KR20040043485A - In plane switching mode liquid crystal display device - Google Patents

In plane switching mode liquid crystal display device Download PDF

Info

Publication number
KR20040043485A
KR20040043485A KR1020020071742A KR20020071742A KR20040043485A KR 20040043485 A KR20040043485 A KR 20040043485A KR 1020020071742 A KR1020020071742 A KR 1020020071742A KR 20020071742 A KR20020071742 A KR 20020071742A KR 20040043485 A KR20040043485 A KR 20040043485A
Authority
KR
South Korea
Prior art keywords
liquid crystal
electric field
crystal display
transverse electric
display device
Prior art date
Application number
KR1020020071742A
Other languages
Korean (ko)
Other versions
KR100899627B1 (en
Inventor
백흠일
정진열
김기홍
Original Assignee
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지.필립스 엘시디 주식회사 filed Critical 엘지.필립스 엘시디 주식회사
Priority to KR1020020071742A priority Critical patent/KR100899627B1/en
Publication of KR20040043485A publication Critical patent/KR20040043485A/en
Application granted granted Critical
Publication of KR100899627B1 publication Critical patent/KR100899627B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE: An in-plane switching mode liquid crystal display is provided to arrange a common electrode and a pixel electrode symmetrically to improve a viewing angle. CONSTITUTION: An in-plane switching mode liquid crystal display includes the first and second pixels(100a,100b) defined by gate lines(101) and data lines(103). The data lines are arranged zigzag. The running direction of the data line of the first pixel and the running direction of the data line of the second pixel are symmetrical. Thin film transistors(115a,115b) are respectively formed in the first and second pixels. The thin film transistors respectively include gate electrodes(116a,116b) extended from the gate lines, semiconductor layers(117a,117b) formed on the gate electrodes, source electrodes(118a,118b) and drain electrodes(119a,119b), which are extended from the data lines and arranged on the semiconductor layers. The first and second common electrodes(105a,105b) and the first and second pixel electrodes(107a,107b) are respectively arranged in the first and pixels. The running direction of the first common electrode and pixel electrode and the running direction of the second common electrode and pixel electrode are symmetrical.

Description

횡전계모드 액정표시소자{IN PLANE SWITCHING MODE LIQUID CRYSTAL DISPLAY DEVICE}Transverse electric field mode liquid crystal display device {IN PLANE SWITCHING MODE LIQUID CRYSTAL DISPLAY DEVICE}

본 발명은 횡전계모드 액정표시소자에 관한 것으로, 특히 서로 인접하는 화소의 데이터라인과 공통전극 및 화소전극의 방향을 게이트라인을 중심으로 대칭되게 배치함으로써 시야각특성을 향상시키고 개구율을 증가시킬 수 있는 횡전계모드 액정표시소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transverse electric field mode liquid crystal display device, and in particular, by symmetrically arranging the direction of the data line, the common electrode, and the pixel electrode of adjacent pixels with respect to the gate line, the viewing angle characteristic can be improved and the aperture ratio can be increased. A transverse electric field mode liquid crystal display device.

근래, 핸드폰(Mobile Phone), PDA, 노트북컴퓨터와 같은 각종 휴대용 전자기기가 발전함에 따라 이에 적용할 수 있는 경박단소용의 평판표시장치(Flat Panel Display Device)에 대한 요구가 점차 증대되고 있다. 이러한 평판표시장치로는 LCD(Liquid Crystal Display), PDP(Plasma Display Panel), FED(Field Emission Display), VFD(Vacuum Fluorescent Display) 등이 활발히 연구되고 있지만, 양산화 기술, 구동수단의 용이성, 고화질의 구현이라는 이유로 인해 현재에는 액정표시소자(LCD)가 각광을 받고 있다.Recently, with the development of various portable electronic devices such as mobile phones, PDAs, and notebook computers, there is a growing demand for flat panel display devices for light and thin applications. Such flat panel displays are being actively researched, such as LCD (Liquid Crystal Display), PDP (Plasma Display Panel), FED (Field Emission Display), VFD (Vacuum Fluorescent Display), but mass production technology, ease of driving means, Liquid crystal display devices (LCDs) are in the spotlight for reasons of implementation.

이러한 액정표시소자는 액정분자의 배열에 따라 다양한 표시모드가 존재하지만, 현재에는 흑백표시가 용이하고 응답속도가 빠르며 구동전압이 낮다는 장점때문에 주로 TN모드의 액정표시소자가 사용되고 있다. 이러한 TN모드 액정표시소자에서는 기판과 수평하게 배향된 액정분자가 전압이 인가될 때 기판과 거의 수직으로 배향된다. 따라서, 액정분자의 굴절율 이방성(refractive anisotropy)에 의해 전압의 인가시 시야각이 좁아진다는 문제가 있었다.Such liquid crystal display devices have various display modes according to the arrangement of liquid crystal molecules. However, TN mode liquid crystal display devices are mainly used because of the advantages of easy monochrome display, fast response speed, and low driving voltage. In such a TN mode liquid crystal display device, liquid crystal molecules aligned horizontally with the substrate are almost perpendicular to the substrate when a voltage is applied. Therefore, there is a problem that the viewing angle is narrowed upon application of voltage due to the refractive anisotropy of the liquid crystal molecules.

이러한 시야각문제를 해결하기 위해, 근래 광시야각특성(wide viewing angle characteristic)을 갖는 각종 모드의 액정표시소자가 제안되고 있지만, 그중에서도 횡전계모드(In Plane Switching Mode)의 액정표시소자가 실제 양산에 적용되어 생산되고 있다. 상기 IPS모드 액정표시소자는 전압을 인가했을 때 평면상의 횡전계를 형성하여 액정분자를 평면상으로 배향함으로써 시야각특성을 향상시킨 것으로, 도 1 및 도 2에 그 기본적인 개념이 도시되어 있다.In order to solve this viewing angle problem, liquid crystal display devices of various modes having wide viewing angle characteristics have recently been proposed, but among them, the liquid crystal display device of the lateral field mode (In Plane Switching Mode) is applied to actual production. It is produced. The IPS mode liquid crystal display device improves the viewing angle characteristic by forming a planar transverse electric field when a voltage is applied to align the liquid crystal molecules in a planar manner, and the basic concept is illustrated in FIGS. 1 and 2.

