 ×(C/12)を満足する
範囲で含有し、残部は実質的にFeおよび不可避的不純物
の組成になる鋼スラブを、 950〜1300℃で加熱−均熱
後、 650〜1000℃で熱間圧延を終了したのち、 400〜85
0 ℃で巻取り、ついで黒皮スケールが付着したまま 600
〜900 ℃の温度域にて10分以上の焼鈍を施し、その後、
酸洗し、50〜95%の圧下率で冷間圧延したのち、連続溶
融亜鉛めっき設備にて 700〜950 ℃で再結晶焼鈍してか
ら溶融亜鉛めっきを施すことを特徴とする、深絞り性お
よび耐2次加工脆性に優れた高強度溶融亜鉛めっき鋼板
の製造方法。
That is, the gist configuration of the present invention is as follows. 1. C: 0.0005 to 0.008 mass%, Si: 0.1 to 1.5 mass
%, Mn: 0.5 to 3.0 mass%, P: 0.02 to 0.2 mass%,
S: 0.02 mass% or less, Al: 0.005 to 0.20 mass%, N: 0.
01 mass% or less, B: 0.0005 to 0.008 mass%, Mo: 0.05 to
2.0 mass%, Nb: 0.001 to 0.2 mass%, and 0.1 mass%.
A steel slab containing 3 × (C / 12) ≦ Nb / 93 ≦ 3.0 × (C / 12) with the balance being substantially the composition of Fe and unavoidable impurities at 950-1300 ° C. After heating and soaking, finish hot rolling at 650-1000 ° C, then 400-85
Wound at 0 ° C, then 600 scale with black scale attached
Anneal for more than 10 minutes in a temperature range of ~ 900 ° C,
Deep drawability characterized by pickling, cold rolling at a reduction rate of 50 to 95%, then recrystallization annealing at 700 to 950 ° C in a continuous hot dip galvanizing facility and then hot dip galvanizing. And a method for producing a high-strength hot-dip galvanized steel sheet having excellent secondary work brittleness resistance.

【0013】2.上記1において、鋼スラブが、さらに
Sb:0.001 〜0.03mass%を含有する組成になることを特
徴とする、深絞り性および耐2次加工脆性に優れた高強
度溶融亜鉛めっき鋼板の製造方法。
2. In the above item 1, the steel slab further comprises
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness, characterized by having a composition containing Sb: 0.001 to 0.03 mass%.

【0014】3.上記1または2において、鋼スラブ
が、さらにTi:0.002 〜0.05mass%を、Ti/48≦1.5 ×
(N/14+S/32)を満足する範囲において含有する組
成になることを特徴とする、深絞り性および耐2次加工
脆性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
3. In the above 1 or 2, the steel slab further contains Ti: 0.002 to 0.05 mass%, and Ti / 48 ≦ 1.5 ×
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness, characterized in that the composition contains a composition satisfying (N / 14 + S / 32).

【0015】4.上記1、2または3において、鋼スラ
ブが、さらにCu:0.02〜2.0 mass%およびNi:0.02〜2.
0 mass%のうちから選んだ1種または2種を含有する組
成になることを特徴とする、深絞り性および耐2次加工
脆性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
4. In the above 1, 2 or 3, the steel slab further contains 0.02 to 2.0 mass% of Cu and 0.02 to 2.
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness, characterized in that the composition contains one or two selected from 0 mass%.

【0016】[0016]

【発明の実施の形態】以下、本発明の基礎となった研究
結果についてを述べる。表1に示す成分組成を有する3
種類の鋼A〜Cのシートバーを、1250℃に加熱−均熱
後、仕上温度が 900℃となるように3パス圧延を行って
板厚:3.5 mmの熱延板とした。ついで、この黒皮スケー
ルが付着したままの熱延板を、500 〜1000℃の温度域で
l時間焼鈍したのち、酸洗した。その後、80%の圧下率
で冷間圧延したのち、850 ℃、40sの再結晶焼鈍を施
し、ついで 450〜500 ℃の温度域まで急冷してから、Al
を0.13mass%含有する溶融亜鉛めっき浴に浸漬してめっ
きを施し、ついで 450〜550 ℃の温度で合金化処理(め
っき層中のFe含有率:約10mass%)を施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the results of research on which the present invention is based will be described. 3 having the component composition shown in Table 1
The sheet bars of the steels A to C were heated and soaked at 1250 ° C., and then subjected to three-pass rolling so that the finishing temperature was 900 ° C. to obtain a hot-rolled sheet having a thickness of 3.5 mm. Next, the hot-rolled sheet with the black scale attached thereto was annealed for 1 hour in a temperature range of 500 to 1000 ° C., and then pickled. Then, after cold rolling at a rolling reduction of 80%, recrystallization annealing at 850 ° C and 40s was performed, and then quenched to a temperature range of 450 to 500 ° C.
Was immersed in a hot-dip galvanizing bath containing 0.13 mass% to perform plating, and then an alloying treatment was performed at a temperature of 450 to 550 ° C (Fe content in the plating layer: about 10 mass%).

【0017】[0017]

【表1】 [Table 1]

【0018】図1は、r値に及ぼす鋼組成、特にNb成分
と熱延板焼鈍温度の影響について調べた結果を示したも
のであり、鋼AはNb添加鋼、鋼BはNb非添加鋼である。
なお、r値は、rL (圧延方向)、rD (圧延方向に対
し45°)、rC (圧延方向に対し90°)の3方向の平均
値 r値=(rL +2rD +rC )/4 として求めた。
FIG. 1 shows the results obtained by examining the effects of the steel composition, particularly the Nb component and the hot-rolled sheet annealing temperature, on the r value. Steel A is Nb-added steel and steel B is Nb-free steel. It is.
The r value is an average value in three directions of r L (rolling direction), r D (45 ° with respect to the rolling direction), and r C (90 ° with respect to the rolling direction). R value = (r L + 2r D + r C) ) / 4.

【0019】図1から、Nb添加鋼の鋼Aでは、熱延板焼
鈍温度を 600〜900 ℃とすることによって、高いr値が
得られているのがわかる。一方、Nb非添加鋼の鋼Bで
は、熱延板焼鈍温度を変化させても、高いr値を得るこ
とはできなかった。
From FIG. 1, it can be seen that a high r-value is obtained by setting the hot-rolled sheet annealing temperature to 600 to 900 ° C. in Nb-added steel A. On the other hand, in the case of steel B not containing Nb, a high r value could not be obtained even when the hot-rolled sheet annealing temperature was changed.

