KR20040041815A - 발포 금속 소결체의 제조방법 - Google Patents

발포 금속 소결체의 제조방법 Download PDF

Info

Publication number
KR20040041815A
KR20040041815A KR1020020069870A KR20020069870A KR20040041815A KR 20040041815 A KR20040041815 A KR 20040041815A KR 1020020069870 A KR1020020069870 A KR 1020020069870A KR 20020069870 A KR20020069870 A KR 20020069870A KR 20040041815 A KR20040041815 A KR 20040041815A
Authority
KR
South Korea
Prior art keywords
foaming
metal
solution
foamed
alloys
Prior art date
Application number
KR1020020069870A
Other languages
English (en)
Inventor
최성조
Original Assignee
최성조
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최성조 filed Critical 최성조
Priority to KR1020020069870A priority Critical patent/KR20040041815A/ko
Publication of KR20040041815A publication Critical patent/KR20040041815A/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)

Abstract

90%이상의 기공율을 가지는 발포 금속 소결체를 얻기위해, 발포제와 열경화성 유기바인더 수용액과 금속분말을 혼합하여 금속분말이 분산된 발포용액을 얻는 단계, 이 발포용액을 주형에 주입하여 일정 형상을 부여하는 단계, 발포용액을 일정온도,습도,시간 조건에서 미리 정해진 형상으로 발포시키는 단계, 발포된 형상을 가열하여 겔상의 성형체(green body)를 얻는 단계, 이 성형체를 환원분위기에서 가열하여 유기바인더 및 발포제를 열분해하여 제거하고 금속분말 사이의 원자확산에 의한 결합으로 얻어지는 소결체를 얻는 단계로 이루어진 것을 특징으로 하는 발포 금속소결체의 제조방법.