도 1 및 도 2에 도시된 바와 같이, 종래 횡전계모드 액정표시소자에서는 러빙방향(θR)을 기판에 형성된 게이트라인의 길이방향(0°)에 대하여 90°<θR<180°로 하여 액정층(30)을 소정의 방향으로 배향하고, 제1기판(10)에 부착된 편광판(40)의 편광투과축방향(θPL1)을 게이트배선의 길이방향에 대하여 0°<θPL1<90°로, 제2기판(20)에 부착된 검광판(50)의 편광투과축방향을 90°<θPL2<180°로 한다. 따라서, 전압이 인가되지 않는 경우에 도 1(a) 및 도 1(b)에 도시된 바와 같이, 액정분자(32)는 러빙방향(θR)을 따라 배향된다.1 and 2, in the conventional transverse electric field mode liquid crystal display device, the rubbing direction θ R is set to 90 ° <θ R <180 ° with respect to the longitudinal direction (0 °) of the gate line formed on the substrate. The liquid crystal layer 30 is aligned in a predetermined direction, and the polarization transmission axis direction θ PL1 of the polarizing plate 40 attached to the first substrate 10 is 0 ° <θ PL1 <90 with respect to the longitudinal direction of the gate wiring. In degrees, the polarization transmission axis direction of the analyzer 50 attached to the second substrate 20 is set to 90 ° <θ PL2 <180 °. Therefore, when no voltage is applied, as shown in FIGS. 1A and 1B, the liquid crystal molecules 32 are aligned along the rubbing direction θ R.

그런데, 상기와 같은 종래의 횡전계방식 액정표시장치에서는 시야각방향에 따라 색상이 변하는 문제가 있었다. 도 1(c)에 나타낸바와 같이, 제1기판(10) 근처의 액정분자(32a)는 횡전계(34)에 의해 게이트배선의 길이방향과 평행하게 배향되며 제2기판(20) 근처의 액정분자(32b)는 게이트배선의 길이방향에 대하여 90°보다 크고 180°보다 작은 각도로 배향되어 트위스트되어 있으므로, 제1(d)도에 나타낸 바와 같이 X,Y의 시야각방향에서 각각 파란색(BLUE)과 노란색(YELLOW)으로 시야방향에 따라 색변환이 발생하여 화질이 저하된다.However, in the conventional transverse electric field type liquid crystal display device as described above, there is a problem that the color changes according to the viewing angle direction. As shown in FIG. 1C, the liquid crystal molecules 32a near the first substrate 10 are oriented parallel to the longitudinal direction of the gate wiring by the transverse electric field 34 and the liquid crystals near the second substrate 20. Since the molecules 32b are twisted by being oriented and twisted at an angle greater than 90 ° and smaller than 180 ° with respect to the longitudinal direction of the gate wiring, as shown in FIG. 1 (d), each of the molecules blue is blue in the viewing angle directions of X and Y. Color change occurs depending on the direction of view as yellow and yellow (YELLOW), deteriorating the image quality.

상기와 같은 문제를 해결하기 위해, 도 3에 도시된 바와 같은 구조의 IPS모드 액정표시소자가 제안되고 있다(한국특허출원 제1996-23115호). 도면에 도시된 바와 같이, 이 구조의 IPS모드 액정표시소자는 게이트라인(1)과 데이터라인(3)에 의해 정의되는 화소가 2개의 도메인(domain)으로 분할되어 있다. 즉, 화소의 중앙에는 화소전극(7)이 접속되는 화소전극라인(8) 및 공통전극(5)이 접속되는 공통라인(6)이 배치되어 있는데, 상기 화소전극라인(8)과 공통라인(6)을 기준으로 화소가 2개의 도메인(I,II)으로 분할되어 있다.In order to solve the above problems, an IPS mode liquid crystal display device having a structure as shown in FIG. 3 has been proposed (Korean Patent Application No. 1996-23115). As shown in the figure, in the IPS mode liquid crystal display device of this structure, pixels defined by the gate line 1 and the data line 3 are divided into two domains. That is, the pixel electrode line 8 to which the pixel electrode 7 is connected and the common line 6 to which the common electrode 5 are connected are disposed at the center of the pixel, and the pixel electrode line 8 and the common line ( Based on 6), the pixel is divided into two domains I and II.

상기 화소내의 게이트라인(1)과 데이터라인(3)이 교차하는 영역에는 게이트전극(16), 반도체층(17), 소스전극(18) 및 드레인전극(19)으로 이루어진 박막트랜지스터(15)가 배치되어, 외부로부터 입력되는 신호를 화소전극(7)에 인가하며, 상기 신호가 인가됨에 따라 액정층에는 횡전계가 생성되는 것이다.The thin film transistor 15 including the gate electrode 16, the semiconductor layer 17, the source electrode 18, and the drain electrode 19 is formed in an area where the gate line 1 and the data line 3 intersect in the pixel. In this case, a signal input from the outside is applied to the pixel electrode 7, and a transverse electric field is generated in the liquid crystal layer as the signal is applied.

상기 구조의 IPS모드 액정표시소자에서 러빙방향(θR)은 데이터라인(3)을 따라 형성되며, 화소의 제1도메인(I)의 공통전극(5)과 화소전극(7)의 연장방향과 제2도메인(II)의 공통전극(5)과 화소전극(7)의 연장방향이 다르다. 특히, 공통전극(5)과 화소전극(7)은 게이트라인(1)에 대하여 비스듬히 형성되어 있으며, 제1도메인(I)과 제2도메인(II)의 공통전극(5) 및 화소전극(7)은 공통라인(6)을 중심으로 대칭된다. 따라서, 상기 제1도메인(I)과 제2도메인(II)에서 색변환이 서로 보상되어 실제 사용자의 눈에는 색변환이 발생하지 않는 것처럼 보이게 된다.In the IPS mode liquid crystal display device having the above structure, the rubbing direction θ R is formed along the data line 3, and the rubbing direction θ R is formed along the extension direction of the common electrode 5 and the pixel electrode 7 of the first domain I of the pixel. The extension direction of the common electrode 5 and the pixel electrode 7 of the second domain II is different. In particular, the common electrode 5 and the pixel electrode 7 are formed obliquely with respect to the gate line 1, and the common electrode 5 and the pixel electrode 7 of the first domain I and the second domain II are inclined. ) Is symmetric about the common line 6. Therefore, the color conversion is compensated with each other in the first domain I and the second domain II, so that the color conversion does not appear in the eyes of the actual user.

그러나, 상기와 같은 구조의 IPS모드 액정표시소자에서도 다음과 같은 문제가 존재한다. 즉, 도 3에 도시된 바와 같이, 데이터라인(3)은 게이트라인(1)과 수직인데 반해 공통전극(5)과 화소전극(7)은 게이트라인(1)과 비스듬히 형성되어 있다. 따라서, 각 도메인에 데이터라인(3)과 화소전극(7) 사이의 공간(a,b,c,d)이 남게 되는데, 이러한 공간(a,b,c,d)은 전압의 인가시 횡전계가 생성되지 않는 사영역(dead area)으로 액정분자가 구동하지 않는 영역이다. 따라서, 상기한 공간은 IPS모드 액정표시소자의 개구율을 저하시키는 주요한 원인이 된다.However, the following problems also exist in the IPS mode liquid crystal display device having the above structure. That is, as shown in FIG. 3, the data line 3 is perpendicular to the gate line 1, whereas the common electrode 5 and the pixel electrode 7 are formed obliquely with the gate line 1. Therefore, spaces a, b, c, and d between the data line 3 and the pixel electrode 7 remain in each domain, and the spaces a, b, c, and d are transverse electric fields when voltage is applied. Is a dead area where no liquid crystal molecules are driven. Therefore, the above space is a major cause of lowering the aperture ratio of the IPS mode liquid crystal display device.