【0020】次に、鋼組成、特にMo成分が焼鈍後の熱延
板の耐2次加工脆性に及ぼす影響について調べた。図2
は、Mo添加鋼である鋼AとMo非添加鋼である鋼Cとを用
い、これらの耐2次加工脆性の良否を表す因子として知
られている脆性遷移温度(Tcr)を測定し、これらの測
定値を熱延板焼鈍温度に対してプロットしたものであ
る。
Next, the effect of the steel composition, particularly the Mo component, on the resistance to secondary working embrittlement of the hot-rolled sheet after annealing was examined. FIG.
Measured the brittle transition temperature (Tcr), which is known as a factor indicating the quality of secondary working brittleness resistance, using steel A which is a Mo-added steel and steel C which is a Mo-free steel. Is plotted against the hot rolled sheet annealing temperature.

【0021】尚、熱延板の耐2次加工脆性は、焼鈍後の
熱延板より78mmφの試験片を打ち抜いた後、この試験
片を38mmφの球頭ポンチにて絞り抜き、得られたカッ
プを深さ35mmの位置で切断した後、種々の温度(温度
誤差:±1℃)に10分間以上保持した後、試験台に横向
きに置き、このカップに対して重錘(錘or重り)の重量
5kg、落下高さ80cmの落重試験を行い、割れが発生し
ない最低の温度をTcrとして測定し、この測定値から評
価した。耐2次加工脆性の合否判定は、Tcrが-45 ℃以
下のときを合格、-45 ℃超えのときを不合格とした。
The resistance to secondary working brittleness of the hot-rolled sheet was determined by punching a 78 mmφ test piece from the annealed hot-rolled sheet, and then drawing out the test piece with a 38 mmφ ball-head punch to obtain a cup. Was cut at a depth of 35 mm, kept at various temperatures (temperature error: ± 1 ° C) for 10 minutes or more, placed on a test table sideways, and the weight of the cup (weight or weight) A drop weight test with a weight of 5 kg and a drop height of 80 cm was performed, and the lowest temperature at which cracks did not occur was measured as Tcr, and evaluation was made from this measured value. The pass / fail judgment of the resistance to secondary working embrittlement was made when Tcr was -45 ° C or less, and was rejected when Tcr exceeded -45 ° C.

【0022】図2から、Mo添加鋼である鋼Aは、600 〜
900 ℃の熱延板焼鈍温度範囲にわたって耐2次加工脆性
に優れているのがわかる。一方、Mo非添加鋼である鋼C
は、600 ℃の熱延板焼鈍温度を除いて、耐2次加工脆性
が合格レベルにはなかった。
FIG. 2 shows that the steel A, which is the Mo-added steel, is 600-600%.
It can be seen that the secondary work embrittlement resistance is excellent over the hot rolled sheet annealing temperature range of 900 ° C. On the other hand, steel C, which is Mo-free steel
Except for the hot rolled sheet annealing temperature of 600 ° C, the secondary embrittlement resistance was not at an acceptable level.

【0023】ここに、r値および耐2次加工性に及ぼす
鋼組成および熱延板焼鈍の影響については、次のように
考えられる。
Here, the effects of the steel composition and the hot-rolled sheet annealing on the r value and the secondary workability are considered as follows.

【0024】すなわち、r値に関して言えば、本発明鋼
のようにPを含有する場合、Ti添加鋼では、600 ℃以上
の熱延板焼鈍時にTiとPの化合物が形成され、その後の
冷延−焼鈍過程において{111}再結晶集合組織の形
成が阻害されるため、r値は低下する。この点、Nb添加
鋼では、Ti添加鋼に比べてP化合物が形成されにくく、
しかも 600℃以上の高温焼鈍によってNbCが粗大化する
ため、冷延−焼鈍後に{111}再結晶集合組織が強く
発達してr値が向上する。なお、焼鈍温度が 900℃を超
えると、熱延板結晶粒が異常粒成長するため、r値が急
激に低下する。
That is, with respect to the r value, when P is contained as in the steel of the present invention, a compound of Ti and P is formed in a Ti-added steel at the time of hot-rolled sheet annealing at 600 ° C. or more, and then cold-rolled. -The r value decreases because the formation of {111} recrystallized texture is inhibited during the annealing process. In this regard, in Nb-added steel, P compounds are less likely to be formed than in Ti-added steel,
In addition, since NbC is coarsened by high-temperature annealing at 600 ° C. or more, {111} recrystallization texture is strongly developed after cold rolling and annealing, and the r value is improved. If the annealing temperature exceeds 900 ° C., the r-value drops sharply because the hot-rolled sheet crystal grains grow abnormally.

【0025】また、耐2次加工脆性に関して言えば、本
発明鋼のような極低炭素でかつP、BおよびNbを添加し
た鋼の場合、スラブ加熱〜熱間圧延〜巻取り工程におい
て、BNが生成する傾向にあり、さらに引き続き行われ
る熱延板焼鈍工程では、Pの粒界偏析が促進される。そ
の結果、熱延板焼鈍後の鋼鈑においては、粒界脆化要因
であるPの粒界偏析および固溶B量の減少により、耐2
次加工脆性が顕著に低下し、それが起因となり、冷間圧
延の際に鋼鈑が破断し、生産に支障をきたすことがあ
る。さらに、BNは、冷間圧延後の再結晶焼鈍時および
めっき合金化後においても残存するため、合金化溶融亜
鉛めっき鋼鈑においても耐2次加工脆性の低下が生じ
る。
With respect to the resistance to secondary working embrittlement, in the case of a steel having an extremely low carbon content, such as the steel of the present invention, to which P, B, and Nb are added, BN is required in the steps of slab heating, hot rolling, and winding. Is generated, and in the subsequent hot-rolled sheet annealing step, the grain boundary segregation of P is promoted. As a result, in the steel sheet after the hot-rolled sheet annealing, due to the grain boundary segregation of P, which is the cause of grain boundary embrittlement, and the decrease in the amount of solute B, the steel sheet has a resistance of 2%.
The subsequent work brittleness is remarkably reduced, which causes the steel sheet to break during cold rolling, which may hinder production. Further, BN remains even during recrystallization annealing after cold rolling and after plating alloying, so that the secondary work embrittlement resistance also decreases in alloyed hot-dip galvanized steel sheets.

【0026】この点、Mo添加鋼では、耐2次加工脆性を
改善する効果があることが明らかとなった。その理由は
現時点では明らかではないが、PやBの粒界偏析量には
影響を与えないことから、Moには、粒界偏析したPが粒
界を脆化させる作用を軽減する働きがあるものと考えら
れる。
In this regard, it has been clarified that Mo-added steel has an effect of improving the resistance to secondary working brittleness. The reason is not clear at present, but since it does not affect the amount of P and B grain boundary segregation, Mo has a function of reducing the action of P segregated at the grain boundary to embrittle the grain boundary. It is considered something.