Description

발포 금속 소결체의 제조방법{Method of preparing sintered foaming metal body}
다공질 금속 성형체는 금속의 특성,즉 전기전도성,가공성,용접성 등이 우수하며 경량이고 비표면적이 크고 재활용성이 뛰어나기 때문에 고온 및 내식성이 요구되는 분위기에서의 필터소재나 불연성 흡음소재 , 충격흡수 구조물 또는 촉매담체,2차전지의 전극 등으로 유용한 산업소재이다. 종래의 제조법은 주로 금속분말을 금형으로 성형하여 소결하는 분말야금 방법이나 금속섬유를 부직포 형상으로 가공하여 소결하는 방법이 주로 사용되었다. 그러나 분말야금 방법은 고압으로 성형을 하여야 하기 때문에 얻을수 있는 기공크기가 제한 될 수밖에 없어 기공율이 40%를 넘지못해 압력손실이 심하고 또한 금형으로 성형해야 하기 때문에 광폭을 제조하기는 매우 어렵다. 금속섬유를 이용하여 부직포 형상으로 가공한후 소결체를 얻는 것은 1970년대 이후 상업적으로 사용되고 있으나 금속섬유의 가격이 비싸고 판상으로만 성형이 가능해 그 사용이 제한적이다. 좀더 기공율이 크고 경량인 소재를 얻으려는 노력으로 Al의 발포법이 사용된다. 용융 Al 에 Ca등으로 점도를 조정하고 발포제인 TiH.sub.2등을 투입하여 기공율 95% 이상의 초경량 소재를 제조하는 것이 가능하다.
이 방법으로 많은 기업이 상업적인 제품을 만들고 있으나 소재가 Al에 한정되고 용융설비,주조설비 등의 시설비가 많이 소요되며 발포기공이 닫힌형태(closed cell)여서 흡음율이나 필터로서의 기능이 부족하고 고가의 발포제를 사용하여 가격이 비싸다는 문제를 가지고 있다.
본 발명은 이러한 문제를 해결하고자 연구되었다. 즉, 금속의 종류에 관계없이 다양한 금속분말을 발포상태의 다공성 금속으로 얻을수 있으며, 금속분말 혹은 섬유상 분말을 사용하여 소결체로서의 모재(matrix)를 얻기 때문에 발포기공과 모재가 열린기공(open cell) 상태를 유지 할수 있다. 또한 발포법의 장점인 높은 기공율을 가지는 경량구조를 용융발포법에 비해 값싸게 얻을수 있다. 이와 같이 분말소결법과 발포금속법의 장점을 결합하여 열린 기공을 가지면서도 발포기공을 얻을수 있도록 금속분말에 수용성 바인더와 발포제를 혼합하여 유동성을 가지는 발포 용액을 얻은뒤 이것을 주형에 주입하므로서 형태를 갖게하고 일정조건에서 가열발포하므로서 바인더는 경화하여 강도를 부여하고 발포된 기공들은 모재의 미세기공과 함께 열린기공 상태를 유지하면서 높은 기공율을 가지게된다. 이러한 방법으로 제조된 예비성형체(green body)는 다음공정에서 충분히 취급이 용이할 정도로 강도가 있으며 절단이나 압연에 의해 두께의 조절도 가능하다. 발포제 혼합량에 따라 기공율은 조절되며 최대가공율 96%까지 얻을수 있다. 이 예비성형체를 환원성분위기나 진공에서 소결처리하여 다공질의 금속소결체를 얻을수 있으며 이 금속소결체는 불연성 흡음패널, 고온 금속 필터,경량구조물,촉매담체 등의 다양한 기능성 산업소재로 사용될수 있다
.
본 발명이 이루고자 하는 기술적 과제는 첫째,금속의 종류에 관계없이 다양한 금속분말을 발포상태의 다공성 금속으로 얻을수 있다. 둘째, 금속분말 혹은 섬유상 분말을 사용하여 소결체로서의 모재(matrix)를 얻기 때문에 발포기공과 모재가 열린기공(open cell) 상태를 유지 할수 있다. 셋째, 발포법의 장점인 높은 기공율을 가지는 경량구조를 용융발포법에 비해 값싸게 얻을수 있다. 이와 같이 분말소결법과 발포금속법의 장점을 결합하여 열린 기공을 가지면서도 발포기공을 얻을수 있도록 금속분말에 수용성 바인더와 발포제를 혼합하여 유동성을 가지는 발포 용액을 얻은뒤 이것을 주형에 주입하므로서 형태를 갖게하고 일정조건에서 가열발포하므로서 바인더는 경화하여 강도를 부여하고 발포된 기공들은 모재의 미세기공과 함께 열린기공 상태를 유지하면서 높은 기공율을 가지게된다. 이러한 방법으로 제조된 예비성형체(green body)는 다음공정에서 충분히 취급이 용이할 정도로 강도가 있으며 절단이나 압연에 의해 두께의 조절도 가능하다. 발포제 혼합량에 따라 기공율은 조절되며 최대가공율 96%까지 얻을수 있다. 이 예비성형체를 환원성분위기나 진공에서 소결처리하여 다공질의 금속소결체를 얻을수 있으며 이 금속소결체는 불연성 흡음패널, 고온 금속 필터,경량구조물,촉매담체 등의 다양한 기능성 산업소재로 사용될수 있다
본 발명을 좀더 자세히 설명하면 다음과 같다.
발포제와 열경화성 유기바인더 수용액과 금속분말을 혼합하여 금속분말이 분산된 발포용액을 얻는 단계, 이 발포용액을 주형에 주입하여 일정 형상을 부여하는 단계, 발포용액을 일정온도,습도,시간 조건에서 미리 정해진 형상으로 발포시키는 단계, 발포된 형상을 가열하여 겔상의 성형체(green body)를 얻는 단계, 이 성형체를 환원분위기에서 가열하여 유기바인더 및 발포제를 열분해하여 제거하고 금속분말 사이의 원자확산에 의한 결합으로 얻어지는 소결체를 얻는 단계로 이루어진다.
발포용액은 금속분말,발포제, 수용성 유기바인더, 표면활성제로 이루어진다.
금속분말의 형상은 수분사법으로 제조된 부정형 분말이거나 가스분사법으로 제조된 구형분말, 또는 연마방법으로 제조된 섬유상 분말을 사용한다.
분말의 크기는 1 미크론 보다 크고 300 미크론보다 적은 것이 좋다. 1 미크론 이하는 기공이 형성되기 어렵고 300 미크론 이상은 발포력이 떨어진다.
금속분말의 종류는 스테인레스강, 구리 및 그 합금, 니켈 및 그 합금, 알미늄 및 그합금,아연 및 그합금,주석 및 그합금, 티타늄 및 그합금, 금 및 그합금,은 및 그합금 등으로한다. 사용하는 금속분말의 양은 발포용액의 중량대비 30 - 500%로 하는 것이 좋다. 금속분말의 양이 중량대비 30% 이하이면 발포용액중에 분말간에 접촉점이 생기지 않아 소결이 되기 어려우며 500%이상이되면 기공율이 90% 이하가 되어 본 발명의 목적인 초경량발포금속의 목적에서 벗어난다.