본 발명은 상기한 점을 감안하여 이루어진 것으로, 인접하는 화소내의 공통전극과 화소전극을 각각 게이트라인을 중심으로 대칭으로 배열함으로써 시야각특성을 향상시킨 횡전계모드 액정표시소자를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the foregoing, and provides a transverse electric field mode liquid crystal display device having improved viewing angle characteristics by symmetrically arranging common and pixel electrodes in adjacent pixels with respect to gate lines, respectively.

본 발명의 다른 목적은 데이터라인을 공통전극 및 화소전극과 평행하게 배열함으로써 횡전계가 인가되지 않는 사영역을 제거하여 개구율을 향상시킬 수 있는 횡전계모드 액정표시소자를 제공하는 것이다.Another object of the present invention is to provide a transverse electric field mode liquid crystal display device capable of improving an aperture ratio by removing a dead area where a transverse electric field is not applied by arranging data lines in parallel with a common electrode and a pixel electrode.

상기한 목적을 달성하기 위해, 본 발명에 따른 횡전계모드 액정표시소자에서는 게이트라인과, 상기 게이트라인과 θDa의 각도로 배열되는 데이터라인과, 상기 데이터라인과 평행하게 배열되어 횡전계를 형성하는 적어도 한쌍의 전극을 포함하는 복수의 제1화소와, 상기 제1화소와 인접하며, 게이트라인과, 상기 게이트라인과 θDb의 각도로 배열되는 데이터라인과, 상기 데이터라인과 평행하게 배열되어 횡전계를 형성하는 적어도 한쌍의 전극을 포함하는 복수의 제2화소로 구성된다.In order to achieve the above object, in the transverse electric field mode liquid crystal display according to the present invention, a gate line, a data line arranged at an angle of θ Da with the gate line, and a transverse electric field are formed in parallel with the data line. A plurality of first pixels including at least one pair of electrodes, adjacent to the first pixels, a gate line, a data line arranged at an angle of θ Db with the gate line, and arranged in parallel with the data line It is composed of a plurality of second pixels including at least a pair of electrodes forming a transverse electric field.

상기 제1화소의 데이터라인과 제2화소의 데이터라인은 게이트라인을 중심으로 대칭되며, 상기 제1화소의 데이터라인은 게이트라인과는 약 70°∼80°로 배열된다.The data line of the first pixel and the data line of the second pixel are symmetric about the gate line, and the data line of the first pixel is arranged at about 70 ° to 80 ° with the gate line.

상기 제1화소 및 제2화소의 배향방향(θR)은 θR=90°이며, 전압의 인가시 상기 제1화소의 액정분자와 제2화소의 액정분자는 게이트라인에 대하여 대칭으로 배향하게 되어 시야각특성이 향상된다.The orientation direction θ R of the first and second pixels is θ R = 90 °, and the liquid crystal molecules of the first pixel and the liquid crystal molecules of the second pixel are symmetrically aligned with respect to the gate line when a voltage is applied. As a result, the viewing angle characteristic is improved.

데이터라인은 공통전극 및 화소전극과 평행하게 배열되므로, 상기 전극과 데이터라인 사이에는 사영역이 존재하지 않게 되고, 결국 개구율 저하를 방지할 수 있게 된다.Since the data line is arranged in parallel with the common electrode and the pixel electrode, there is no dead area between the electrode and the data line, thereby reducing the aperture ratio.

도 1(a)∼도 1(d)는 종래 IPS모드 액정표시소자의 기본적인 구동방법을 나타내는 도면.1 (a) to 1 (d) show a basic driving method of a conventional IPS mode liquid crystal display device.

도 2는 종래 IPS모드 액정표시소자의 광학축방향을 나타내는 도면.2 is a view showing an optical axis direction of a conventional IPS mode liquid crystal display device.

도 3은 종래의 2-도메인 IPS모드 액정표시소자의 구조를 나타내는 평면도.3 is a plan view showing the structure of a conventional two-domain IPS mode liquid crystal display device.

도 4는 본 발명에 따른 IPS모드 액정표시소자의 구조를 나타내는 평면도.4 is a plan view showing the structure of an IPS mode liquid crystal display device according to the present invention;

도 5는 도 4의 I-I'선 단면도.5 is a cross-sectional view taken along line II ′ of FIG. 4.

도 6은 본 발명에 따른 IPS모드 액정표시소자의 광학축방향을 나타내는 도면.6 is a view showing an optical axis direction of an IPS mode liquid crystal display device according to the present invention;

도 7(a)∼도 7(d)는 본 발명에 따른 IPS모드 액정표시소자의 기본적인 구동방법을 나타내는 도면.7 (a) to 7 (d) show a basic driving method of the IPS mode liquid crystal display device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

101 : 게이트라인 103 : 데이터라인101: gate line 103: data line

105 : 공통전극 106 : 공통라인105: common electrode 106: common line

107 : 화소전극 108 : 화소전극라인107: pixel electrode 108: pixel electrode line

110,120 : 기판 112 : 게이트절연층110,120: substrate 112: gate insulating layer

114 : 보호층 115 : 박막트랜지스터114: protective layer 115: thin film transistor

116 : 게이트전극 117 : 반도체층116: gate electrode 117: semiconductor layer

118 : 소스전극 119 : 드레인전극118: source electrode 119: drain electrode

130 : 액정층 132,133 : 액정분자130: liquid crystal layer 132,133: liquid crystal molecules

140 : 편광판 150 : 검광판140: polarizing plate 150: detector plate

본 발명에서는 시야각특성이 향상됨과 동시에 개구율이 증가한 IPS모드 액정표시소자를 제공한다. 시야각특성의 향상은 인접하는 화소에 형성되는 공통전극과 화소전극을 게이트라인에 대하여 비스듬히 대칭되게 형성하여 색변환을 보상함으로써 실현하며, 개구율의 증가는 데이터라인을 상기 공통전극과 화소전극과 평행하게(즉, 게이트전극과 비스듬한 각도로) 형성하여 횡전계가 형성되지 않는 사영역을 제거함으로써 실현할 수 있게 된다.The present invention provides an IPS mode liquid crystal display device having an improved viewing angle characteristic and an increased aperture ratio. The improvement of the viewing angle characteristic is realized by compensating for color conversion by forming the common electrode and the pixel electrode formed in adjacent pixels at an angle symmetrically with respect to the gate line, and the increase of the aperture ratio makes the data line parallel to the common electrode and the pixel electrode. This can be achieved by removing the dead region where the transverse electric field is not formed by forming (that is, at an oblique angle with the gate electrode).

다시 말해서, 화소를 데이터라인 방향을 따라 지그재그형태로 배열함으로써 인접하는 화소 사이의 색변환을 보상하고 개구율 저하를 방지하는 것이다.In other words, by arranging the pixels in a zigzag form along the data line direction, color conversion between adjacent pixels is compensated and the aperture ratio is prevented from being lowered.