【0027】また、めっき特性に関しては、図では特に
示さなかったが、Si含有量が 0.7mass%と高い場合であ
っても、黒皮スケールが付着したままの状態で熱延板焼
鈍を施すことによって製造した本発明鋼は、熱延板焼鈍
温度が高いほど不めっき率は低減し、 600℃以上の高温
焼鈍では、実用上問題のないめっき特性が得られること
が確認された。尚、黒皮スケールが付着したままの状態
で熱延板焼鈍を施すことによってめっき性が改善される
理由は、必ずしも明確に解明されたわけではないが、黒
皮スケールままでの熱延板焼鈍により熱延板の表層部に
酸化物が形成され、この酸化物によってSiの表面濃化が
抑制されるためではないかと考えられる。
Although the plating characteristics are not particularly shown in the figure, even when the Si content is as high as 0.7 mass%, it is necessary to perform the hot-rolled sheet annealing with the black scale remaining attached. It was confirmed that the higher the hot-rolled sheet annealing temperature, the lower the non-plating ratio of the steel of the present invention produced, and that high-temperature annealing at 600 ° C. or higher provided plating properties that had no practical problems. The reason that the plating property is improved by performing the hot-rolled sheet annealing while the black scale is still adhered is not necessarily clarified, but the hot-rolled sheet annealing with the black scale remains as it is. It is considered that an oxide is formed on the surface layer of the hot-rolled sheet, and this oxide suppresses the surface concentration of Si.

【0028】次に、本発明において、鋼素材の成分組成
範囲を前記の範囲に限定した理由について説明する。 C:0.0005〜0.008 mass% C量は、少ないほど深絞り性が向上するので有利である
が、0.008 mass%以下ではさほど悪影響を及ぼさない。
一方、0.0005mass%よりも少なくしても深絞り性のそれ
以上の向上は見られず、製鋼コストの上昇を招くだけな
ので、C量は0.0005〜0.008 mass%の範囲に限定した。
Next, the reason why the composition range of the steel material is limited to the above range in the present invention will be described. C: 0.0005 to 0.008 mass% The smaller the C content, the better the deep drawability is improved. However, if the C content is 0.008 mass% or less, there is no significant adverse effect.
On the other hand, even if it is less than 0.0005 mass%, no further improvement in deep drawability is observed, and only an increase in steelmaking cost is caused. Therefore, the C content is limited to the range of 0.0005 to 0.008 mass%.

【0029】Si:0.1 〜1.5 mass% Siは、深絞り性をあまり劣化させずに高強度化する作用
がある元素であり、所望の強度に応じて必重量添加され
る。しかしながら、Si含有量が 0.1mass%未満ではその
添加効果に乏しく、一方、 1.5mass%を超えると、深絞
り性が劣化するだけでなく、めっき特性も劣化するの
で、Si量は 0.1〜1.5 mass%の範囲に限定した。
Si: 0.1-1.5 mass% Si is an element that has the effect of increasing the strength without significantly deteriorating the deep drawability, and is added in a necessary amount according to the desired strength. However, when the Si content is less than 0.1 mass%, the effect of the addition is poor. On the other hand, when the Si content exceeds 1.5 mass%, not only the deep drawability is deteriorated, but also the plating characteristics are deteriorated. %.

【0030】Mn:0.5 〜3.0 mass% Mnは、鋼を強化する作用がある元素であり、所望の強度
に応じて必要量添加されるが、Mn含有量が 0.5mass%未
満では強度改善効果に乏しく、一方、 3.0mass%を超え
ると深絞り性の劣化を招くので、Mn量は 0.5〜3.0 mass
%の範囲に限定した。
Mn: 0.5 to 3.0 mass% Mn is an element that has the effect of strengthening steel and is added in a necessary amount depending on the desired strength. However, if the Mn content is less than 0.5 mass%, the effect of improving strength is reduced. On the other hand, if the content exceeds 3.0 mass%, the deep drawability is deteriorated.
%.

【0031】P:0.02〜0.2 mass% Pは、深絞り性をあまり劣化させずに高強度化する作用
がある元素であり、所望の強度に応じて必要量添加され
る。しかしながら、P含有量が0.02mass%未満ではその
添加効果に乏しく、一方、 0.2mass%を超えると深絞り
性の劣化を招くので、P量は0.02〜0.2 mass%の範囲に
限定した。
P: 0.02 to 0.2 mass% P is an element that has the effect of increasing the strength without significantly deteriorating the deep drawability, and is added in a necessary amount according to the desired strength. However, if the P content is less than 0.02 mass%, the effect of the addition is poor. On the other hand, if the P content exceeds 0.2 mass%, deep drawability is deteriorated. Therefore, the P content is limited to the range of 0.02 to 0.2 mass%.

【0032】S:0.02mass%以下 S量は、少ないほど深絞り性が向上するので極力低減す
ることが望ましいが、含有量が0.02mass%以下ではさほ
ど悪影響を及ぼさないので、S量は0.02mass%以下に限
定した。
S: 0.02 mass% or less The smaller the amount of S, the better the deep drawability is. Therefore, it is desirable to reduce the amount as much as possible. However, if the content of S is 0.02 mass% or less, the amount of S is not so adversely affected. % Or less.

【0033】Al:0.005 〜0.20mass% Alは、脱酸により、炭窒化物形成元素の歩留りを向上さ
せる有用元素であるが、Al含有量が 0.005mass%に満た
ないとその添加効果に乏しく、一方、0.20mass%を超え
て添加してもより一層の脱酸効果は得られないので、Al
量は 0.005〜0.20mass%の範囲に限定した。
Al: 0.005 to 0.20 mass% Al is a useful element for improving the yield of carbonitride forming elements by deoxidation. However, if the Al content is less than 0.005 mass%, the effect of its addition is poor. On the other hand, even if it is added in excess of 0.20 mass%, a further deoxidizing effect cannot be obtained.
The amount was limited to the range of 0.005 to 0.20 mass%.

【0034】N:0.01mass%以下 N量は、少ないほど深絞り性が向上するので極力低減す
ることが望ましいが、N含有量が0.01mass%以下ではさ
ほど悪影響を及ぼさないので、N量は0.01mass%以下に
限定した。
N: 0.01 mass% or less It is desirable to reduce the N content as much as possible because the smaller the N content, the better the deep drawability is. Therefore, if the N content is 0.01 mass% or less, the N content is not so adversely affected. mass% or less.

【0035】B:0.0005〜0.008 mass% Bは、粒界に偏析することによって、耐2次加工脆性を
改善する効果のある元素である。しかしながら、B含有
量が0.0005mass%未満ではその添加効果に乏しく、一
方、 0.008mass%を超えるとその効果は飽和に達し、む
しろ深絞り性の劣化につながるので、B量は0.0005〜0.
008 mass%の範囲に限定した。
B: 0.0005 to 0.008 mass% B is an element that has the effect of improving the secondary work brittleness resistance by segregating at the grain boundaries. However, when the B content is less than 0.0005 mass%, the effect of the addition is poor. On the other hand, when the B content exceeds 0.008 mass%, the effect reaches saturation and rather leads to deterioration of deep drawability.
Limited to the range of 008 mass%.

