KR20040041772A - Method for manufacturing a high-silicon steel sheet - Google Patents

Method for manufacturing a high-silicon steel sheet Download PDF

Info

Publication number
KR20040041772A
KR20040041772A KR1020020069646A KR20020069646A KR20040041772A KR 20040041772 A KR20040041772 A KR 20040041772A KR 1020020069646 A KR1020020069646 A KR 1020020069646A KR 20020069646 A KR20020069646 A KR 20020069646A KR 20040041772 A KR20040041772 A KR 20040041772A
Authority
KR
South Korea
Prior art keywords
steel sheet
powder
slurry
good
strip
Prior art date
Application number
KR1020020069646A
Other languages
Korean (ko)
Other versions
KR100967049B1 (en
Inventor
최규승
우종수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020069646A priority Critical patent/KR100967049B1/en
Priority to EP03811151A priority patent/EP1560938B1/en
Priority to US10/519,227 priority patent/US7435304B2/en
Priority to PCT/KR2003/002412 priority patent/WO2004044251A1/en
Priority to CNB2003801005093A priority patent/CN1325665C/en
Priority to JP2004551259A priority patent/JP4484710B2/en
Publication of KR20040041772A publication Critical patent/KR20040041772A/en
Application granted granted Critical
Publication of KR100967049B1 publication Critical patent/KR100967049B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method for effectively manufacturing high silicon strip having superior magnetic property in large quantities by diffusion annealing the coated silicon strip at high temperature after coating a slurry type Fe-Si based composite compound powder having certain particle size and Si content on the surface of a silicon strip is provided. CONSTITUTION: The method for manufacturing high silicon strip comprises a step of drying the coated strip after coating a slurry type Fe-Si based calcined powder having particle size corresponding to a sieve size of -25 mesh and containing 20 to 70 wt.% of Si on the surface of strip; and diffusion annealing the dried strip at an atmosphere of nitrogen gas containing 20% or more of hydrogen in the temperature range of 1,050 to 1,200 deg.C, wherein the Fe-Si based calcined powder is Fe-Si based composite compound powder, wherein the strip to be coated with the slurry contains 2.0 to 3.3 wt.% of Si, and wherein the strip to be coated with the slurry is dried in the temperature range of 200 to 700 deg.C.

Description

고규소 강판 제조방법{Method for manufacturing a high-silicon steel sheet}Method for manufacturing a high-silicon steel sheet

본 발명은 자기적 특성, 특히 고주파수에서의 자기적 특성이 우수한 고규소 강판 제조방법에 관한 것으로, 보다 상세하게는 Si을 2.0~3.3%범위로 함유하고 있는 강판의 표면에 Fe-Si계 합금분말을 함유한 침규확산용 피복조성물의 슬러리용액을 도포한후 확산소둔함으로써 고Si강판을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for manufacturing a high silicon steel sheet having excellent magnetic properties, particularly magnetic properties at high frequencies, and more specifically, Fe-Si alloy powder on the surface of the steel sheet containing Si in the range of 2.0 to 3.3% The present invention relates to a method for producing a high Si steel sheet by applying a slurry solution of a coating composition for silicic acid diffusion and containing diffusion.

일반적으로, Fe-Si합금에서 규소함량이 증가할수록 철손중에서 이력손, 자왜, 보자력, 자기이방성이 감소하고 최대투자율이 증가하므로 고규소강제품은 우수한 연자성재료라 말할 수 있다. 이때 자왜의 감소 및 최대투자율의 증대는 규소함량의 증가에 따라 무한정 증가하는 것이 아니고 6.5%Si강에서 최고치를 보이며 또한 6.5%Si강은 상용주파수 뿐 만 아니라 고주파영역에서도 자기적 특성이 최고상태에 도달한다는 것은 잘 알려진 사실이다. 그리고 이러한 고규소강의 우수한 고주파수대의 자기적특성을 이용하여 가스터빈용 발전기, 전차전원, 유도가열장치, 무정전 전원장치등의 고주파 리액터와 도금전원, 용접기, X-선 전원등의 고주파변압기등에 주로 적용되어 주로 방향성규소강판의 대체재로 사용되고 있으며, 그 외에도 모터의 소모전력을 줄이고 효율을 높이는 용도로도 적용이 가능하다.In general, high silicon steel products are excellent soft magnetic materials because hysteresis loss, magnetostriction, coercive force, magnetic anisotropy, and maximum permeability increase in iron loss as the silicon content increases in Fe-Si alloy. At this time, the decrease in magnetostriction and increase in maximum permeability do not increase indefinitely with the increase of silicon content and show the highest value in 6.5% Si steel, and 6.5% Si steel has the highest magnetic properties in the high frequency region as well as the commercial frequency. Reaching is well known. And by using the magnetic properties of high frequency band of high silicon steel, it is mainly applied to high frequency reactors such as generators for electric turbines, tram power, induction heating, and uninterruptible power supply, and high frequency transformers such as plating power, welding machine, and X-ray power. It is mainly used as a substitute for oriented silicon steel sheet. In addition, it can be applied to reduce the power consumption of the motor and increase the efficiency.

그런데 Fe-Si강에서 규소함량이 증가할수록 강판의 연신율은 급격히 작아지므로, 3.5%이상의 규소를 함유하는 규소강판을 냉간압연법으로 제조하는 것은 거의 불가능한 것으로 알려져 있다. 따라서 규소함량이 높을수록 우수한 자기적 특성을 얻을 수 있다는 사실을 알고 있음에도 불구하고 냉간압연의 제한 때문에 냉간압연법으로 고규소강판을 제조하지 못하는 실정이므로, 냉간압연법의 한계를 극복 할 수 있는 새로운 대체기술에 대한 연구가 오래 전부터 시도되고 있다.However, as the silicon content in Fe-Si steel increases, the elongation of the steel sheet decreases rapidly. Therefore, it is known that it is almost impossible to manufacture a cold rolled silicon steel sheet containing more than 3.5% of silicon. Therefore, despite the fact that the higher the silicon content, the better magnetic properties can be obtained, due to the limitation of cold rolling, it is not possible to manufacture high-silicon steel sheet by cold rolling, so it is possible to overcome the limitations of cold rolling. Research on alternative technologies has been attempted for a long time.

지금까지 고규소강판을 제조 할 수 있는 방법으로 알려진 기술들은 일특개소 56-3625호등의 단롤 또는 쌍롤을 이용한 고규소강의 직접주조법이 있고, 일 특개소 62-103321호등의 적정온도의 가열상태에서 압연하는 온간압연법, 일특개평 5-171281호등의 내부에 고규소강을 넣고 외부에 저규소강을 넣은 상태에서 압연하는 크래드압연법이 알려져 있으나 이러한 기술들은 아직까지 상용화되지는 못하고 있는 실정이다.Techniques known to produce high silicon steel sheet have been the direct casting method of high silicon steel using single roll or twin roll, such as Japanese Patent Application No. 56-3625, and rolling in a heating state of proper temperature such as Japanese Patent Application No. 62-103321. It is known that the rolling method of rolling in a state in which high silicon steel is put inside and low silicon steel is put in the outside of a hot rolling method, such as Japanese Patent Laid-Open Publication No. 5-171281, but these techniques are not commercialized yet.