상기와 같이 화소를 구성함에 따라 본 발명의 IPS모드 액정표시소자에서는 인접하는 2개의 화소가 시야각을 보상해주는 2개의 도메인과 같은 역할을 한다.As the pixel is configured as described above, in the IPS mode LCD of the present invention, two adjacent pixels serve as two domains for compensating a viewing angle.

이하, 첨부한 도면을 참조하여 본 발명에 따른 IPS모드 액정표시소자에 대하여 상세히 설명한다.Hereinafter, an IPS mode liquid crystal display device according to the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명에 따른 IPS모드 액정표시소자의 구조를 나타내는 평면도이고 도 5는 도 4의 I-I'선 단면도이며, 도 6은 광학축방향을 나타내는 도면이다. 도면에서는 서로 인접하는 2개의 화소(100a,100b)만이 도시되어 있다. 실제 IPS모드 액정표시소자는 상기와 같은 화소가 복수개 형성되어 있지만, 인접하는 2개의 화소만을 도시함으로써 본 발명의 특징을 명확히 표시할 수 있을 것이다.4 is a plan view showing the structure of the IPS mode liquid crystal display device according to the present invention, FIG. 5 is a cross-sectional view taken along line II ′ of FIG. 4, and FIG. 6 is a view showing an optical axis direction. In the drawing, only two pixels 100a and 100b adjacent to each other are shown. In the actual IPS mode liquid crystal display, a plurality of pixels as described above are formed. However, only two adjacent pixels may be shown to clearly display the features of the present invention.

도면에 도시된 바와 같이, 화소(100a,100b)는 게이트라인(101)과 데이터라인(103)에 의해 정의되며, 데이터라인(103)은 전체적으로 지그재그형으로 배치된다. 즉, 제1화소(100a)의 데이터라인(103)의 연장방향(θDa)은 게이트라인(101)의 연장방향(θG=0°)에 대하여 0°<θDa<90°(바람직하게는 θDa=70∼80°) 로 되고 제2화소(100b)의 데이터라인(103)의 연장방향(θDb)은 270°<θDb<360°(즉, -90°<θD<0°, 바람직하게는 θDb=-80∼-70°)로 된다. 이때, 상기 제1화소(100a)의 데이터라인(103)의 연장방향(θDa)과 제2화소(100b)의 데이터라인(103)의 연장방향(θDb)은 게이트라인(101)을 중심으로 서로 대칭된다(θDa=-θDb). 상기 각 화소에는 박막트랜지스터(115a,115b)가 형성되어 있다. 박막트랜지스터(115a,115b)는 게이트라인(101)으로부터 연장된 게이트전극(116a,116b)과, 상기 게이트전극(116a,116b) 위에 형성된 반도체층(117a,117b)과, 상기 데이터라인(103)으로부터 연장되어 반도체층(117a,117b) 위에 배치되는 소스전극(118a,118b) 및 드레인전극(119a,119b)으로 구성된다.As shown in the figure, the pixels 100a and 100b are defined by the gate line 101 and the data line 103, and the data lines 103 are disposed in a zigzag shape as a whole. That is, the extension direction θ Da of the data line 103 of the first pixel 100a is 0 ° <θ Da <90 ° (preferably with respect to the extension direction θ G = 0 °) of the gate line 101. Is θ Da = 70 to 80 ° and the extension direction θ Db of the data line 103 of the second pixel 100b is 270 ° <θ Db <360 ° (ie, −90 ° <θ D <0). °, preferably θ Db = -80 to -70 °). In this case, the extension direction θ Da of the data line 103 of the first pixel 100a and the extension direction θ Db of the data line 103 of the second pixel 100b are centered on the gate line 101. Symmetric to each other (θ Da = −θ Db ). Thin film transistors 115a and 115b are formed in each pixel. The thin film transistors 115a and 115b may include gate electrodes 116a and 116b extending from the gate line 101, semiconductor layers 117a and 117b formed on the gate electrodes 116a and 116b, and the data line 103. And source electrodes 118a and 118b and drain electrodes 119a and 119b extending from the semiconductor layers 117a and 117b.

한편, 제1 및 제2화소(100a,100b)내에는 각각 공통전극(105a,105b)과 화소전극(107a,107b)이 배치되어 있다. 제1화소(100a)내에서의 공통전극(105a)과 화소전극(107a)의 연장방향(θELa)은 0°<θELa<90°이고 제2화소(100b)내에서의 공통전극(105b) 및 화소전극(107b)의 연장방향(θELb)은 -90°<θELb<0°이다. 이때에도, 상기 공통전극(105a,105b)과 화소전극(107a,107b)의 연장방향은 게이트라인(101)을 중심으로 제1화소(100a)와 제2화소(100b)에서 서로 대칭된다(θELa=-θELb).On the other hand, common electrodes 105a and 105b and pixel electrodes 107a and 107b are disposed in the first and second pixels 100a and 100b, respectively. The extending direction θ ELa of the common electrode 105a and the pixel electrode 107a in the first pixel 100a is 0 ° <θ ELa <90 ° and the common electrode 105b in the second pixel 100b. ) And the extending direction θ ELb of the pixel electrode 107b is −90 ° <θ ELb <0 °. In this case, the extension directions of the common electrodes 105a and 105b and the pixel electrodes 107a and 107b are symmetrical with each other in the first pixel 100a and the second pixel 100b around the gate line 101 (θ). ELa = -θ ELb).

또한, 데이터라인(103)은 공통전극(105a,105b) 및 화소전극(107a,107b)과 실질적으로 평행하게 배열된다. 즉, 제1화소(100a)의 데이터라인(103) 연장방향(θDa)은 제1화소(100a)의 공통전극(105a) 및 화소전극(107a)의 연장방향(θELa)과 동일하고(θDaELa), 제2화소(100b)의 데이터라인(103) 연장방향(θDb)은 제2화소(100b)의 공통전극(105b) 및 화소전극(107b)의 연장방향(θELb)과 동일하다(θDbELb).In addition, the data lines 103 are arranged substantially parallel to the common electrodes 105a and 105b and the pixel electrodes 107a and 107b. That is, the extending direction θ Da of the data line 103 of the first pixel 100a is the same as the extending direction θ ELa of the common electrode 105a and the pixel electrode 107a of the first pixel 100a ( θ Da = θ ELa , and the extending direction θ Db of the data line 103 of the second pixel 100b is the extending direction θ ELb of the common electrode 105b and the pixel electrode 107b of the second pixel 100b. Is the same as (θ Db = θ ELb ).