【0036】Mo:0.05〜2.0mass % Moは本発明において重要な元素であり、めっき性を劣化
させずに高強度化できる効果を有するとともに、耐2次
加工脆性の改善効果を有する。しかしながら、Mo含有量
が0.05mass%未満だとその添加効果に乏しく、一方、2.
0mass %を超えるとその効果は飽和に達し、むしろ深絞
り性の劣化につながるので、Mo量は0.05〜2.0mass %の
範囲に限定した。
Mo: 0.05 to 2.0 mass% Mo is an important element in the present invention, and has an effect of increasing the strength without deteriorating the plating property and has an effect of improving the resistance to secondary working brittleness. However, if the Mo content is less than 0.05 mass%, the effect of the addition is poor, while 2.
When the content exceeds 0 mass%, the effect reaches saturation, and rather, the deep drawability is deteriorated. Therefore, the Mo amount is limited to the range of 0.05 to 2.0 mass%.

【0037】Nb:0.001 〜0.2 mass%かつ 0.3×(C/
12)≦Nb/93≦3.0 ×(C/12) Nbは、本発明において重要な元素であり、鋼中の固溶C
をNbCとして析出固定して低減し、再結晶焼鈍時に{1
11}再結晶集合組織を発達させて深絞り性を向上させ
る効果がある。しかしながら、Nb含有量が 0.001mass%
に満たないとその添加効果に乏しく、一方、 0.2mass%
を超えると逆に深絞り性を劣化させる。また、Nb量が
0.3×(C/12)より少ないと、鋼中に多量の固溶Cが
残留するため再結晶焼鈍時に{111}再結晶集合組織
が発達せずr値が劣化する。一方、Nb量が 3.0×(C/
12)より多いと、固溶Nbが多量に残留し、熱延板焼鈍時
にNbがPとの化合物を形成してr値を劣化させる。従っ
て、Nb量は 0.001〜0.2 mass%でかつ、0.3 ×(C/1
2)≦Nb/93≦3.0 ×(C/12)を満足する範囲に限定
した。
Nb: 0.001 to 0.2 mass% and 0.3 × (C /
12) ≦ Nb / 93 ≦ 3.0 × (C / 12) Nb is an important element in the present invention.
Is reduced by precipitation and fixation as NbC.
There is an effect that the 11 ° recrystallization texture is developed to improve the deep drawability. However, the Nb content is 0.001mass%
If less, the effect of the addition is poor, while 0.2 mass%
On the contrary, when it exceeds, the deep drawability is deteriorated. Also, the Nb amount
If it is less than 0.3 × (C / 12), a large amount of solute C remains in the steel, so that the {111} recrystallized texture does not develop during recrystallization annealing, and the r value deteriorates. On the other hand, the Nb amount is 3.0 × (C /
If it is larger than 12), a large amount of solid solution Nb remains, and Nb forms a compound with P at the time of hot-rolled sheet annealing to deteriorate the r value. Therefore, the amount of Nb is 0.001 to 0.2 mass% and 0.3 × (C / 1
2) Limited to a range satisfying ≦ Nb / 93 ≦ 3.0 × (C / 12).

【0038】以上、必須成分について説明したが、本発
明では、その他にも必要に応じて、以下の元素を適宜含
有させることができる。
Although the essential components have been described above, the present invention may optionally contain the following elements as required.

【0039】Sb:0.001 〜0.03mass% Sbは、表面に濃化することにより、熱延板焼鈍時の浸窒
を効果的に防止するだけでなく、めっき性の改善にも有
効に寄与する元素である。しかしながら、Sb含有量が0.
001 mass%未満ではその添加効果に乏しく、一方、0.03
mass%を超えて添加してもその効果は飽和に達し、逆に
深絞り性の劣化につながるので、Sbは 0.001〜0.03mass
%の範囲に限定した。
Sb: 0.001 to 0.03 mass% Sb is an element that, by concentrating on the surface, not only effectively prevents nitriding during hot-rolled sheet annealing but also effectively contributes to improvement in plating property. It is. However, the Sb content is 0.
If less than 001 mass%, the effect of the addition is poor.
Even if it is added in excess of mass%, the effect reaches saturation and conversely leads to deterioration of deep drawability, so Sb is 0.001 to 0.03 mass%.
%.

【0040】Ti:0.002 〜0.05mass%かつTi/48≦1.5
×(N/14+S/32) Tiは、鋼中の固溶N, SをTiN, TiSとして析出固定し
て低減し、深絞り性を向上させる有用元素である。しか
しながら、Ti含有量が 0.002mass%未満ではその添加効
果に乏しく、一方、0.05mass%を超えたり、Ti/48>1.
5 ×(N/14+S/32)になると、熱延板焼鈍時にTiと
Pの化合物を形成されるため、冷延−焼鈍時に{11
1}再結晶集合組織の発達が抑制されてr値の低下を招
く。従って、Ti量は0.002 〜0.05mass%でかつTi/48≦
1.5 ×(N/14+S/32)を満足する範囲に限定した。
Ti: 0.002 to 0.05 mass% and Ti / 48 ≦ 1.5
× (N / 14 + S / 32) Ti is a useful element that precipitates and reduces solid solution N and S in steel as TiN and TiS, and improves deep drawability. However, when the Ti content is less than 0.002 mass%, the effect of the addition is poor. On the other hand, when the Ti content exceeds 0.05 mass% or Ti / 48> 1.
At 5 × (N / 14 + S / 32), a compound of Ti and P is formed during annealing of a hot-rolled sheet.
The development of 1} recrystallized texture is suppressed, leading to a decrease in the r value. Therefore, the Ti content is 0.002 to 0.05 mass% and Ti / 48 ≦
The range was limited to satisfy 1.5 × (N / 14 + S / 32).

【0041】Cu:0.02〜2.0 mass%、 Ni :0.02〜2.0
mass% CuおよびNiはいずれも、めっき性を劣化させずに高強度
化できる効果を有する元素である。しかしながら、Cuお
よびNiの含有量が0.02mass%未満では添加の効果がな
く、一方、 2.0mass%を超えて添加すると深絞り性が劣
化するので、いずれも0.02〜2.0mass %の範囲に限定し
た。
Cu: 0.02 to 2.0 mass%, Ni: 0.02 to 2.0
Both mass% Cu and Ni are elements that have the effect of increasing the strength without deteriorating the plating properties. However, if the content of Cu and Ni is less than 0.02 mass%, the effect of the addition is ineffective, and if the content exceeds 2.0 mass%, the deep drawability deteriorates. Therefore, both are limited to the range of 0.02 to 2.0 mass%. .