바인더는 수용성이며 열경화성을 가지는 유기바인더를 사용한다. 유기바인더는 소결시 일정온도에 도달하면 열분해 되어 제거 되므로 최종제품에 남지 않고 소결에도 영향을 주지않는다. 바인더는 발포용액의 점도를 조정하며 건조시 열경화되어 예비성형체(green body)에 강도를 부여하여 다음 공정에서 취급이 용이하도록 한다.
이러한 목적에 맞는 수용성이며 겔(gel)특성을 가지는 유기바인더는 polyvinylalchol, polyvinyl pyrrolidone, methylcellulose, carboxymethylcellulose, agar 등이 있다. 바인더의 사용량은 발포용액의 0.5 - 20%로 하며 더 바람직하게는 2 에서 10%로 한다.
발포제는 우레탄계 발포제를 사용하거나 유기용매를 사용한다. 우레탄계 발포제는 물과 반응하여 isocyanate 반응 ,즉 urea 를 생성하고 탄산가스를 발생시키며 경화된다. 따라서 수용액으로 이루어진 발포용액과 반응하여 발포하면서 경화되기 때문에 사용하기가 좋다.
유기용매는 탄소원자가 5에서 8개인 탄화수소들,즉 pentane, neopentane, hexane,isohexane, heptane, isoheptane, benzene, octane, 그리고 toluene 등이 있다. 이러한 탄화수소는 가열에 의해 표면활성제가 함유한 용액내에서 미세기공으로 발포된다. 발포제의 사용량은 발포용액의 0.05 - 10%로 한다.
표면활성제는 용액내에 발생한 미세기공을 안정화 시키는 역할을 한다. 이러한 표면활성제는 비이온계 표면활성제인 polyethylene glycol 유도체나 polyvalent alchol 유도체가 좋다. 표면활성제의 사용량은 발포용액의 0.05에서 5%로 한다.
금속분말이 균일하게 분산되고 점성을 가지는 발포용액은 만들고자 하는 형상을 가지는 주형내에 주입된다. 이때 발포용액은 바인더에 의해 점성이 조정되어 500cps-1,500cps의 점도를 가지는 것이 좋다. 주입된 용액은 표면장력에 의해 표면이 평탄하여 지고 일정두께를 가지게 되어 넓은 면적의 판상을 제조하는데 유리하다. 발포는 섭씨 40도 에서 50도 사이에서 이루워 지며 시간은 10분에서 30분 사이에서 이루어진다. 표면이 먼저 굳어지면 내부의 발포가 균일 하게 이루어지기 어렵기 때문에 습도가 50%이상되도록 유지한다.
발포된 용액은 섭씨100도에서 150도 사이로 30분 정도 가열하면 내부의 수분이 제거되면서 바인더가 경화되어 강도를 가지는 예비성형체(green body)가 얻어진다. 이렇게 얻어진 예비성형체는 주형에서 분리하여 필요한 크기로 절단하거나 압연등에 의해 두께를 조절할수 있다.
제조된 예비성형체는 환원성분위기 또는 진공중에서 금속의 종류에 따라 섭씨200도에서 1500도의 온도로 10에서 120분간 가열한다. 단, 은이나 금과 같은 경우는 대기분위기 혹은 질소분위기에서 가열하여도 가능하다. 가열하는 동안 성형체 내부의 유기물,즉 바인더, 발포제, 표면활성제 등은 열분해되어 제거되고 서로 접촉되어 있는 금속분말 사이에서 원자확산에 의해 소결이 일어나 금속의 강도를 가지며 결합하게된다.
금속의종류에 따른 적정소결온도는 스테인레스 및 니켈합금등은 섭씨 800도에서 1300도,아연은 400도에서 600도, 구리 및 은 합금은 700도에서 1000도, 주석 및 그합금은 200도에서 400도,알미늄 및 그합금은 400도에서 700도 사이이다.
가열하는 동안 유기물을 제거하기 위해 섭씨400도에서 600도사이에서 1시간이상 유지시켜 준다.
이와같은 방법으로 제조된 발포금속소결체는 금속분말이나 금속섬유에 의해 미세기공이 열린상태로 형성되고 발포제에의해 직경이 큰 기공이 형성되어 이중기공 구조를 가지는 다공성 소결체를 얻는다. 이러한 이중구조는 기존의 분말소결체에 비해 월등히 높은 기공율을 얻을수 있으며 기존발포금속에서 얻을수 없는 열린기공상태의 다공성소결체를 금속의 종류에 제한없이 얻을수 있다.
또한 본 발명의 결과물은 쉽게 광폭의 판상으로 성형할수 있고 두께 및 밀도의 조절이 용이하다. 이러한 판상의 다공질체는 calendering, 압축,절단,용접,솔더링 등을 자유롭게 할수 있어 가공성 및 시공성이 우수하다.
본 발명은 금속의 종류에 관계없이 다양한 금속분말을 발포상태의 다공성 금속으로 얻을수 있으며, 금속분말 혹은 섬유상 분말을 사용하여 소결체로서의 모재(matrix)를 얻기 때문에 발포기공과 모재가 열린기공(open cell) 상태를 유지 할수 있다. 또한 발포법의 장점인 높은 기공율을 가지는 경량구조를 용융발포법에 비해 값싸게 얻을수 있다. 이와 같이 분말소결법과 발포금속법의 장점을 결합하여 열린 기공을 가지면서도 발포기공을 얻을수 있도록 금속분말에 수용성 바인더와 발포제를 혼합하여 유동성을 가지는 발포 용액을 얻은뒤 이것을 주형에 주입하므로서 형태를 갖게하고 일정조건에서 가열발포하므로서 바인더는 경화하여 강도를 부여하고 발포된 기공들은 모재의 미세기공과 함께 열린기공 상태를 유지하면서 높은 기공율을 가지게된다. 이러한 방법으로 제조된 예비성형체(green body)는 다음공정에서 충분히 취급이 용이할 정도로 강도가 있으며 절단이나 압연에 의해 두께의 조절도 가능하다. 발포제 혼합량에 따라 기공율은 조절되며 최대가공율 96%까지 얻을수 있다. 이 예비성형체를 환원성분위기나 진공에서 소결처리하여 다공질의 금속소결체를 얻을수 있으며 이 금속소결체는 불연성 흡음패널, 고온 금속 필터,경량구조물,촉매담체, 전극소재등의 다양한 기능성 산업소재로 사용될수 있다