현재 고규소화 제품으로서 양산중인 기술은 3%급 무방향성제품을 SiCl4가스를 이용한 화학증착법(CVD법)으로 규소성분을 소재표면에 부화시킨 후 확산소둔시켜 고규소강을 제조하는 기술로서, 이 기술은 일특개소 62-227078 및 미국 USP 3423253등으로 잘 알려져 있다. 그러나 화학증착후 확산소둔처리법은 화학증착기술 자체의 어려움으로 인해 기존 3%Si강 제품에 비해 약5배 이상의 고가격 판매가 불가피하여 우수한 자기적 특성을 갖고 있는 제품임에도 불구하고 대중화 및 실용화에 어려움을 겪고 있다.The technology being mass-produced as a high siliconization product is a technology for producing high silicon steel by incubating the silicon component on the surface of the material by chemical vapor deposition (CVD method) using 3% grade non-oriented products by SiCl4 gas. It is well known as Japanese Pat. No. 62-227078 and US Pat. No. 3,423,253. However, due to the difficulty of chemical vapor deposition technology, the diffusion annealing treatment after chemical vapor deposition is difficult to popularize and commercialize despite the fact that it is inevitable to sell more than 5 times higher price than existing 3% Si steel products. have.

또한, EP1052043A2, JP2000192204, JP2000144248, JP200045025등에서는 분말야금법을 이용하여 고규소강판을 제조하는 기술도 알려져 있으나, 이 기술 또한 고Si함량 때문에 냉간압연함에 제약이 있어 원하는 두께를 갖는 강판을 제조할 수 없다는 문제가 있었다.In addition, EP1052043A2, JP2000192204, JP2000144248, JP200045025 and the like are also known to manufacture high silicon steel sheets using powder metallurgy, but this technique is also limited to cold rolling due to high Si content, so that steel sheets having a desired thickness can be manufactured. There was no problem.

그리고 EP 1052043A2, USP 33634148 및 USP4073668등에서는 Fe-Si 합금분말단독 또는 바인더에 혼합하여, 그 혼합분말을 도포 후 5%이내의 압하율로 압연후 저온에서 장시간소둔법을 제안하고 있으나, 도포후 압연 및 저온 장시간소둔법등의 적용등 대량생산이 대량생산에 적합하지 않다.In addition, EP 1052043A2, USP 33634148, and USP4073668, etc., are mixed with Fe-Si alloy powder alone or a binder, and propose a long time annealing method at low temperature after rolling with a reduction ratio of less than 5% after coating the mixed powder, but after rolling And mass production, such as the application of low temperature long time annealing, are not suitable for mass production.

따라서 본 발명은 상술한 종래기술을 해결하기 위하여 마련된 것으로서, 통상의 냉간압연공정을 통하여 제조된 강판 표면에, 소정의 입도와 Si함량을 갖도록 조성된 Fe-Si 복합화합물분말을 슬러리형태로 도포한후 고온확산소둔함으로써 자기적 특성이 우수한 고Si강판을 대량으로 생산할 수 있는 고규소강판 제조방법을 제공함을 그 목적으로 한다.Accordingly, the present invention has been made to solve the above-described prior art, in which the Fe-Si composite compound powder, which is formed to have a predetermined particle size and Si content, is applied to the surface of a steel sheet manufactured through a common cold rolling process in the form of a slurry. The purpose of the present invention is to provide a high silicon steel sheet manufacturing method capable of producing a large amount of high Si steel sheet having excellent magnetic properties by high temperature diffusion annealing.

상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

강판의 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 함유하는Fe-Si계 소성분말을 슬러리 형태로 도포한후 건조시키는 단계 ; 그리고 상기 건조된 강판을 1050~1200℃, 20%이상의 수소함유 질소가스 분위기하에서 확산소둔처리하는 단계;를 포함하는 고규소강판 제조방법에 관한 것이다.Applying to the surface of the steel sheet a slurry of Fe-Si-based powder containing a particle size of -25mesh and containing Si in a range of 20 to 70% by weight in the form of a slurry, followed by drying; And a step of diffusing annealing of the dried steel sheet in a 1050-1200 ° C., 20% or more hydrogen-containing nitrogen gas atmosphere.

또한 본 발명은,In addition, the present invention,

Si 2.0~3.3중량%를 함유한 강판 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 포함하는 Fe-Si계 소성분말을 슬러리 형태로 도포한후 건조시키는 단계 ; 그리고 그 강판내 Si이 표면결함을 발생함이 없이 실질적으로 균일하게 4.0중량% 이상 확산 침투되도록 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 고온확산소둔시키는 단계;를 포함하는 고규소강판 제조방법에 관한 것이다.Applying to the surface of the steel sheet containing 2.0 to 3.3% by weight of Si, Fe-Si-based small powder containing a particle size of -25mesh in a range of 20 to 70% by weight in the form of a slurry, followed by drying; And hot-diffusion annealing the dried steel sheet in a hydrogen-containing nitrogen gas atmosphere of 20% or more so that Si in the steel sheet diffuses and penetrates substantially uniformly 4.0% by weight or more without generating surface defects. It relates to a manufacturing method.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

Si금속을 통상 950℃이상의 고온의 수소 또는 질소분위기하에서 Fe금속과 접촉하면 Si성분은 Fe금속 소재내부로 확산해 들어가고, Fe금속은 초기 Si금속부로 확산해 들어가는 상호확산반응이 일어나서 양 농도를 균일하게 하려는 성질을 갖고 있다. 따라서 Si 금속분말을 강판의 표면에 접촉시켜 고온에서 소둔하면, Si농도차이 때문에 분말중 Si는 강판내로 이동하고 강판중 Fe가 분말쪽으로 이동하는 상호 확산반응이 진행된다.When Si metal is contacted with Fe metal under high temperature hydrogen or nitrogen atmosphere, above 950 ℃, Si component diffuses into Fe metal material and Fe metal diffuses into initial Si metal part so that the concentration is uniform. It has the nature to make it. Therefore, when the Si metal powder is brought into contact with the surface of the steel sheet and annealed at a high temperature, the interdiffusion reaction in which Si in the powder moves into the steel sheet and Fe in the steel sheet moves toward the powder due to the difference in Si concentration.

Fe와 Si의 상호확산속도를 비교하면, Si 확산속도가 Fe에 비해 1050~1200℃온도영역에서 거의 2배정도 빠르며, 이에 따라, 상호 불균일한 확산상태인 크켄달 이펙트(Kirkendall Effect)라는 현상이 발생한다. 그런데 이러한 불균일한 확산상태는 확산반응부 계면에 불균일상태의 결함을 만들거나 반응부 표면에 FeSi2, FeSi, Fe5Si3및 Fe3Si등과 같은 여러가지 화합물이 생성시켜 제조된 소재의 자기적 특성을 열화시키는 요인으로 작용한다. 따라서 상술한 Si함유 분말을 고온확산을 통하여 표면결함이 없는 균일한 조성의 고규소 강판제품을 생산하는 것은 사실상 불가능한 상태였다.Comparing the diffusion rate of Fe and Si, the diffusion rate of Si is almost twice faster than that of Fe in the temperature range of 1050 ~ 1200 ℃, resulting in the phenomenon of mutually non-uniform diffusion, the Kenkendall Effect. do. However, the non-uniform diffusion state causes the defects of the non-uniform state at the interface of the diffusion reaction part, or the magnetic properties of the material produced by generating various compounds such as FeSi 2 , FeSi, Fe 5 Si 3 and Fe 3 Si on the reaction part surface. It acts as a deteriorating factor. Therefore, it was practically impossible to produce a high-silicon steel sheet product having a uniform composition without surface defects through the high-temperature diffusion of the Si-containing powder described above.