그리고, 배향막의 러빙방향(θR)은 게이트라인(101)의 연장방향(θG)과 수직을 이루고 있다. 따라서, 상기 배향막의 러빙방향(θR)과 제1화소(100a)의 공통전극(105a) 및 화소전극(107a)의 연장방향(θELa)은 90°-θELa(바람직하게는 10°∼20°)를 이루고 배향막의 러빙방향(θR)과 제2화소(100b)의 공통전극(105b) 및 화소전극(107b)의 연장방향(θELb)은 θELa-270°(바람직하게는 -10°∼-20°)를 이루게 된다.The rubbing direction θ R of the alignment layer is perpendicular to the extending direction θ G of the gate line 101. Accordingly, the rubbing direction θ R of the alignment layer, the common electrode 105a of the first pixel 100a, and the extending direction θ ELa of the pixel electrode 107a are 90 ° -θ ELa (preferably 10 ° to 10 °). extension direction (θ ELb) of the common electrode (105b) and a pixel electrode (107b) forms the rubbing direction (θ R of the alignment film), and the second pixel (100b) to 20 °) is θ ELa -270 ° (preferably - 10 ° to -20 °).

도 5에 도시된 바와 같이, 유리와 같은 투명한 물질로 이루어진 제1기판(110) 위에는 박막트랜지스터(115)의 게이트전극(116)과 공통전극(105)이 형성되어 있으며, 제1기판(110) 전체에 걸쳐서 게이트절연층(112)이 적층되어 있다. 또한, 상기 게이트절연층(112) 위에는 반도체층(117)이 형성되어 있으며, 그 위에 소스전극(118) 및 드레인전극(119)이 형성되어 있다. 한편, 게이트절연층(112) 위에는 상기 공통전극(105)과 실질적으로 평행하게 배치된 화소전극(107a,107b)이 형성되어 있다.As shown in FIG. 5, the gate electrode 116 and the common electrode 105 of the thin film transistor 115 are formed on the first substrate 110 made of a transparent material such as glass, and the first substrate 110 is formed on the first substrate 110. The gate insulating layer 112 is laminated throughout. In addition, a semiconductor layer 117 is formed on the gate insulating layer 112, and a source electrode 118 and a drain electrode 119 are formed thereon. On the other hand, the pixel electrodes 107a and 107b are formed on the gate insulating layer 112 substantially in parallel with the common electrode 105.

공통전극(105,105b)과 박막트랜지스터(115)의 게이트전극(118)은 Cu, Mo, Ta, Cr, Ti, Al 또는 Al합금 등의 금속을 스퍼터링(sputtering)이나증착(evaportaion)방법에 적층하고 에칭하여 형성되며, 화소전극(107a,107b)과 소스전극(118) 및 드레인전극(119)은 각각 반도체층(116) 및 게이트절연층(112) 위에 형성된다. 상기 화소전극(107a,107b)과 소스전극(112) 및 드레인전극(114)은 Cr, Mo, Ta, Cu, Ti, Al 또는 Al합금 등의 금속을 스퍼터링이나 증착방법에 의해 적층하고 에천트에 의해 에칭함으로써 형성된다.The gate electrodes 118 of the common electrodes 105 and 105b and the thin film transistor 115 are formed by sputtering or depositing a metal such as Cu, Mo, Ta, Cr, Ti, Al, or an Al alloy. It is formed by etching, and the pixel electrodes 107a and 107b, the source electrode 118, and the drain electrode 119 are formed on the semiconductor layer 116 and the gate insulating layer 112, respectively. The pixel electrodes 107a and 107b, the source electrode 112, and the drain electrode 114 are formed by stacking metals such as Cr, Mo, Ta, Cu, Ti, Al, or Al alloys by sputtering or vapor deposition. It is formed by etching.

한편, 제1기판(110)과 대향하는 제2기판(120)에는 화소와 화소사이 또는 박막트랜지스터 영역으로 광이 누설되는 것을 방지하기 위한 블랙매트릭스(black matrix;122) 및 실제 컬러를 구현하기 위한 컬러필터층(124)이 형성되어 있으며, 상기 제1기판(110)과 제2기판(120) 사이에 액정이 주입되어 액정층(130)이 형성된다. 일반적으로 액정층(130)의 형성은 진공주입법에 의해 합착된 제1기판(110) 및 제2기판(120) 사이에 액정을 주입함으로써 이루어지지만, 상기 제1기판(110) 또는 제2기판(120) 상에 액정을 직접 적하한 후 제1기판(110) 및 제2기판(120)의 합착에 의해 기판 전체에 걸쳐 분포시키는 액정적하방법에 의해 형성할 수도 있다.On the other hand, the second substrate 120 facing the first substrate 110 has a black matrix 122 for preventing light from leaking between pixels and the thin film transistor region, and for realizing colors. The color filter layer 124 is formed, and a liquid crystal is injected between the first substrate 110 and the second substrate 120 to form the liquid crystal layer 130. In general, the liquid crystal layer 130 is formed by injecting liquid crystal between the first substrate 110 and the second substrate 120 bonded by the vacuum injection method, but the first substrate 110 or the second substrate ( The liquid crystal may be directly added onto the 120, and then may be formed by a liquid crystal dropping method in which the first substrate 110 and the second substrate 120 are bonded to the whole substrate.

상기 제1기판(110)과 제2기판(120)에는 액정을 배향하기 위한 배향막(113,123)이 각각 적층되어 있으며, 합착된 제1기판(110) 및 제2기판(120)에는 각각 편광판(140) 및 검광판(150)이 부착되어 있다. 편광판(140)의 광학축방향(θPL1)은 θPL1=0°이고 검광판(150)의 광학축방향(θPL2)은 배향방향(θR)과 평행한 θPL2=90°이다Alignment layers 113 and 123 for aligning liquid crystals are stacked on the first substrate 110 and the second substrate 120, respectively, and the polarizing plates 140 are respectively disposed on the bonded first substrate 110 and the second substrate 120. ) And the detector plate 150 are attached. The optical axis direction θ PL1 of the polarizing plate 140 is θ PL1 = 0 ° and the optical axis direction θ PL2 of the analyzer plate 150 is θ PL2 = 90 ° parallel to the orientation direction θ R.

상기와 같이 구성된 IPS모드 액정표시소자의 구동을 도 7(a)∼도 7(d)를 참조하여 설명하면 다음과 같다. 도면에서 도 7(a) 및 도 7(b)는 전압이 인가되지 않은 경우의 IPS모드 액정표시소자(요부만 표시한)의 단면도와 평면도이고 도 7(c) 및 도 7(d)는 전압이 인가된 경우의 IPS모드 액정표시소자의 단면도와 평면도이다.The driving of the IPS mode liquid crystal display device configured as described above will be described with reference to FIGS. 7A to 7D. 7 (a) and 7 (b) are cross-sectional views and a plan view of an IPS mode liquid crystal display device (only the main parts are shown) when no voltage is applied, and FIGS. 7 (c) and 7 (d) are voltages. Fig. 1 is a sectional view and a plan view of the IPS mode liquid crystal display element when this is applied.