Claims (6)

  1. 발포 금속 소결체를 얻기위해, 발포제와 열경화성 유기바인더 수용액과 금속분말을 혼합하여 금속분말이 분산된 발포용액을 얻는 단계, 이 발포용액을 주형에 주입하여 일정 형상을 부여하는 단계, 발포용액을 일정온도,습도,시간 조건에서 미리 정해진 형상으로 발포시키는 단계, 발포된 형상을 가열하여 겔상의 성형체(green body)를 얻는 단계, 이 성형체를 환원분위기에서 가열하여 유기바인더 및 발포제를 열분해하여 제거하고 금속분말 사이의 원자확산에 의한 결합으로 얻어지는 소결체를 얻는 단계로 이루어진 것을 특징으로 하는 발포 금속소결체의 제조방법
  2. 1항에서 금속분말은 직경이 1 미크론 보다 크고 300 미크론보다 적은 수분사법으로 제조된 부정형 분말이거나 가스분사법으로 제조된 구형분말, 또는 연마방법으로 제조된 섬유상 분말로 한다.
  3. 1항에서 금속분말의 종류는 스테인레스강, 구리 및 그 합금, 니켈 및 그 합금, 알미늄 및 그합금,아연 및 그합금,주석 및 그합금, 티타늄 및 그합금, 금 및 그합금,은 및 그합금 등으로 하고 사용하는 금속분말의 양은 복합체 용액의 전체중량대비 30 - 500%로 한다.
  4. 1항에서 수용성 유기바인더는 polyvinylalchol, polyvinyl pyrrolidone, methylcellulose, carboxymethylcellulose, agar 등으로 하고 바인더의 사용량은 복합체용액의 0.5 - 20%로한다.
  5. 1항에서 발포제는 우레탄계 발포제 혹은 비이온성 표면활성제와 유기용매를 사용한 다. 유기용매는 탄소원자가 5에서 8개인 탄화수소들,즉 pentane, neopentane, hexane,isohexane, heptane, isoheptane, benzene, octane, 그리고 toluene 등으로 한다. 발포제의 사용량은 발포용액의 0.05 - 10%로 한다.
  6. 5항에서 표면활성제는 비이온계 표면활성제인 polyethylene glycol 유도체나 polyvalent alchol 유도체로 한다. 표면활성제의 사용량은 발포용액의 0.05에서 5%로 한다.
KR1020020069870A 2002-11-12 2002-11-12 발포 금속 소결체의 제조방법 KR20040041815A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020069870A KR20040041815A (ko) 2002-11-12 2002-11-12 발포 금속 소결체의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020069870A KR20040041815A (ko) 2002-11-12 2002-11-12 발포 금속 소결체의 제조방법