그러므로 본 발명자는 상기 문제점을 해결하기 위하여 Si분말과 Fe분말을 이용한 확산원리등에 대한 연구를 거듭하였으며, 상술한 확산반응부에서의 결함들이 Fe대비 Si의 빠른 확산속도에 기인함에 착안하여 본 발명을 제안하는 것이다.Therefore, in order to solve the above problems, the present inventors have studied the diffusion principle using the Si powder and the Fe powder. I would suggest.

즉, 본 발명은 가능한 한 Fe에 대하여 Si의 확산을 상대적으로 억제할 수 있도록 침규제로 이용되는 Si함유 분말제의 입도 및 조성을 제어함과 아울러, 그 제조조건을 설정함을 특징으로 한다. 다시 말하면, 본 발명은 강판 표면의 확산 반응부에 Fe와 Si가 결합된 복합화합물을 형성함이 거의 없이 Si원자가 Fe원자와 상호 동일량씩 치환되는 확산이 가능하도록 Si함유 분말의 입도와 조성을 제어하고, 그 제조조건을 설정함을 특징으로 한다.That is, the present invention is characterized by controlling the particle size and composition of the Si-containing powder used as the dispersing agent so as to relatively suppress the diffusion of Si to Fe as much as possible, and setting the manufacturing conditions thereof. In other words, the present invention controls the particle size and composition of the Si-containing powder so that the Si atoms can be diffused by the same amount with the Fe atoms almost without forming a complex compound in which Fe and Si are bonded to the diffusion reaction portion on the surface of the steel sheet. It is characterized by setting the manufacturing conditions.

본 발명에서 Si원자의 확산량 제어를 위하여 채용한 단위기술을 구체적으로설명하면 다음과 같다.Hereinafter, the unit technology employed for controlling the diffusion amount of Si atoms in the present invention will be described in detail.

첫째, 본 발명에서는 Si성분의 확산속도를 보다 늦추기 위해, Si금속 단독분말을 침규학산용 도포제로 사용하지 않고 Si금속이 Fe금속과 결합된 화합물형태인 FeSi2, FeSi 또는 Fe5Si3상태의 Fe-Si계 소성분말물을 만들어 이를 침규확산용 도포제의 기본성분으로 이용한다. 더 나아가 이러한 Fe-Si계 소성분말이 Fe-Si계 화합물형태로 존재할 수 있도록 그 분말중 Si함량을 70중량%이하로 제한하고 있다.First, in order to slow down the diffusion rate of the Si component in the present invention, SiSi is a compound form of FeSi 2 , FeSi or Fe 5 Si 3 in which the Si metal is combined with Fe metal without using Si powder alone as a coating agent for silicic acid. Fe-Si based small component powder is made and used as basic component of coating agent for spreading silicic acid. Further, the content of Si in the powder is limited to less than 70% by weight so that the Fe-Si-based powder may exist in the form of Fe-Si-based compound.

둘째, 본 발명에서는 Si원자의 확산을 억제하기 위해 Fe-Si계 소성분말의 입경을 미세화한 후, 이를 강판 표면에 도포함으로서 소재와 금속분말과의 표면 접촉면적, 즉 상호 반응면적을 판 접촉시 보다 10~30%이하로 축소시킬 수 있었고 이 미세한 침규 확산용 조성물이 소재 표면에 견고하게 부착시킬 수 있도록 하였다. 구체적으로 본 발명에서는 상기 Fe-Si계 소성분말의 입도를 -25mesh로 한정한다.Secondly, in the present invention, in order to suppress diffusion of Si atoms, the particle size of the Fe-Si-based small powder is refined and then coated on the surface of the steel sheet, so that the surface contact area between the material and the metal powder, that is, the mutual reaction area, can be obtained. It could be reduced to less than 10-30% and this fine acupuncture diffusion composition was able to firmly adhere to the material surface. Specifically, in the present invention, the particle size of the Fe-Si-based small powder is limited to -25 mesh.

셋째, 본 발명에서는, 상기와 같이 마련된 Fe-Si계 소성분말을 슬러리상태로 강판 표면에 도포한 후, 고온 확산소둔시킬 때 그 강판 표면부에 얇은 산화막이 형성될 수 있도록 분위기가스를 제어한다. 이러한 표면산화물층은 상호확산반응의 방해막으로 작용하므로 Si원자가 소재로 확산하는 것을 축소 억제할 수 있게 한다.Third, in the present invention, the Fe-Si-based small powder prepared as described above is applied to the surface of the steel sheet in the slurry state, and then controlled to the atmosphere gas so that a thin oxide film can be formed on the surface of the steel sheet during high temperature diffusion annealing. Since the surface oxide layer acts as a barrier for the interdiffusion reaction, it is possible to reduce the diffusion of Si atoms into the material.

이하, 본 발명의 고규소강판 제조방법을 상세히 설명한다.Hereinafter, the high silicon steel sheet manufacturing method of the present invention will be described in detail.

먼저, 본 발명에서 침규소화를 위해 강판에 도포되어질 Fe-Si계 소성분말제조공정을 설명한다.First, the Fe-Si-based small component manufacturing process to be applied to the steel sheet for silicication in the present invention will be described.

본 발명의 Fe-Si계 소성분말은 Fe분말과 Si분말을 상호 혼합하여 질소나 수소 또는 수소와 질소의 혼합가스 하에서 1000~1200℃의 온도에서 3~7시간 소성하여 제조할 수 있다. 그러나 이는 단순한 예시로써 본 발명은 이에 제한되는 것은 아니며, 여러 다양한 방법으로 이러한 분말을 제조할 수 있다.The Fe-Si-based small component powder of the present invention may be prepared by mixing Fe powder and Si powder with each other and firing at a temperature of 1000 to 1200 ° C. under nitrogen, hydrogen, or a mixed gas of hydrogen and nitrogen for 3 to 7 hours. However, this is merely an example, and the present invention is not limited thereto, and the powder may be prepared by various methods.