우선, 도 7(a) 및 도 7(b)에 도시된 바와 같이 전압이 인가되지 않을 때에는 제1기판(110)과 제2기판(120)의 중간에 있는 액정층의 모든 액정분자는 제1배향막(113) 및 제2배향막(123)에 의해 그 광학축이 기판과 거의 평행상태가 되도록 배향된다. 제1기판(110)의 방향에서 입사된 광은 편광판(140)에 의해 선편광되어 액정층(130)을 투과하여 그대로 검광판(150)에 도달한다. 그러나, 검광판(150)의 투과축방향은 편광판(140)의 투과축방향과 수직이므로, 광이 검광판(150)을 투과하지 못하게 되어 흑색바탕모드(nomally black mode)가 된다.First, as shown in FIGS. 7A and 7B, when no voltage is applied, all of the liquid crystal molecules of the liquid crystal layer in the middle of the first substrate 110 and the second substrate 120 are firstly formed. The optical film is aligned by the alignment film 113 and the second alignment film 123 such that the optical axis thereof is substantially parallel to the substrate. Light incident in the direction of the first substrate 110 is linearly polarized by the polarizing plate 140 to pass through the liquid crystal layer 130 to reach the spectroscopic plate 150 as it is. However, since the transmission axis direction of the detector plate 150 is perpendicular to the transmission axis direction of the polarizer plate 140, the light does not penetrate the detector plate 150 to be in a nominally black mode.

전압이 인가되는 경우에는 공통전극(105a,105b)과 화소전극(107a,107b)사이의 전압에 의해 액정층(130) 내부에 평행전계(134)가 인가된다. 이 평행전계(134)는 제1기판(110)의 제1배향막(113) 표면에서는 최대값이고, 제2기판(120)의 배향막(123) 표면에서는 거의 액정문턱값이며, 액정층(130)의 중앙에는 그 중간값이 되어 제1기판(110)에서 제2기판(120)쪽으로 그 세기가 서서히 작아지는 불균일한 전계를 형성한다.When a voltage is applied, the parallel electric field 134 is applied inside the liquid crystal layer 130 by the voltage between the common electrodes 105a and 105b and the pixel electrodes 107a and 107b. The parallel electric field 134 is a maximum value on the surface of the first alignment layer 113 of the first substrate 110, and is almost a liquid crystal threshold on the surface of the alignment layer 123 of the second substrate 120. In the center of the center value thereof becomes an intermediate value to form a nonuniform electric field whose intensity gradually decreases from the first substrate 110 to the second substrate 120.

이와 같은 불균일한 전계에 의해 제1기판(110)의 제1화소(100a)의 배향막(113) 표면 근처의 액정분자(132a)는 강한 전계의 영향을 받아 그 광학축방향(θLCa) 이 전극의 연장방향(θELa)과 수직을 이루며 제2기판(110)의 제1화소(100a)의 배향막(123) 표면 근처의 액정분자(132b)는 러빙방향(θR)과 평행한 방향, 즉 게이트라인(101)과 90°의 방향으로 배향된다. 따라서, 제1화소(100a)에서는 액정분자(132)가 러빙방향(θR)과 평행한 방향, 즉 게이트라인(101)과 90°의 상태에서 θLCa방향까지 시계반대방향으로 트위스트(twist)된다. 또한, 제2화소(100b)에서는 전압의 인가시 액정분자(133)가 러빙방향(θR)과 평행한 방향, 즉 게이트라인(101)과 90°의 상태에서 θLCb방향까지 시계방향으로 트위스트된다.Due to such a non-uniform electric field, the liquid crystal molecules 132a near the surface of the alignment layer 113 of the first pixel 100a of the first substrate 110 are influenced by a strong electric field so that the optical axis direction θ LCa is the electrode. The liquid crystal molecules 132b perpendicular to the extending direction θ ELa of the second substrate 110 and near the surface of the alignment layer 123 of the first pixel 100a of the second substrate 110 are parallel to the rubbing direction θ R. It is oriented in the direction of 90 ° with the gate line 101. Therefore, in the first pixel 100a, the liquid crystal molecules 132 are twisted in a counterclockwise direction from the direction parallel to the rubbing direction θ R , that is, to the θ LCa direction in a state of 90 ° with the gate line 101. do. Further, in the second pixel 100b, when the voltage is applied, the liquid crystal molecules 133 are twisted in a direction parallel to the rubbing direction θ R , that is, clockwise from the 90 ° to the θ LCb in a state of 90 ° with the gate line 101. do.

결국, 제1화소(100a)의 액정분자(132)와 제2화소(100b)의 액정분자(133)가 서로 반대방향으로 회전하게 되는 것이다. 이때, 편광판(140)에 의해 선편광된 광이 트위스트상태인 액정층(130)을 투과할 때, 그 편광방향이 트위스트되어 있는 액정층(130)에 의해 회전하여 검광판(150)에서는 그 광학축방향이 상기한 검광판(150)의 투과축방향과 일치하게 된다. 그 결과, 편광판(140)에 의해 선편광되어 액정층(130)을 투과한 광이 검광판(150)을 그대로 투과하게 되어 화면이 흰상태가 된다.As a result, the liquid crystal molecules 132 of the first pixel 100a and the liquid crystal molecules 133 of the second pixel 100b rotate in opposite directions. At this time, when the light linearly polarized by the polarizing plate 140 passes through the liquid crystal layer 130 in the twisted state, the polarization direction is rotated by the twisted liquid crystal layer 130, and the optical plate 150 has its optical axis. The direction coincides with the transmission axis direction of the analyzer plate 150 described above. As a result, the light polarized by the polarizing plate 140 and transmitted through the liquid crystal layer 130 is transmitted through the analyzer plate 150 as it is, and the screen is white.

전극에 인가되는 전압은 1V-5V로서, 중간계조표시시의 제1화소(100a)의 액정분자와 제2화소(100b)의 액정분자는 각 화소의 전계에 의해 서로 대칭된 배열을 하게 되어, 서로 대칭인 주시야각방향을 얻을 수 있게 된다. 따라서, X, Y의 시야각방향에서 발생하는 색상의 변화가 상기한 제1화소(100a)와 제2화소(100b)에서 서로 다르게 된다. 즉, 제1화소(100a)에서는 X의 시야각방향에서 파란색으로의 색변화가발생하며, Y의 시야각방향에서 노란색으로의 색변화가 발생한다. 또한, 제2화소(100b)에서는 X의 시야각방향에서 노란색의 색변화가 발생하며 Y의 시야각방향에서 파란색의 색변화가 발생하게 된다. 따라서, 상기한 액정분자의 복굴절율에 의한 색변화가 제1화소(100a) 및 제2화소(100b)에서 서로 보상되어 화소전체에서는 원하는 색상을 얻을 수 있게 되며, 이것은 시야각특성이 향상되었음을 의미한다.The voltage applied to the electrode is 1V-5V, and the liquid crystal molecules of the first pixel 100a and the liquid crystal molecules of the second pixel 100b are arranged symmetrically with each other by the electric field of each pixel. It is possible to obtain gaze angles symmetrical with each other. Accordingly, the change in color occurring in the viewing angle directions of X and Y is different in the first pixel 100a and the second pixel 100b. That is, in the first pixel 100a, a color change occurs from the viewing angle direction of X to blue, and a color change occurs from the viewing angle direction of Y to yellow. In addition, in the second pixel 100b, a yellow color change occurs in the X viewing angle direction, and a blue color change occurs in the Y viewing angle direction. Accordingly, the color change due to the birefringence of the liquid crystal molecules is compensated with each other in the first pixel 100a and the second pixel 100b to obtain a desired color in the entire pixel, which means that the viewing angle characteristic is improved. .