Publications (1)

Publication Number Publication Date
KR20040041815A true KR20040041815A (ko) 2004-05-20

Family

ID=37338673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020069870A KR20040041815A (ko) 2002-11-12 2002-11-12 발포 금속 소결체의 제조방법

Country Status (1)

Country Link
KR (1) KR20040041815A (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011276B1 (ko) * 2008-11-04 2011-01-27 홍나혜 식재료의 원산지 표시를 관리할 수 있는 전자식 메뉴판 관리 시스템
KR101481170B1 (ko) * 2008-08-07 2015-01-09 현대자동차주식회사 알루미늄 휠 제조용 알루미늄 발포금속 필터 및 그제조방법
KR20180089267A (ko) * 2017-01-31 2018-08-08 주식회사 담스테크 Emp 차폐랙의 니켈 발포 매트 제조 방법
EP4234126A1 (en) * 2022-02-23 2023-08-30 ETH Zurich Metallic foams and methods for producing them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987706A (ja) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp 多孔質金属体の接合方法
JPH0987704A (ja) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp 多孔質焼結金属板の製造方法
KR970073821A (ko) * 1995-09-27 1997-12-10 아키모토 유미 다공질 소결금속판의 제조방법 및 제조장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987706A (ja) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp 多孔質金属体の接合方法
JPH0987704A (ja) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp 多孔質焼結金属板の製造方法
KR970073821A (ko) * 1995-09-27 1997-12-10 아키모토 유미 다공질 소결금속판의 제조방법 및 제조장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481170B1 (ko) * 2008-08-07 2015-01-09 현대자동차주식회사 알루미늄 휠 제조용 알루미늄 발포금속 필터 및 그제조방법
KR101011276B1 (ko) * 2008-11-04 2011-01-27 홍나혜 식재료의 원산지 표시를 관리할 수 있는 전자식 메뉴판 관리 시스템
KR20180089267A (ko) * 2017-01-31 2018-08-08 주식회사 담스테크 Emp 차폐랙의 니켈 발포 매트 제조 방법
EP4234126A1 (en) * 2022-02-23 2023-08-30 ETH Zurich Metallic foams and methods for producing them

Similar Documents

Publication Publication Date Title
EP1755809B1 (en) Method of production of porous metallic materials
US7108828B2 (en) Method of making open cell material
US6660224B2 (en) Method of making open cell material
US5972285A (en) Foamable metal articles
CN1700965B (zh) 开孔模塑体及其生产方法和用途
US4713277A (en) Foamed metal and method of producing same
KR100658158B1 (ko) 다공성티타늄재물품의 제조방법
US20100028710A1 (en) Open cell porous material and method for producing same
IE862901L (en) Metal matrix composites
JP2003520905A (ja) 中空ボール並びに中空ボールおよび中空ボールによる軽量構造部品の製造方法
US20090096121A1 (en) Method of producing open-cell inorganic foam
CA2533118C (en) Method for manufacturing components with a nickel base alloy as well as components manufactured therewith
WO2001056727A1 (en) Cellular structures and processes for making such structures
JP2724617B2 (ja) 多孔質金属材
CN113369477A (zh) 一种孔隙率可调的多孔材料制备方法
KR20040041815A (ko) 발포 금속 소결체의 제조방법
CN108405848B (zh) 一种多孔镍骨架材料及其制备方法
US3902861A (en) Composite material
KR20040041816A (ko) 고분자 복합체를 이용한 다공성 금속 소결체의 제조방법
KR100395036B1 (ko) 개포형 금속포움 제조방법
CN109277572A (zh) 一种预合金化高熵合金多孔材料及其制备方法
JPS6120508B2 (ko)
EP1417065B1 (en) Method of making open cell material
Andersen et al. Novel metallic hollow sphere structures: processing and properties
JPH03138304A (ja) 多孔質超硬合金の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application