이때, Fe 분말과 Si 분말의 배합량에 따라 소성분말의 화합물성분이 변화되며, 이론적으로는 50%Si+50%Fe시의 경우 FeSi2의 화합물이 생성되며, 34%Si+66%Fe시에는 FeSi의 화합물이, 25%Si+75%Fe시에는 Fe5Si3의 화합물, 그리고 14%Si+86%Fe시에는 Fe3Si의 화합물로 존재하게 된다. 그러나 실제 소성시에는 초기 혼합상태에 따라 여러 화합물이 조금씩 혼재되어 있을 수 있다. 특히, Fe와 Si 분말의 혼합에 의한 소성반응시 Si분말과 Fe분말이 접촉되는 표면으로부터 상호확산하여 침입하는 상태로 반응이 진행된다. 그러므로 다소 Si 배합량이 많아도 대부분의 소성분말 표면은 Fe가 확산된 상태인 FeSi2화합물이나 FeSi 화합물이 존재하고 그 내부에 순 Si가 존재하는 상태가 되므로, 그 표면에는 대부분 Fe성분과 결합된 Fe-Si계 화합물이 존재하게 된다.At this time, the compound component of the small powder powder is changed according to the amount of the Fe powder and the Si powder. In theory, the compound of FeSi 2 is produced in the case of 50% Si + 50% Fe, and in the case of 34% Si + 66% Fe The FeSi compound is present as a compound of Fe 5 Si 3 at 25% Si + 75% Fe and as a compound of Fe 3 Si at 14% Si + 86% Fe. However, in actual firing, several compounds may be mixed little by little depending on the initial mixing state. In particular, during the calcination reaction by mixing Fe and Si powder, the reaction proceeds in a state in which the Si powder and the Fe powder are interspersed and intruded from each other. Therefore, even if the amount of Si blended is large, most of the small powder surface has FeSi 2 compound or FeSi compound in which Fe is in a diffused state and pure Si exists in the surface thereof. Si-based compound is present.

한편, 본 발명에서는 상기와 같이 마련된 Fe-Si계 소성분말이 Fe-Si계 화합물형태로 존재할 수 있도록 그 분말중 Si함량을 70중량%이하로 제한할 것이 요구된다. 왜냐하면 상기 Fe-Si계 분말중 Si 함량이 70%를 초과하면 분말의 주성분이FeSi2이외에도 과잉의 금속 Si상의 혼합물속에 존재하므로 금속 Si성분이 소재표면에 접촉되어 확산소둔시 표면에 결함부 생성가능성이 크며, 아울러 침규량의 제어가 어려워질 수 있다.On the other hand, in the present invention, it is required to limit the Si content in the powder to 70% by weight or less so that the Fe-Si-based small powder prepared as described above can exist in the form of Fe-Si-based compound. If the Si content of the Fe-Si powder exceeds 70%, since the main component of the powder is present in the mixture of excess metal Si phase in addition to FeSi 2 , the metal Si component is in contact with the surface of the material, and thus defects may be generated on the surface during diffusion annealing. Is large, and control of the amount of silencing can be difficult.

또한 Si함량이 20%미만이면, Si 자체함량이 너무 적어 확산속도가 너무 느려질 수 있으며, 또한 자체밀도가 커서 이러한 소성분말을 슬러리 형태로 만들어 현장에서 소재표면에 도포시 분산성이 저조할 수 있으므로, 상기 Fe-Si계 소성분말중 Si함량을 20~70%로 제한함이 바람직하다.In addition, if the Si content is less than 20%, the Si self content is too small, so the diffusion rate may be too slow. Also, since the self density is large, these small powders may be formed into a slurry, and thus dispersibility may be poor when applied to the material surface in the field. In addition, it is preferable to limit the Si content in the Fe-Si-based small component powder to 20 to 70%.

상기와 같이 제조된 Fe-Si계 소성분말을 강판의 침규제로 사용하는 경우, 이러한 소성분말을 슬러리상태로 만들어 이를 롤코타를 이용하여 강판표면에 코팅함이 생산현장에서 가장 경제적이다. 그런데 Fe-Si계 소성분말 입도가 가능한 한 미세하여야 현장에서의 코팅작업시 도포작업성이 우수해지고 확산반응시의 소재의 표면형상 관리측면에서도 유리하다.In the case of using the Fe-Si-based small component powder prepared as described above as a precipitating agent of the steel sheet, it is most economical in the production site to make such small powder into a slurry state and coat it on the surface of the steel sheet using a roll coater. However, the small particle size of Fe-Si-based powder should be as fine as possible, so that the coating workability is excellent in the field coating work and is advantageous in terms of surface shape management of the material during the diffusion reaction.

따라서 본 발명에서는 소성반응 후 제조된 Fe-Si계 소성분말은 고온장시간 반응에서 다소 상호 융착된 반덩어리 상태로 있으므로, 그 입도를 미세화함이 바람직하며, 이러한 분말의 입도크기가 미세화 될수록 현장 도포작업성 측면등에서 유리하다. 다만 미립 분말화 작업 생산성을 고려하여 그 입도를 -25mesh로 한정하는 보다 바람직하다.Therefore, in the present invention, since the Fe-Si-based small powder prepared after the calcination reaction is in a half-lump state fused to each other in a high temperature and long time reaction, it is preferable to refine the particle size, and as the particle size of the powder becomes fine, it is applied on site. It is advantageous from the side of the castle. However, it is more preferable to limit the particle size to -25mesh in consideration of the granulated powder productivity.

한편 본 발명에서는 상기와 같이 그 조성과 입도가 제어된 Fe-Si 소성분말을 물과 혼합된 슬리러리 형태로 만든 후, 이를 강판의 표면에 도포한다.Meanwhile, in the present invention, the Fe-Si small component powder whose composition and particle size are controlled as described above is made into a slurry form mixed with water, and then applied to the surface of the steel sheet.

본 발명은 이러한 슬러리를 형성함에 있어서, 구체적인 용매성분등에 제한되는 것은 아니며, 바람직하게는, 물에서의 분상성이 극히 우수한 콜로이달입자 크기의 극미립 실입자인 콜로이달 실리카용액이나 졸상태의 알루니졸 입자 또는 초미립 실리카입자등을 상기 Fe-Si계 소성분말과 배합하여 슬러리를 제조할 수 있다.The present invention is not limited to a specific solvent component in forming such a slurry. Preferably, the colloidal silica solution or the sol state of the colloidal silica solution, which is an ultra fine particles having a colloidal particle size having excellent powder separation in water, is excellent. A slurry may be prepared by blending Lonisol particles or ultrafine silica particles with the Fe-Si-based small powder.

본 발명은 또한 상기 Fe-Si계 소성분말이 도포될 강판에 특히 제한되는 것은 아니며, 통상적인 냉간압연법을 이용한 방향성 규소강판이나 무방향성 규소강판 제조공정을 통하여 제조될 수 있는 강판을 이용할 수 있다. 예컨데, 강슬라브 제조, 재가열한후 열간압연, 열연판소둔 및 냉간압연으로 두께조정, 탈탄소둔, 선택적으로 질화소둔, 2차재결정을 위한 고온소둔 및 최종 절연코팅공정을 통하여 제조되는 통상적인 방향성 규소강판을 이용할 수도 있으며, 통상적인 무방향성 규소강판 제조공정에서 얻어지는 냉연강판등을 이용할 수도 있다.The present invention is also not particularly limited to the steel sheet to which the Fe-Si-based small powder is to be applied, it is possible to use a steel sheet which can be produced through the production process of the oriented silicon steel sheet or non-oriented silicon steel sheet using a conventional cold rolling method . For example, conventional oriented silicon fabricated through steel slab manufacture, reheating, hot rolling, hot rolled sheet annealing and cold rolling, thickness adjustment, decarbonization annealing, optionally annealing, hot annealing for secondary recrystallization and final insulation coating A steel sheet may be used, or a cold rolled steel sheet obtained in a conventional non-oriented silicon steel sheet manufacturing process may be used.