상술한 바와 같이, 본 발명에서는 화소를 지그재그형식으로 형성함으로써 다음과 같은 효과를 얻을 수 있게 된다.As described above, in the present invention, the following effects can be obtained by forming the pixels in a zigzag form.

첫째, 게이트라인을 중심으로 인접하는 화소의 공통전극과 화소전극을 대칭으로 배치함으로써 색변환을 보상하며, 그 결과 액정표시소자의 시야각특성을 향상시킬 수 있게 된다.First, color conversion is compensated by symmetrically disposing the common electrode and the pixel electrode of adjacent pixels around the gate line, and as a result, the viewing angle characteristic of the liquid crystal display device can be improved.

둘때, 데이터라인을 공통전극 및 화소전극과 평행하게 배치함으로써 화소내에 횡전계가 인가되지 않는 사영역을 제거할 수 있게 되어, 결국 액정표시소자의 개구율저하를 방지할 수 있게 된다.In this case, by arranging the data lines in parallel with the common electrode and the pixel electrode, it is possible to eliminate the dead region where no transverse electric field is applied in the pixel, thereby preventing the aperture ratio of the liquid crystal display device from being lowered.

Claims (18)

제1기판에 형성된 복수의 게이트라인;A plurality of gate lines formed on the first substrate; 상기 게이트라인과 교차하며, 게이트라인을 중심으로 일정한 각도로 대칭을 이루는 복수의 데이터라인;A plurality of data lines crossing the gate lines and symmetrical with respect to the gate lines at a predetermined angle; 상기 게이트라인 및 데이터라인과 접속되는 복수의 구동소자; 및A plurality of driving elements connected to the gate lines and the data lines; And 상기 데이터라인과 평행하게 배열되어 횡전계를 생성하는 적어도 한쌍의 전극으로 구성된 횡전계모드 액정표시소자.A transverse electric field mode liquid crystal display device comprising at least one pair of electrodes arranged in parallel with the data line to generate a transverse electric field. 제1항에 있어서, 상기 구동소자는 박막트랜지스터인 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device of claim 1, wherein the driving device is a thin film transistor. 제2항에 있어서, 상기 박막트랜지스터는,The method of claim 2, wherein the thin film transistor, 기판위에 형성된 게이트전극;A gate electrode formed on the substrate; 상기 게이트전극이 형성된 기판 전체에 걸쳐 적층된 게이트 절연층;A gate insulating layer stacked over the entire substrate on which the gate electrode is formed; 상기 절연층 위에 형성된 반도체층;A semiconductor layer formed on the insulating layer; 상기 반도체층 위에 형성된 소스전극 및 드레인전극; 및A source electrode and a drain electrode formed on the semiconductor layer; And 상기 소스전극 및 드레인전극이 형성된 기판 전체에 걸쳐 적층된 보호층으로 이루어진 것을 특징으로 하는 횡전계모드 액정표시소자.A transverse electric field mode liquid crystal display device comprising a protective layer stacked over the entire substrate on which the source and drain electrodes are formed. 제1항에 있어서,The method of claim 1, 컬러필터가 형성된 제2기판; 및A second substrate on which a color filter is formed; And 상기 제1기판 및 제2기판 사이에 형성된 액정층을 추가로 포함하는 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device further comprising a liquid crystal layer formed between the first substrate and the second substrate. 제4항에 있어서, 상기 제1기판 및 제2기판에는 액정분자를 배향하는 제1배향막 및 제2배향막이 형성된 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device according to claim 4, wherein the first substrate and the second substrate are formed with a first alignment film and a second alignment film for aligning liquid crystal molecules. 제5항에 있어서, 상기 배향막의 배향방향은 게이트라인과 수직인 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device of claim 5, wherein the alignment direction of the alignment layer is perpendicular to the gate line. 제6항에 있어서, 상기 데이터라인은 상기 배향방향과 일정 각도로 배열된 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device of claim 6, wherein the data lines are arranged at an angle to the alignment direction. 제1항에 있어서, 상기 전극은,The method of claim 1, wherein the electrode, 공통전극; 및Common electrode; And 상기 공통전극과 평행하게 배열된 화소전극으로 이루어진 것을 특징으로 하는 횡전계모드 액정표시소자.And a pixel electrode arranged in parallel with the common electrode. 게이트라인과, 상기 게이트라인과 θDa의 각도로 배열되는 데이터라인과, 상기 데이터라인과 평행하게 배열되어 횡전계를 형성하는 적어도 한쌍의 전극을 포함하는 복수의 제1화소; 및A plurality of first pixels including a gate line, a data line arranged at an angle of θ Da with the gate line, and at least one pair of electrodes arranged in parallel with the data line to form a transverse electric field; And 상기 제1화소와 인접하며, 게이트라인과, 상기 게이트라인과 θDb의 각도로 배열되는 데이터라인과, 상기 데이터라인과 평행하게 배열되어 횡전계를 형성하는 적어도 한쌍의 전극을 포함하는 복수의 제2화소로 구성된 횡전계모드 액정표시소자.A plurality of second electrodes including a gate line, a data line arranged at an angle of θ Db with the gate line, and at least a pair of electrodes arranged in parallel with the data line to form a transverse electric field; Transverse electric field mode liquid crystal display device composed of two pixels. 제9항에 있어서, 상기 θDa=-θDb인 것을 특징으로 하는 횡전계모드 액정표시소자.10. The transverse electric field mode liquid crystal display device according to claim 9, wherein θ Da = −θ Db . 제9항에 있어서, θDb=70°∼80°인 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device according to claim 9, wherein θ Db = 70 ° to 80 °. 제9항에 있어서, 상기 제1화소 및 제2화소의 배향방향(θR)은 θR=90°인 것을 특징으로 하는 횡전계모드 액정표시소자.10. The transverse electric field mode liquid crystal display device according to claim 9, wherein an orientation direction θ R of the first pixel and the second pixel is θ R = 90 °. 기판에 형성된 복수의 게이트라인;A plurality of gate lines formed on the substrate; 상기 게이트라인과 교차하며, 지그재그형상으로 배열된 복수의 데이터라인;A plurality of data lines intersecting the gate lines and arranged in a zigzag shape; 상기 게이트라인 및 데이터라인과 접속되는 복수의 구동소자; 및A plurality of driving elements connected to the gate lines and the data lines; And 상기 데이터라인과 평행하게 배열되어 횡전계를 생성하는 적어도 한쌍의 전극으로 구성된 횡전계모드 액정표시소자.A transverse electric field mode liquid crystal display device comprising at least one pair of electrodes arranged in parallel with the data line to generate a transverse electric field. 제13항에 있어서, 상기 데이터라인은 게이트라인을 중심으로 대칭인 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device of claim 13, wherein the data line is symmetric about the gate line. 복수의 화소를 정의하는 복수의 게이트라인 및 데이터라인;A plurality of gate lines and data lines defining a plurality of pixels; 각 화소내에 배치된 구동소자; 및A drive element disposed in each pixel; And 상기 화소내에 배열되어 횡전계를 발생시키는 적어도 한쌍의 전극으로 구성되며,At least one pair of electrodes arranged in the pixel to generate a transverse electric field, 게이트라인을 중심으로 인접하는 화소는 서로 대칭되는 주시야각방향을 보유하는 것을 특징으로 하는 횡전계모드 액정표시소자.A transverse electric field mode liquid crystal display device characterized in that the pixels adjacent to the gate line have symmetrical viewing angle directions. 제15항에 있어서, 전압의 인가시 서로 인접하는 화소의 액정분자는 게이트라인방향을 중심으로 대칭으로 배향되는 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device of claim 15, wherein liquid crystal molecules of pixels adjacent to each other when voltage is applied are symmetrically oriented about a gate line direction. 제16항에 있어서, 상기 인접하는 화소의 데이터라인은 각각 게이트라인에 대하여 대칭으로 배열되는 것을 특징으로 하는 횡전계모드 액정표시소자.17. The transverse electric field mode liquid crystal display of claim 16, wherein the data lines of the adjacent pixels are arranged symmetrically with respect to the gate lines. 제17항에 있어서, 상기 데이터라인은 게이트라인과 70°∼80°의 각도로 배열되는 것을 특징으로 하는 횡전계모드 액정표시소자.The transverse electric field mode liquid crystal display device of claim 17, wherein the data lines are arranged at an angle of 70 ° to 80 ° with the gate line.
KR1020020071742A 2002-11-18 2002-11-18 In plane switching mode liquid crystal display device KR100899627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020071742A KR100899627B1 (en) 2002-11-18 2002-11-18 In plane switching mode liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020071742A KR100899627B1 (en) 2002-11-18 2002-11-18 In plane switching mode liquid crystal display device