【0042】次に、本発明の各製造工程について説明す
る。 熱間圧延工程 本発明では、上記組成になる鋼スラブを 950〜1300℃で
加熱−均熱後、 650〜1000℃で熱間圧延を終了したの
ち、 400〜850 ℃で巻取る必要がある。鋼スラブを加熱
−均熱処理する場合、処理温度は低い方が固溶C、Nを
炭窒化物として析出固定させる上で有利であり、スラブ
の加熱−均熱温度が1300℃を超えると、固溶C、Nを炭
窒化物として析出固定させることが困難になるととも
に、熱間圧延時に析出する炭窒化物が非常に微細にな
り、この微細な炭窒化物は、その後に行われる熱延板焼
鈍工程や冷間圧延及び焼鈍工程でも十分には粗大化する
ことができず、この結果、再結晶焼鈍時に{111}再
結晶集合組織の発達を抑制し、r値の低下を招くからで
ある。従って、スラブの加熱−均熱温度(SRT)は13
00℃以下に限定した。尚、より一層加工性を向上させる
ためには、1250℃以下とすることが望ましい。また、加
熱−均熱温度を 950℃よりも低くしても、それ以上の加
工性の改善効果は見られず、むしろ熱間圧延時における
圧延負荷の増大に伴う圧延トラブルの発生が懸念される
ので、加熱−均熱温度の下限は 950℃とした。
Next, each manufacturing process of the present invention will be described. Hot Rolling Step In the present invention, after the steel slab having the above composition is heated and soaked at 950 to 1300 ° C, it is necessary to finish hot rolling at 650 to 1000 ° C and wind it up at 400 to 850 ° C. When heating and soaking a steel slab, a lower treatment temperature is advantageous in depositing and fixing solid solution C and N as carbonitrides. When the heating and soaking temperature of the slab exceeds 1300 ° C., It becomes difficult to precipitate and fix the molten C and N as carbonitrides, and the carbonitrides precipitated during hot rolling become very fine. This is because the coarsening cannot be sufficiently performed even in the annealing step, the cold rolling, and the annealing step, and as a result, during the recrystallization annealing, the development of the {111} recrystallized texture is suppressed, and the r value decreases. . Therefore, the heating-soaking temperature (SRT) of the slab is 13
The temperature was limited to 00 ° C or lower. In order to further improve the workability, the temperature is desirably 1250 ° C. or lower. Further, even if the heating-soaking temperature is lower than 950 ° C., no further improvement in workability is observed, and rather, there is a concern that a rolling trouble may occur due to an increase in the rolling load during hot rolling. Therefore, the lower limit of the heating-soaking temperature was set to 950 ° C.

【0043】また、熱間圧延時の仕上温度(FDT)
は、Ar3変態点以上のγ域(オーステナイト域)または
Ar3変態点以下のα域(フェライト域)でもよいが、仕
上温度があまりに高いと、熱延板の結晶粒が粗大とな
り、深絞り性が劣化する。一方、仕上温度が低すぎる
と、熱間圧延時の圧延負荷の増大につながるので、仕上
温度は 650〜1000℃の範囲に限定した。なお、熱延板の
結晶粒を微細粒化させる目的のためには、仕上温度は80
0 〜1000℃とするのが好ましい。より好適にはAr3変態
点〜1000℃の範囲である。また、熱間圧延によって熱延
板の結晶粒を微細化するためには、熱間圧延時における
トータル圧下率は70%以上とすることが好ましい。
The finishing temperature during hot rolling (FDT)
Is, Ar 3 transformation point or more γ region may be any (austenite region) or Ar 3 transformation point of α region (ferrite region), when the finishing temperature is too high, the crystal grains of the hot rolled sheet becomes coarse, deep drawing The property is deteriorated. On the other hand, if the finishing temperature is too low, the rolling load at the time of hot rolling increases, so the finishing temperature was limited to the range of 650 to 1000 ° C. For the purpose of refining the crystal grains of the hot-rolled sheet, the finishing temperature is 80
It is preferably between 0 and 1000 ° C. More preferably, it is in the range from the Ar 3 transformation point to 1000 ° C. In addition, in order to refine the crystal grains of the hot-rolled sheet by hot rolling, the total draft during hot rolling is preferably 70% or more.

【0044】さらに、熱間圧延後のコイル巻取り温度
(CT)は、高温ほど前述した炭窒化物の粗大化に有利
なだけでなく、黒皮スケールが厚くなるので、黒皮スケ
ールままで熱延板焼鈍を行った時に、熱延板表層部に多
量の酸化物が形成され、Siの表面濃化を防止できるの
で、めっき性の改善に有利である。ここに、巻取り温度
が400 ℃未満ではその効果がなく、一方、 850℃を超え
ると結晶粒が粗大化しすぎ、逆にr値が低下するので、
コイル巻取り温度は 400〜850 ℃の範囲に限定した。
尚、コイル巻取り温度は、より好ましくは600 〜850 ℃
である。また、本発明鋼のスラブは、連続鋳造されたも
のを一旦、Ar3変態点以下まで冷却したものを再加熱し
ても良いし、また、Ar3変態点まで冷却せずにそのまま
加熱あるいは保熱されたものを使用しても良いのはいう
までもない。
Further, the coil winding temperature (CT) after hot rolling is not only advantageous for the above-mentioned carbonitride coarsening as the temperature increases, but also because the black scale is thickened, When the strip annealing is performed, a large amount of oxide is formed on the surface layer portion of the hot-rolled sheet, and the surface concentration of Si can be prevented, which is advantageous for improving the plating property. Here, when the winding temperature is less than 400 ° C., the effect is not obtained. On the other hand, when the winding temperature is more than 850 ° C., the crystal grains become too coarse, and conversely, the r value decreases.
The coil winding temperature was limited to the range of 400-850 ° C.
The coil winding temperature is more preferably 600 to 850 ° C.
It is. Further, the slab of the steel of the present invention may be obtained by cooling a continuously cast product once cooled to the Ar 3 transformation point or lower, or may be heated or maintained without cooling to the Ar 3 transformation point. Needless to say, a heated one may be used.