본 발명은 또한 상기 슬러리가 도포될 강판 조성에 제한되는 것은 아니나, 적어도 상기 강판은 Si을 2.0~3.3%로 함유하고 있는 것이 바람직하다. 왜냐하면 그 Si함량이 2.0%미만이면 침규소 확산제인 Fe-Si계 분말을 이용한 침규확산반응시 너무 장시간이 소요될 뿐 만 아니라 경제성측면에서도 불리하며, 3.3%를 초과하는 경우 강이 취약해져 냉간압연성이 극히 나빠질 수 있기 때문이다.The present invention is also not limited to the steel sheet composition to which the slurry is to be applied, but at least the steel sheet preferably contains 2.0 to 3.3% of Si. If the Si content is less than 2.0%, it takes not only too long time but also economical disadvantages in the precipitation diffusion reaction using Fe-Si powder, which is a silicon diffusion agent, and if it exceeds 3.3%, the steel is vulnerable to cold rolling. This can be extremely bad.

다음으로, 본 발명에서는 상기 슬러리가 도포된 강판을 건조시킨 후 대형코일로 권취한다. 이때, 건조온도를 200~700℃로 제한함이 바람직한데, 이는 그 건조온도 200℃미만에서는 건조시간이 너무 길어져 생산성이 좋지 않으며, 700℃를 초과하면 소재 표면에 산화물 생성 우려가 있기 때문이다.Next, in the present invention, the steel sheet coated with the slurry is dried and then wound into a large coil. At this time, it is preferable to limit the drying temperature to 200 ~ 700 ℃, because the drying time is too long at the drying temperature of less than 200 ℃ is not good productivity, if the temperature exceeds 700 ℃ there is a fear of generating oxide on the material surface.

이어, 상기 건조된 강판을 소둔로에 장입하여 고온 확산소둔시키며, 이때, 그 분위기가스를 20%이상의 수소를 함유한 나머지를 질소가스 분위기로 제어할 것이 필요하다. 왜냐하면 그 수소함량이 20%미만시에는 소재표면에 다소 두껍고 불균일한 파이어라이트(Fayalite) 성분의 산화막층이 형성되어 소재내부로의 침규확산반응이 불균일해지고, 또한 소재 성분중의 일부라도 Al성분이 존재시 소둔후 냉각과정 중에서 AlN 석출물을 형성하여 철손이 급격히 열화 될 수 있기 때문이다.Subsequently, the dried steel sheet is charged into an annealing furnace to be subjected to high temperature diffusion annealing. In this case, it is necessary to control the remainder containing 20% or more of hydrogen to a nitrogen gas atmosphere. If the hydrogen content is less than 20%, a rather thick and non-uniform oxide layer of Fayalite is formed on the surface of the material, resulting in uneven deposition reaction inside the material. This is because iron loss may rapidly deteriorate due to the formation of AlN precipitates during the cooling process after annealing.

또한 이러한 확산소둔으로 강판내 Si이 표면결함을 발생함이 없이 실질적으로 균일하게 4.0~6.5중량%범위로 확산침투되도록 충분한 소둔온도와 시간에서 상기 Fe-Si계 소성분말이 도포된 강판을 확산소둔함이 바람직하다.In addition, the diffusion annealing of the steel sheet coated with the Fe-Si-based powder powder at an annealing temperature and time sufficient to diffuse and penetrate substantially uniformly in the range of 4.0 to 6.5% by weight without causing surface defects in the steel sheet by diffusion annealing. It is preferable to.

구체적으로 본 발명에서는 상기 소둔온도를 1050~1200℃로 제한함이 바람직하다. 만일 그 소둔온도가 1050℃이하이면 침규속도가 너무 느려 확산에 장시간 소요될 뿐만 이니라 침규반응 경계면의 표면형상이 조악하게 될 수 있어 자성이 열화 될 가능성이 있다. 그리고 1200℃를 초과하면 반응속도가 너무 빠름과 아울러, 권취코일의 표면끼리 판붙음현상이 나타나서 이후 분리작업시 작업성이 나빠질 수 있다.Specifically, in the present invention, it is preferable to limit the annealing temperature to 1050 ~ 1200 ℃. If the annealing temperature is lower than 1050 ° C., the soaking rate is too slow to take a long time to spread, and the surface shape of the soaking reaction interface may be coarse, which may deteriorate the magnetism. And if it exceeds 1200 ℃ and the reaction rate is too fast, the surface of the coiling coil appears between the appearance of the coiling work may be worse after work separation.

그리고 상기 소둔시간은 1~10시간으로 제한함이 바람직한데, 이는 그 소둔시간이 1시간미만에서는 침규량이 적고 또한 균일관리에 어려움이 있고, 10시간을 초과하면 침규량이 너무 과다하여 적정관리가 어렵고 과잉의 장시간 반응으로 소재표면의 형상을 악화시킬 수 있기 때문이다.In addition, the annealing time is preferably limited to 1 to 10 hours, which means that the annealing time is less than 1 hour and the amount of deposition is difficult and difficult to control uniformly. This is because the shape of the surface of the material may be deteriorated by excessive long time reaction.

한편, 본 발명에서는 상기와 같이 침규확산소둔처리된 강판의 표면에 다시 절연코팅층을 형성할 수도 있다. 예컨데, 상기 강판이 방향성 규소강판인 경우, 마그네슘, 알미늄 및 칼슘의 혼합인산염과 콜로이달실리카성분에 미량의 무수크롬산으로 구성된 절연코팅제를 도포하여 형성하거나 , 타발성 향상을 위해 크롬산염과 아크릴계수지중심의 유무기 복합코팅제를 도포하여 형성될 수도 있으나, 본 발명은 이러한 절연코팅제의 구체적인 조성등에 제한되는 것은 아니다. 그리고 상기 강판이 무방향성 규소강판이면, 크롬산염 및 아크릴계수지를 주성분으로 하는 유무기복합코팅제를 도포함으로써 절연코팅층을 형성할 수도 있을 것이다.Meanwhile, in the present invention, the insulating coating layer may be formed again on the surface of the steel sheet subjected to the immersion diffusion annealing as described above. For example, when the steel sheet is a oriented silicon steel sheet, it is formed by applying an insulating coating agent consisting of a small amount of chromic anhydride to a mixed phosphate and colloidal silica of magnesium, aluminum and calcium, or to improve the punchability of the chromate and acrylic resin center The organic-inorganic composite coating agent may be formed by coating, but the present invention is not limited to the specific composition of the insulating coating agent. If the steel sheet is a non-oriented silicon steel sheet, the insulating coating layer may be formed by applying an organic-inorganic composite coating agent containing chromate and an acrylic resin as a main component.

이하, 실시예를 통하여 본 발명을 상세히 설명하나, 이러한 실시예는 발명의 가능한 일실시예를 나타내는 것으로서 본 발명의 이러한 구체적인 실시예의 기재내용에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples, but these examples are not limited by the description of these specific embodiments of the present invention as one possible embodiment of the present invention.