Publications (2)

Publication Number Publication Date
KR20040043485A true KR20040043485A (en) 2004-05-24
KR100899627B1 KR100899627B1 (en) 2009-05-27

Family

ID=37339942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020071742A KR100899627B1 (en) 2002-11-18 2002-11-18 In plane switching mode liquid crystal display device

Country Status (1)

Country Link
KR (1) KR100899627B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502089B2 (en) 2005-07-15 2009-03-10 Samsung Electronics Co., Ltd Liquid crystal display
KR101023362B1 (en) * 2004-05-31 2011-03-18 엘지디스플레이 주식회사 Liquid Crystal Display and the fabrication method
KR101525639B1 (en) * 2008-03-28 2015-06-10 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
WO2018133376A1 (en) * 2017-01-20 2018-07-26 京东方科技集团股份有限公司 Array substrate, manufacturing method thereof, display panel, and display apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659734B2 (en) 2011-01-03 2014-02-25 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745207A (en) * 1995-11-30 1998-04-28 Matsushita Electric Industrial Co., Ltd. Active matrix liquid crystal display having electric fields parallel to substrates
JP3486859B2 (en) * 1996-06-14 2004-01-13 大林精工株式会社 Liquid crystal display

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023362B1 (en) * 2004-05-31 2011-03-18 엘지디스플레이 주식회사 Liquid Crystal Display and the fabrication method
US7502089B2 (en) 2005-07-15 2009-03-10 Samsung Electronics Co., Ltd Liquid crystal display
US7973901B2 (en) 2005-07-15 2011-07-05 Samsung Electronics Co., Ltd. Liquid crystal display
KR101525639B1 (en) * 2008-03-28 2015-06-10 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
US9280021B2 (en) 2008-03-28 2016-03-08 Japan Display Inc. Liquid crystal display apparatus
US9989819B2 (en) 2008-03-28 2018-06-05 Japan Display Inc. Liquid crystal display apparatus
US10310337B2 (en) 2008-03-28 2019-06-04 Japan Display Inc. Liquid crystal display apparatus
WO2018133376A1 (en) * 2017-01-20 2018-07-26 京东方科技集团股份有限公司 Array substrate, manufacturing method thereof, display panel, and display apparatus
US10768491B2 (en) 2017-01-20 2020-09-08 Boe Technology Group Co., Ltd. Array substrate comprising a plurality of first pixel electrode strips and first common electrode strips arranged symmetrically with respect to a sub-area symmetry axis of a pixel unit sub-area and manufacture method thereof, display panel and display device

Also Published As

Publication number Publication date
KR100899627B1 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
KR101186863B1 (en) Multi-domain in plane switching mode liquid crystal display device
KR100675635B1 (en) In plane switching mode liquid crystal display device having improved contrast ratio
US20070252939A1 (en) In plane switching mode liquid crystal display device
US11747689B2 (en) Display assembly and display apparatus
US7768588B2 (en) Thin film transistor substrate for liquid crystal display
KR20080096256A (en) Display device
KR20040056969A (en) Liquid crystal display
KR20050027498A (en) In plane switching mode liquid crystal display device
US7420640B2 (en) In-plane switching mode liquid crystal device and method for manufacturing the same
KR20050034953A (en) In plane switching mode liquid crystal display device
KR100899627B1 (en) In plane switching mode liquid crystal display device
US7787083B2 (en) Liquid crystal device and electronic apparatus
KR20050114125A (en) In-plain switching liquid cristalline display device with round-shape electrodes
KR20040025472A (en) In plane switching mode liquid crystal display device
KR20050000958A (en) In Plane Switching mode Liquid Crystal Display Device
US7102719B2 (en) In-plane switching mode thin film transistor liquid crystal display device with alternating pixel and common electrode bones
US7268847B2 (en) In-plane switching mode thin film transistor liquid crystal display device with two domains
KR100919195B1 (en) In plane switching mode liquid crystal display device having improved aperture ratio
KR100934825B1 (en) A transverse electric field mode liquid crystal display element with improved brightness
KR100919185B1 (en) In plane switching mode liquid crystal display device
KR101113782B1 (en) Photo compensation film for liquid crystal display device and liquid crystal display device including the same
KR100789456B1 (en) In plane switching mode liquid crystal display device
KR20040047328A (en) In plane switching mode liquid crystal display device having improved aperture ratio
KR101429902B1 (en) Liquid Crystal Display Device
KR20050068209A (en) In plane switching mode liquid crystal display device and method of fabricating thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120330

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160428

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190417

Year of fee payment: 11