【0045】熱延板焼鈍工程 この工程は、高いr値を得ると共に、Si含有鋼のめっき
特性を改善する上で極めて重要であり、黒皮スケールを
付着させたまま 600〜900 ℃の温度域にて10分以上焼鈍
する必要がある。すなわち、熱延板酸洗後に焼鈍して
も、熱延板表層部にSiの濃化を抑制する酸化物が形成さ
れないので、めっき特性は改善されないが、この発明で
は、黒皮スケールを付着させたまま焼鈍することによっ
て、熱延板の表層部に酸化物が形成され、この酸化物に
よってSiの表面濃化が抑制される結果、めっき特性が改
善されるのである。また、焼鈍温度が 600℃未満では、
NbCの粗大化が進まないため、r値が向上しない。一
方、900 ℃を超える温度域で焼鈍すると、熱延板が異常
粒成長するため、r値が劣化する。従って、熱延板焼鈍
条件は 600〜900 ℃の範囲に限定した。また、焼鈍時間
は、10分未満だとNbCの粗大化が十分に進まないので、
この発明では、10分以上に限定した。なお、焼鈍雰囲気
は任意でよく、例えば通常の窒素雰囲気または水素雰囲
気にすることができる。
Hot Rolled Sheet Annealing Step This step is extremely important in obtaining a high r value and improving the plating characteristics of the Si-containing steel, and the temperature range of 600 to 900 ° C. with the black scale attached. Need to be annealed for more than 10 minutes. That is, even if annealed after hot-rolled sheet pickling, since the oxide that suppresses the concentration of Si is not formed on the surface layer portion of the hot-rolled sheet, the plating characteristics are not improved. By performing the as-annealing, an oxide is formed on the surface layer of the hot-rolled sheet, and the oxide suppresses the surface concentration of Si, resulting in improved plating characteristics. If the annealing temperature is less than 600 ° C,
Since the NbC does not increase in coarseness, the r value does not improve. On the other hand, when annealing is performed in a temperature range exceeding 900 ° C., abnormal grain growth occurs in the hot-rolled sheet, so that the r-value deteriorates. Therefore, the conditions of hot-rolled sheet annealing were limited to the range of 600 to 900 ° C. Also, if the annealing time is less than 10 minutes, the coarsening of NbC does not proceed sufficiently,
In the present invention, the time is limited to 10 minutes or more. The annealing atmosphere may be arbitrary, and may be, for example, a normal nitrogen atmosphere or a hydrogen atmosphere.

【0046】冷間圧延工程 この工程は、高いr値を得るために必要であり、そのた
めには冷延圧下率を50%以上とする必要がある。すなわ
ち前記圧下率が50%に満たないと、優れた深絞り性が得
られないからである。しかしながら、圧下率があまりに
大きいと逆にr値が低下するので、圧下率の上限は95%
とした。
Cold Rolling Step This step is necessary to obtain a high r value, and for that purpose, the cold rolling reduction must be 50% or more. That is, if the rolling reduction is less than 50%, excellent deep drawability cannot be obtained. However, if the rolling reduction is too large, the r-value will be reduced, so the upper limit of the rolling reduction is 95%.
And

【0047】焼鈍・溶融亜鉛めっき工程 冷間圧延工程を経た冷延鋼板は、再結晶焼鈍を施す必要
がある。この再結晶焼鈍は、通常、連続溶融亜鉛めっき
ラインで行い、焼鈍温度は 700〜950 ℃とする必要があ
る。すなわち、焼鈍温度が 700℃未満では再結晶が完了
しないため、優れた深絞り性が得られず、一方、 950℃
よりも高いとγ域焼鈍になって深絞り性が劣化するから
である。ついで、焼鈍後、 380〜530 ℃の温度域に急冷
するのが好ましい。急冷停止温度が 380℃未満では不め
っきが発生するおそれがあり、一方、 530℃超ではめっ
き表面にむらが発生しやすくなるからである。
Annealing / Hot Dip Galvanizing Step The cold rolled steel sheet that has undergone the cold rolling step needs to be subjected to recrystallization annealing. This recrystallization annealing is usually performed in a continuous hot-dip galvanizing line, and the annealing temperature needs to be 700 to 950 ° C. In other words, if the annealing temperature is lower than 700 ° C, recrystallization is not completed, so that excellent deep drawability cannot be obtained.
If it is higher than this, annealing in the γ region will occur and deep drawability will deteriorate. Then, after annealing, it is preferable to rapidly cool to a temperature range of 380 to 530 ° C. If the quenching stop temperature is less than 380 ° C, non-plating may occur, while if it exceeds 530 ° C, the plating surface tends to be uneven.

【0048】上記熱処理に引き続いて、溶融亜鉛めっき
浴に浸漬して、めっきする。この時、めっき浴のAl濃度
は0.12〜0.145 mass%程度とするのが好ましい。浴中の
Al含有量が0.12mass%未満では合金化が進み過ぎてめっ
き密着性(耐パウダリング性)が劣化する傾向があり、
一方、 0.145mass%超では不めっきが発生しやすくなる
からである。なお、めっきに引き続いて加熱による合金
化を施す場合には、めっき層中のFe含有率が9〜12mass
%となるように実施するのが好ましい。
Subsequent to the heat treatment, plating is performed by dipping in a hot-dip galvanizing bath. At this time, it is preferable that the Al concentration in the plating bath is about 0.12 to 0.145 mass%. In the bath
If the Al content is less than 0.12 mass%, alloying tends to proceed too much and the plating adhesion (powdering resistance) tends to deteriorate,
On the other hand, if it exceeds 0.145 mass%, non-plating tends to occur. When the alloying by heating is performed subsequent to the plating, the Fe content in the plating layer is 9 to 12 mass%.
%.

【0049】亜鉛めっき後の鋼板(具体的には鋼帯)に
は、形状矯正、表面粗度等の調整のために、10%以下の
調質圧延を加えてもよい。また、本発明方法では、亜鉛
めっき後に特殊な処理を施して、化成処理性、溶接性、
プレス成形性および耐食性等の一層の改善を図ることも
できる。尚、上述したところは、この発明の実施形態の
一例を示したにすぎず、請求の範囲において種々の変更
を加えることができる。
The steel sheet (specifically, steel strip) after galvanizing may be subjected to temper rolling of 10% or less for shape correction and adjustment of surface roughness and the like. In addition, in the method of the present invention, a special treatment is performed after galvanizing to form a chemical conversion treatment, weldability,
Further improvement in press formability and corrosion resistance can be achieved. The above description is only an example of the embodiment of the present invention, and various changes can be made within the scope of the claims.