(실시예 1)(Example 1)

통상의 방향성 규소강판제조공정을 통하여, 중량%로 Si 3.05%, Mn 0.12%, Cu 0.025%, Cr 0.13%, P 0.013%, 잔여 철 및 불가피한 불순물을 포함하여 이루어진0.23mm두께의 방향성 규소강판제품을 마련하였다. 그리고 이렇게 제조된 강판표면의 절연피막층을 제거한후, 하기 표 1과 같이 그 입도와 조성을 달리하는 Fe-Si계 소성분말을 콜로이달 실리카용액에 분산시켜 슬러리형태로 그 표면에 도포하였다.0.23mm thick oriented silicon steel sheet, which contains 3.05% Si, 0.12% Mn, 0.025% Cu, 0.13% P, 0.013% P, residual iron and unavoidable impurities in weight% through the usual manufacturing process of oriented silicon steel sheet Prepared. Then, after removing the insulating coating layer on the surface of the steel sheet thus prepared, as shown in Table 1, Fe-Si based small powders having different particle sizes and compositions were dispersed in a colloidal silica solution and applied to the surface in the form of a slurry.

한편, 여기에서 이용된 용매 콜로이달 실리카용액은 시중에서 유통되는 통상의 30% 콜로이달 실리카용액 제품이며, 이때의 배합비는 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하였다.On the other hand, the solvent colloidal silica solution used herein is a commercially available 30% colloidal silica solution product in the market, and the mixing ratio is 100 parts by weight of Fe-Si powder, so that the silica is 20 parts by weight based on the solid content The colloidal silica solution was mixed.

이렇게 Fe-Si계 분말이 도포된 강판을 400℃의 온도에서 건조한 후, 그 표면의 도포상태를 육안으로 관찰 후 권취하여 대형코일로 만들었다. 그리고 권취된 강판에 대하여 50%수소함유 질소분위기에서 1125℃에서 4시간동안 확산소둔하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한후, 표면의 확산소둔후의 상태를 관찰한 다음, 마그네슘, 알미늄 및 칼슘의 혼합인산염과 콜로이달실리카성분에 미량의 무수크롬산으로 구성된 코팅제를 도포하여 절연코팅층이 형성된 방향성 규소강판을 제조하였다.The steel sheet coated with Fe-Si-based powder was dried at a temperature of 400 ° C., and then visually observed after coating on its surface to make a large coil. The coiled steel sheet was diffused and annealed at 1125 ° C. for 4 hours in a 50% hydrogen-containing nitrogen atmosphere. Then, after removing the unreacted material from the surface of the steel sheet after the immersion diffusion reaction, the state after the surface annealing was observed. The coated silicon phosphate and colloidal silica components of magnesium, aluminum and calcium were coated with a coating agent consisting of a small amount of chromic anhydride to prepare a grain-oriented silicon steel sheet having an insulating coating layer.

이렇게 제조된 제품들의 소재Si함량과 자기적특성을 조사하였으며, 자기적 특성은 단판측정기로 철손값 및 자속밀도(B8)값을 조사하여 그 결과를 표 1에 나타냈다. 여기서 철손값 W10/50은 50Hz, 1.0Tesla에서의 철심손실을, W10/400은 400Hz, 1.0Tesla에서, W5/1000은 1000Hz, 0.5Tesla에서의 철심손실을 나타내며, 자속밀도값 B8은 800A-turn/m의 자화력을 받았을 때 발생하는 단위면적당의 자속수를 Tesla로나타며, 그리고 소재 Si량은 습식분석 결과치이다.The Si content and magnetic properties of the manufactured products were investigated. The magnetic loss values of iron loss and magnetic flux density (B8) were measured using a single plate measuring instrument. The iron loss value W 10/50 is 50Hz, the core loss in the 1.0Tesla, W 10/400 at 400Hz, 1.0Tesla, W 5/1000 represents the core loss at 1000Hz, 0.5Tesla, the magnetic flux density value B8 is The magnetic flux per unit area generated when the magnetizing force of 800A-turn / m is received is represented by Tesla, and the amount of Si of the material is the result of wet analysis.

구분division Fe-Si분말Fe-Si powder 도포상태Application state 자기적 특성Magnetic properties 표면상태Surface condition 소재Si(%)Material Si (%) Si(%)Si (%) 입도(mesh)Mesh B8(Tesla)B 8 (Tesla) W10/50(W/Kg)W 10/50 (W / Kg) W10/400(W/Kg)W 10/400 (W / Kg) W5/1000(W/Kg)W 5/1000 (W / Kg) 비교예1Comparative Example 1 1212 -325-325 양호Good 1.881.88 0.320.32 7.37.3 8.78.7 양호Good 3.73.7 발명예1Inventive Example 1 2525 -325-325 양호Good 1.791.79 0.300.30 6.76.7 7.47.4 양호Good 4.34.3 발명예2Inventive Example 2 4545 -325-325 양호Good 1.711.71 0.270.27 6.06.0 6.76.7 양호Good 5.85.8 발명예3Inventive Example 3 62.562.5 -325-325 양호Good 1.691.69 0.260.26 5.85.8 6.46.4 양호Good 6.26.2 비교예2Comparative Example 2 7575 -325-325 양호Good 1.571.57 0.350.35 7.97.9 8.68.6 작은HoleSmall 7.47.4 비교예3Comparative Example 3 8585 -325-325 양호Good 1.551.55 0.360.36 8.28.2 9.49.4 HoleHole 7.97.9 비교예4Comparative Example 4 100100 -325-325 양호Good 1.521.52 0.380.38 8.88.8 10.910.9 HoleHole 8.58.5 비교예5Comparative Example 5 5050 +150+150 얇음tenuity 1.731.73 0.320.32 7.17.1 7.97.9 결함flaw 4.94.9 비교예6Comparative Example 6 5050 +250+250 불균일Heterogeneity 1.711.71 0.320.32 6.96.9 7.57.5 결함flaw 5.25.2 발명예4Inventive Example 4 5050 -325-325 양호Good 1.701.70 0.270.27 6.16.1 6.46.4 양호Good 5.95.9 발명예5Inventive Example 5 5050 -450-450 양호Good 1.701.70 0.260.26 6.06.0 6.46.4 양호Good 6.06.0

상기 표1에 나타난 바와 같이, Fe-Si계 소성분말에서 Si함량이 적정이 관리된 본 발명예(1~5)는 소재 Si부화량이 증가되어 상용주파수 뿐만 아니라 고주파에서의 철손도 극히 우수하였으며, 그 도포상태도 양호하였다.As shown in Table 1, Examples 1 to 5 of the present invention (1 to 5) in which the Si content was properly controlled in the Fe-Si-based small powder were increased, and the iron loss at the high frequency as well as the commercial frequency was extremely excellent. The application state was also favorable.

이에 반하여, Fe-Si게 소성분말에서 Si함량이 적은 비교예(1)은 소재의 침규량이 너무 적어서 자성 개선효과가 미약하고, Si함량이 70%이상인 비교재(2~4)는 Si부화량은 많으나 소재 표면에 hole등의 결함이 생성되어 소재의 자성은 오히려 악화되었다.On the contrary, the comparative example (1) having a small content of Si in the Fe-Si small powder had a small amount of deposition of the material, so that the magnetic improvement effect was insignificant, and the comparative material (2-4) having a Si content of 70% or more had a Si enrichment amount. Although the defects such as holes are formed on the surface of the material, the magnetism of the material is rather deteriorated.

한편 Fe-Si계 소성분말의 입도가 본 발명의 범위를 벗어난 비교예(5~6)은 슬러리상태로 도포시 그 도포두께가 얇고 불균일하였으며, 이에 따라, 소재 Si부화량이 적고 또한 소재 표면의 다수 결함이 관찰되어 자성개선정도가 미약하거나 악화되는 경향이 나타나는등 상대적으로 저조한 품질특성을 나타내었다.On the other hand, the comparative examples (5 to 6) in which the particle size of the Fe-Si-based small powder was outside the scope of the present invention had a thin and uneven coating thickness when applied in a slurry state. Defects were observed to show relatively poor quality characteristics such as weak or deteriorated magnetic improvement.

(실시예 2)(Example 2)

중량%로 Si 2.9%, Mn 0.022, Al 0.3%, Sn 0.025%, P 0.003%, C 0.0025%, S 0.0011%, N 0.0003%, 잔부 철 및 불가피한 불순물을 포함하여 조성된 강슬라브를 1220℃에서 재가열한후 열간압연하여 2.5mm두께의 열간압연판을 제조하였다. 이어, 1000℃에서 5분간 열연판소둔하고 산세처리한 후 최종두께인 0.20mm로 냉간압연한 후, 그 표면에 부착된 압연유를 제거하였다.By weight steel slab composed of Si 2.9%, Mn 0.022, Al 0.3%, Sn 0.025%, P 0.003%, C 0.0025%, S 0.0011%, N 0.0003%, balance iron and inevitable impurities at 1220 ℃ After reheating and hot rolling, a hot rolled sheet having a thickness of 2.5 mm was prepared. Subsequently, after hot-rolled sheet annealing at 1000 DEG C for 5 minutes and pickling treatment, it was cold rolled to a final thickness of 0.20 mm, and then the rolled oil adhered to the surface was removed.

이와 같이 제조된 다수의 냉연판 표면에 하기 표 2과 같이 조성된 Fe-Si계 소성분말을 콜로이달 실리카용액에 분산시켜 슬러리형태로 도포하였다. 여기서 사용한 콜로이달 실리카용액은 시중에서 유통되는 통상의 30% 콜로이달 실리카용액을 이용하였으며, 이때의 상호 배합비는 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하였다.The Fe-Si-based small component powders prepared as shown in Table 2 on the surface of the plurality of cold rolled plates thus prepared were dispersed in a colloidal silica solution and applied in a slurry form. As the colloidal silica solution used here, a commercially available 30% colloidal silica solution was used. The mutual mixing ratio is 100 parts by weight of Fe-Si powder, and the colloidal so that the silica is 20 parts by weight based on the solid content. The silica solution was mixed.

이렇게 Fe-Si계 소성분말이 도포된 강판을 400℃의 온도에서 건조한 후, 그 표면 도포상태를 육안으로 관찰하였으며, 이어, 권취하여 대형코일로 만들었다. 그리고 50%수소함유 질소분위기에서 1125℃에서 4시간동안 확산소둔하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거하고, 소재 표면의 확산소둔후의 상태를 관찰한 다음, 크롬산염 및 아크릴계수지를 주성분으로 하는 유무기복합코팅제를 도포하여 절연코팅층이 형성된 무방향성 고규소 강판을 제조하였다The Fe-Si-based small powder coated steel sheet was dried at a temperature of 400 ° C., and then the surface coating state was visually observed, followed by winding to make a large coil. After diffusion annealing at 1125 ° C. for 4 hours in a 50% hydrogen-containing nitrogen atmosphere, the unreacted material on the surface of the steel sheet after the immersion diffusion was removed and the state after diffusion annealing on the surface of the material was observed. A non-oriented high silicon steel sheet having an insulating coating layer was prepared by applying an organic-inorganic composite coating agent containing a resin as a main component.

이와 같이 제조된 제품들에서의 Si함량과 자기적 특성등을 조사하여 하기 표2에 나타내었으며, 이때 그 구체적인 특성 평가기준은 실시예 1과 동일하다.Si content and magnetic properties of the products thus prepared are investigated and shown in Table 2 below, wherein the specific characteristic evaluation criteria are the same as in Example 1.

구분division Fe-Si분말Fe-Si powder 도포상태Application state 자기적 특성Magnetic properties 표면상태Surface condition 소재Si(%)Material Si (%) Si(%)Si (%) 입도(mesh)Mesh B8(Tesla)B 8 (Tesla) W10/50(W/Kg)W 10/50 (W / Kg) W10/400(W/Kg)W 10/400 (W / Kg) W5/1000(W/Kg)W 5/1000 (W / Kg) 비교예1Comparative Example 1 1212 -325-325 양호Good 1.461.46 0.800.80 11.4511.45 11.0611.06 양호Good 3.53.5 발명예1Inventive Example 1 2525 -325-325 양호Good 1.381.38 0.720.72 10.2410.24 10.0110.01 양호Good 4.24.2 발명예2Inventive Example 2 5050 -325-325 양호Good 1.321.32 0.640.64 9.149.14 8.988.98 양호Good 5.65.6 발명예3Inventive Example 3 62.562.5 -325-325 양호Good 1.281.28 0.620.62 8.528.52 8.438.43 양호Good 6.06.0 비교예2Comparative Example 2 7575 -325-325 양호Good 1.231.23 0.710.71 11.0211.02 11.2311.23 작은HoleSmall 6.86.8 비교예3Comparative Example 3 8585 -325-325 양호Good 1.211.21 0.730.73 11.1111.11 11.5211.52 HoleHole 7.17.1 비교예4Comparative Example 4 100100 -325-325 양호Good 1.201.20 0.740.74 11.3611.36 12.0212.02 HoleHole 7.77.7 비교예5Comparative Example 5 5050 +150+150 얇음tenuity 1.361.36 0.700.70 10.1210.12 9.969.96 결함flaw 4.54.5 비교예6Comparative Example 6 5050 +250+250 불균일Heterogeneity 1.351.35 0.680.68 9.889.88 9.759.75 결함flaw 4.84.8 발명예4Inventive Example 4 5050 -325-325 양호Good 1.311.31 0.640.64 9.039.03 8.828.82 양호Good 5.75.7 발명예5Inventive Example 5 5050 -450-450 양호Good 1.261.26 0.610.61 8.508.50 8.418.41 양호Good 6.16.1

상기 표 2에 나타난 바와 같이, 그 입도 뿐만 아니라 조성이 최적으로 제어된 Fe-Si계 소성분말을 이용한 본 발명예(1~5)는 소재 Si부화량이 증가되어 상용주파수 뿐만 아니라 고주파에서의 철손도 극히 우수하였으며, 그 도포상태도 양호하였다.As shown in Table 2, the present invention examples (1 to 5) using the Fe-Si-based small powder of which the composition as well as the particle size is optimally controlled is increased as the amount of Si enrichment of the material is not only commercial frequency but also iron loss at high frequency. It was extremely excellent and the application state was also good.