【0050】[0050]

【実施例】表2に示す成分組成になる鋼スラブを、表3
に示す熱延条件にて板厚:3.5 mmの熱延鋼帯にしたの
ち、黒皮スケールが付着したまま、または酸洗後に、バ
ッチ焼鈍を施した。バッチ焼鈍は、表3中のNo.3につい
てのみ水素雰囲気中で行い、それ以外は窒素雰囲気中で
行った。ついで、酸洗後、冷間圧延にて板厚:0.7 mmの
冷延鋼帯としたのち、連続溶融亜鉛めっきラインにおい
て、再結晶焼鈍と合金化溶融亜鉛めっき処理を施した。
なお、めっき浴温は 460〜480 ℃、浸漬時の板温はめっ
き浴温以上、(めっき浴温+10℃)以下とし、また合金
化処理は 480〜540 ℃の温度範囲で15〜28秒間加熱保持
することによって行った。その後、鋼帯に 0.7%の調質
圧延を施した。
EXAMPLE A steel slab having the composition shown in Table 2 was prepared as shown in Table 3.
After a hot-rolled steel strip having a thickness of 3.5 mm was formed under the hot-rolling conditions shown in (1), batch annealing was performed while the black scale was still attached or after pickling. Batch annealing was performed only in No. 3 in Table 3 in a hydrogen atmosphere, and the rest was performed in a nitrogen atmosphere. Then, after pickling, a cold-rolled steel strip having a sheet thickness of 0.7 mm was formed by cold rolling, and then subjected to recrystallization annealing and galvannealing in a continuous hot-dip galvanizing line.
The plating bath temperature is 460 to 480 ° C, the plate temperature during immersion is not less than the plating bath temperature and not more than (plating bath temperature + 10 ° C), and the alloying treatment is heated in the temperature range of 480 to 540 ° C for 15 to 28 seconds. Performed by holding. Thereafter, the steel strip was subjected to a 0.7% temper rolling.

【0051】かくして得られた溶融亜鉛めっき鋼板の材
料特性である降伏応力(YS)、引張り強さ(TS)、
延性(EI)、ランクフォード値(r値)、並びに熱延
板および溶融めっき板のTcrと、めっき特性について調
べた結果を、表3に併記する。なお、引張特性はJIS
5号引張試験片を使用して測定した。また、r値は、15
%引張り予ひずみを与えたのち、3点法にて測定し、L
方向(圧延方向)、D方向(圧延方向に対し45°方向)
およびC方向(圧延方向に対し90°方向)の平均値をr
=(rL 十2rD +rC )/4として求めた。熱延板の
耐2次加工脆性の評価については、前述したのと同様の
方法にて実施および合否判定を行った。加えて、合金化
溶融亜鉛めっき鋼板の耐2次加工脆性の評価について
も、熱延板と同様の方法にて実施および合否判定を行っ
た。但し、試験片は、50mmφの大きさに打ち抜き、2
4.4mmφの球頭ポンチにて絞り抜いた後、得られたカ
ップを深さ21mmの位置で切断して試験に供した。さら
に、めっき特性は、不めっきの発生状況を目視にて判定
した。表3中の「○」は、めっき特性が実用上問題のな
い合格レベルにあることを示しており、また、「×」
は、めっき特性が合格レベルにないことを示す。
The material properties of the hot-dip galvanized steel sheet thus obtained are yield stress (YS), tensile strength (TS),
Table 3 also shows the results of investigations on ductility (EI), Rankford value (r value), Tcr of hot-rolled sheet and hot-dip coated sheet, and plating characteristics. The tensile properties are based on JIS
It measured using the No. 5 tensile test piece. The r value is 15
% Tensile pre-strain and then measure by the three-point method.
Direction (rolling direction), D direction (45 ° direction to rolling direction)
And the average value in the C direction (90 ° direction to the rolling direction) is r
= Calculated as (r L tens 2r D + r C) / 4 . Regarding the evaluation of the secondary work brittleness resistance of the hot-rolled sheet, implementation and pass / fail judgment were performed in the same manner as described above. In addition, the evaluation of the secondary work brittleness resistance of the alloyed hot-dip galvanized steel sheet was performed and the pass / fail judgment was performed in the same manner as in the hot-rolled sheet. However, the test piece was punched out to a size of 50 mmφ, 2
After being squeezed out with a 4.4 mmφ ball-head punch, the obtained cup was cut at a depth of 21 mm and subjected to a test. Furthermore, the plating characteristics were determined by visually observing the occurrence of non-plating. “O” in Table 3 indicates that the plating characteristics were at a pass level at which there was no problem in practical use.
Indicates that the plating characteristics are not at the acceptable level.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】表3に示す評価結果から、本発明に従って
得られた溶融亜鉛めっき鋼板(発明例)はいずれも、引
張り強さが 400 MPa以上と高く、また比較材(比較例)
に比べて、深絞り性は勿論のこと、耐2次加工脆性およ
びめっき特性も優れているのがわかる。
From the evaluation results shown in Table 3, all of the hot-dip galvanized steel sheets (inventive examples) obtained according to the present invention have high tensile strengths of 400 MPa or more and comparative materials (comparative examples).
It can be understood that, in addition to the deep drawability, the secondary work embrittlement resistance and the plating properties are also excellent.

【0055】[0055]

【発明の効果】かくして、本発明に従い、鋼組成を調整
した上で、特に熱延板焼鈍を黒皮スケールを付着させた
まま行うことにより、従来よりも格段に優れた深絞り
性、耐2次加工脆性およびみっき特性を有する高強度溶
融亜鉛めっき鋼板を得ることができる。
As described above, according to the present invention, after the steel composition is adjusted, the hot-rolled sheet annealing is particularly performed while the black scale is adhered, so that the deep drawability, which is much better than the conventional one, and the resistance to 2 It is possible to obtain a high-strength hot-dip galvanized steel sheet having secondary working embrittlement and plating properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Nb添加鋼とNb非添加鋼において、r値と熱延
板焼鈍温度の関係を示した図である。
FIG. 1 is a graph showing the relationship between r value and hot-rolled sheet annealing temperature in Nb-added steel and Nb-free steel.

【図2】 Mo添加鋼とMo非添加鋼において、Tcrと熱延
板焼鈍温度の関係を示した図である。
FIG. 2 is a graph showing the relationship between Tcr and hot-rolled sheet annealing temperature in Mo-added steel and Mo-free steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 哲雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 京野 一章 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 坂田 敬 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA01 EA02 EA04 EA15 EA16 EA17 EA18 EA19 EA23 EA25 EA27 EA28 EB02 EB03 EB09 FA01 FA02 FA03 FC02 FC03 FC04 FE01 FE02 FE03 FF02 FF03 FG03 GA05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tetsuo Shimizu 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Inside the Mizushima Works of Kawasaki Steel Corporation (72) Inventor Takashi Sakata 1-term Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term (reference) 4K037 EA01 EA02 EA04 EA15 EA16 EA17 EA18 EA19 EA23 EA25 EA27 EA28 EB02 EB03 EB09 FA01 FA02 FA03 FC02 FC03 FC04 FE01 FE02 FE03 FF02 FF03 FG03 GA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.0005〜0.008 mass%、 Si:0.1 〜1.5 mass%、 Mn:0.5 〜3.0 mass%、 P:0.02〜0.2 mass%、 S:0.02mass%以下、 Al:0.005 〜0.20mass%、 N:0.01mass%以下、 B:0.0005〜0.008 mass%、 Mo:0.05〜2.0mass %、および Nb:0.001 〜0.2 mass%でかつ、 0.3 ×(C/12)≦Nb/93≦3.0 ×(C/12) を満足する範囲で含有し、残部は実質的にFeおよび不可
避的不純物の組成になる鋼スラブを、 950〜1300℃で加
熱−均熱後、 650〜1000℃で熱間圧延を終了したのち、
400〜850 ℃で巻取り、ついで黒皮スケールが付着した
まま 600〜900 ℃の温度域にて10分以上の焼鈍を施し、
その後、酸洗し、50〜95%の圧下率で冷間圧延したの
ち、連続溶融亜鉛めっき設備にて 700〜950 ℃で再結晶
焼鈍してから溶融亜鉛めっきを施すことを特徴とする、
深絞り性および耐2次加工脆性に優れた高強度溶融亜鉛
めっき鋼板の製造方法。
C: 0.0005 to 0.008 mass%, Si: 0.1 to 1.5 mass%, Mn: 0.5 to 3.0 mass%, P: 0.02 to 0.2 mass%, S: 0.02 mass% or less, Al: 0.005 to 0.20 mass %, N: 0.01 mass% or less, B: 0.0005 to 0.008 mass%, Mo: 0.05 to 2.0 mass%, and Nb: 0.001 to 0.2 mass%, and 0.3 × (C / 12) ≦ Nb / 93 ≦ 3.0 × A steel slab containing (C / 12) within the range that satisfies (C / 12) with the balance being substantially the composition of Fe and unavoidable impurities. After heating and soaking at 950-1300 ° C, hot rolling at 650-1000 ° C After finishing,
Winding at 400-850 ° C, then annealing at a temperature range of 600-900 ° C for 10 minutes or more with the black scale attached,
After that, it is pickled, cold rolled at a reduction rate of 50 to 95%, and then recrystallized and annealed at 700 to 950 ° C. in a continuous hot dip galvanizing facility, followed by hot dip galvanizing.
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness resistance.
【請求項2】 請求項1において、鋼スラブが、さらに
Sb:0.001 〜0.03mass%を含有する組成になることを特
徴とする、深絞り性および耐2次加工脆性に優れた高強
度溶融亜鉛めっき鋼板の製造方法。
2. The steel slab according to claim 1, further comprising:
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness, characterized by having a composition containing Sb: 0.001 to 0.03 mass%.
【請求項3】 請求項1または2において、鋼スラブ
が、さらにTi:0.002 〜0.05mass%を、Ti/48≦1.5 ×
(N/14+S/32)を満足する範囲において含有する組
成になることを特徴とする、深絞り性および耐2次加工
脆性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
3. The steel slab according to claim 1, wherein the steel slab further contains 0.002 to 0.05 mass% of Ti: Ti / 48 ≦ 1.5 ×
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness, characterized in that the composition contains a composition satisfying (N / 14 + S / 32).
【請求項4】 請求項1、2または3において、鋼スラ
ブが、さらにCu:0.02〜2.0 mass%およびNi:0.02〜2.
0 mass%のうちから選んだ1種または2種を含有する組
成になることを特徴とする、深絞り性および耐2次加工
脆性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
4. The steel slab according to claim 1, wherein the steel slab further comprises 0.02 to 2.0 mass% of Cu and 0.02 to 2.
A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and secondary work brittleness, characterized in that the composition contains one or two selected from 0 mass%.
JP2000348971A 2000-11-16 2000-11-16 Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance Pending JP2002155317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000348971A JP2002155317A (en) 2000-11-16 2000-11-16 Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000348971A JP2002155317A (en) 2000-11-16 2000-11-16 Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance

Publications (1)

Publication Number Publication Date
JP2002155317A true JP2002155317A (en) 2002-05-31

Family

ID=18822452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000348971A Pending JP2002155317A (en) 2000-11-16 2000-11-16 Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance

Country Status (1)

Country Link
JP (1) JP2002155317A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024114A1 (en) 2005-08-25 2007-03-01 Posco Steel sheet for galvanizing with excellent workability, and method for manufacturing the same
KR100711475B1 (en) * 2005-12-26 2007-04-24 주식회사 포스코 Method for manufacturing high strength steel strips with superior formability and excellent coatability
KR100940664B1 (en) * 2002-11-25 2010-02-05 주식회사 포스코 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property
KR101156697B1 (en) * 2009-06-11 2012-06-14 주식회사 포스코 Ferritic steel sheet and method for manufacturing the same
US9109273B2 (en) 2008-05-20 2015-08-18 Posco High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
US9194030B2 (en) 2008-05-19 2015-11-24 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
WO2022191009A1 (en) * 2021-03-08 2022-09-15 株式会社神戸製鋼所 Steel sheet for hot-dip galvanizing, hot-dip galvanized steel sheet, and alloyed hot-dip galvannealed steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940664B1 (en) * 2002-11-25 2010-02-05 주식회사 포스코 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property
WO2007024114A1 (en) 2005-08-25 2007-03-01 Posco Steel sheet for galvanizing with excellent workability, and method for manufacturing the same
KR100711475B1 (en) * 2005-12-26 2007-04-24 주식회사 포스코 Method for manufacturing high strength steel strips with superior formability and excellent coatability
US8221564B2 (en) 2005-12-26 2012-07-17 Posco Method for manufacturing high strength steel strips with superior formability and excellent coatability
US9194030B2 (en) 2008-05-19 2015-11-24 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
US9598753B2 (en) 2008-05-19 2017-03-21 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
US9109273B2 (en) 2008-05-20 2015-08-18 Posco High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
KR101156697B1 (en) * 2009-06-11 2012-06-14 주식회사 포스코 Ferritic steel sheet and method for manufacturing the same
WO2022191009A1 (en) * 2021-03-08 2022-09-15 株式会社神戸製鋼所 Steel sheet for hot-dip galvanizing, hot-dip galvanized steel sheet, and alloyed hot-dip galvannealed steel sheet

Similar Documents

Publication Publication Date Title
US7879160B2 (en) Cold rolled dual-phase steel sheet
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
WO2013118679A1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
CN116694886A (en) Method for manufacturing thin steel sheet and method for manufacturing plated steel sheet
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2016157258A1 (en) High-strength steel sheet and production method therefor
JP2002155317A (en) Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
WO2021020439A1 (en) High-strength steel sheet, high-strength member, and methods respectively for producing these products
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JP2002226937A (en) Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same
KR100308003B1 (en) High Strength Alloy Hot Dip Galvanized Steel Sheet
JP3932737B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP2004256893A (en) High strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP3475560B2 (en) High tensile alloyed hot-dip galvanized steel sheet excellent in plating characteristics and secondary work brittleness resistance and method for producing the same
US20240026511A1 (en) High-strength galvannealed steel sheet having excellent powdering resistance and manufacturing method therefor
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
US20240043952A1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing same
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JPH06322441A (en) Production of high strength steel plate having baking hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Effective date: 20091210

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427