이에 반하여, Si함량이 너무 적은 Fe-Si계 소성분말을 이용한 비교예(1)은 소재의 침규량이 너무 적어서 자성 개선효과가 미약하였으며, Si함량이 70%를 초과하는 비교예(2~4)는 Si부화량은 많으나 소재 표면에 hole등의 결함이 생성되어 소재의 자성은 오히려 악화되었다.On the contrary, Comparative Example (1) using Fe-Si-based small powder containing too small Si content had a weak magnetic improvement effect because the amount of material deposition was too small, and Comparative Example (2-4) having Si content exceeding 70% Although the amount of Si enrichment is large, defects such as holes are formed on the surface of the material, and thus the magnetic property of the material is rather deteriorated.

한편 Fe-Si계 소성분말의 입도가 본 발명범위를 벗어난 비교예(5~6)에서는 그 도포층이 얇고 불균일하였으며, 이에 따라 소재 Si부화량이 적고 또한 소재 표면의 다수 결함이 관찰되어 자성개선정도가 미약하거나 악화되는 경향이 나타났다.On the other hand, in the comparative examples (5 to 6) in which the particle size of the Fe-Si-based small powder was outside the scope of the present invention, the coating layer was thin and nonuniform. Accordingly, the amount of Si enrichment of the material was small and many defects on the surface of the material were observed. Tends to be weak or worsening.

(실시예 3)(Example 3)

실시예 1의 방향성 규소강판 표면에 Fe-Si계 소성분말을 콜로이달 실리카용액에 분산시켜 슬러리형태로 도포하였다. 이때 Fe-Si계 분말의 Si함량은 50%이며, 분말의 입도는 -25mesh이었고, 콜로이달 실리카는 시중 유통의 30%고형분의 용액을 이용하였으며, 배합비는 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하여 슬러리상태로 만들었다.Fe-Si-based small powder was dispersed in a colloidal silica solution on the surface of the grain-oriented silicon steel sheet of Example 1 and applied in the form of a slurry. At this time, the Si content of the Fe-Si powder was 50%, the particle size of the powder was -25mesh, the colloidal silica was used as a solution of 30% solids in the market, the compounding ratio of 100 parts by weight of Fe-Si powder, silica The colloidal silica solution was mixed to make 20 parts by weight based on the solid content, thereby preparing a slurry.

이렇게 Fe-Si계 소성분말이 도포된 강판을 400℃의 온도에서 건조한 후, 대형코일로 만들었다. 그리고 권취된 강판에 대하여 하기 표 3과 같이 확산소둔온도 및 분위기가스비를 변화시켜 5시간동안 확산소둔처리를 행하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한 후, 표면의 확산소둔후의 상태를 관찰한 다음, 실시예 1의 코팅제를 도포하여 절연코팅층이 형성된 최종 고규소 방향성 전기강판을 제조하였다.The steel sheet coated with the Fe-Si-based small component powder was dried at a temperature of 400 ° C., and then made into a large coil. Then, the coated steel sheet was subjected to diffusion annealing for 5 hours by varying the diffusion annealing temperature and the atmospheric gas ratio as shown in Table 3 below. After observing the following state, the coating agent of Example 1 was applied to prepare a final high silicon oriented electrical steel sheet with an insulating coating layer.

이와 같이 제조된 제품들의 소재Si함량과 자기적 특성등을 조사하여 하기 표 3에 나타내었으며, 이때의 구체적인 평가방법등은 실시예 1과 동일하다.The Si content and magnetic properties of the products manufactured as described above are shown in Table 3 below, and the specific evaluation method is the same as in Example 1.

구분division 확산소둔조건Diffusion Annealing Condition 자기적 특성Magnetic properties 표면상태Surface condition 소재Si(%)Material Si (%) 온도(℃)Temperature (℃) H2/N2+H2(%)H 2 / N 2 + H 2 (%) B8(Tesla)B 8 (Tesla) W10/50(W/Kg)W 10/50 (W / Kg) W10/400(W/Kg)W 10/400 (W / Kg) W5/1000(W/Kg)W 5/1000 (W / Kg) 비교예1Comparative Example 1 950950 5050 1.761.76 0.340.34 6.86.8 7.77.7 작은holeSmall hole 4.84.8 비교예2Comparative Example 2 10001000 5050 1.731.73 0.310.31 6.36.3 6.96.9 결함다수Defect 5.45.4 발명예1Inventive Example 1 10501050 5050 1.721.72 0.270.27 6.16.1 6.56.5 양호Good 5.95.9 발명예2Inventive Example 2 11001100 5050 1.701.70 0.260.26 5.95.9 6.36.3 양호Good 6.16.1 발명예3Inventive Example 3 11751175 5050 1.701.70 0.260.26 5.85.8 6.36.3 양호Good 6.26.2 비교예3Comparative Example 3 12251225 5050 1.651.65 0.280.28 6.16.1 6.76.7 결함다수Defect 6.46.4 비교예4Comparative Example 4 11251125 00 1.851.85 0.300.30 7.37.3 8.98.9 양호Good 3.63.6 비교예5Comparative Example 5 11251125 1010 1.831.83 0.290.29 6.86.8 8.08.0 양호Good 3.83.8 발명예4Inventive Example 4 11251125 2525 1.701.70 0.260.26 5.85.8 6.26.2 양호Good 6.26.2 발명예5Inventive Example 5 11251125 7070 1.691.69 0.260.26 5.75.7 6.26.2 양호Good 6.36.3

상기 표 3에 나타난 바와 같이, 그 확산소둔 온도 및 분위기가스조건이 적정하게 제어된 본 발명예(1~5)는 모두 소재 Si량이 증가되어 상용주파수 뿐만 아니라 고주파에서의 철손도 극히 우수하였다.As shown in Table 3, the present invention examples (1 to 5) in which the diffusion annealing temperature and the atmosphere gas conditions were properly controlled, all the Si amount of the material was increased, the iron loss at the high frequency as well as the commercial frequency was extremely excellent.

이에 반하여, 소둔온도가 상대적으로 낮은 비교예(1~2)는 소재 Si량 증가량이 미미하여 철손개선 정도가 미약할 뿐만 아니라 표면결함이 발생하였다. . 그리고 소둔온도가 너무 높은 비교예(3)도 표면결함이 다수 발생하였으며, 자기특성도 좋지 않았다.On the contrary, in Comparative Examples (1 to 2) having relatively low annealing temperatures, the amount of increase in the amount of Si of the material was insignificant, resulting in not only the improvement of iron loss but also the surface defects. . In Comparative Example (3) where the annealing temperature was too high, many surface defects occurred, and the magnetic properties were also poor.

한편, 확산소둔시의 전체가스중 수소비가 너무 적은 비교예(4~5)에서는 소재내 Si량의 변화가 거의 없어 자기특성이 우수한 고규소강을 얻을 수가 없었다.On the other hand, in Comparative Examples (4 to 5) in which the hydrogen ratio in the total gas during diffusion annealing was too small, there was almost no change in the amount of Si in the material, so that high silicon steel having excellent magnetic properties could not be obtained.

(실시예 4)(Example 4)

실시예 2와 같이 제조된 냉연강판 표면에 Fe-Si계 분말을 콜로이달 실리카용액에 분산시켜 슬러리형태로 도포하였다. 이때 Fe-Si계 분말의 Si함량은 60%이며, 분말의 입도는 -25mesh이었고, 콜로이달실리카는 시중 유통의 30%고형분의 용액을 이용하였다. 그리고 그 배합비는 고형분기준 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하였다.Fe-Si powder was dispersed in a colloidal silica solution on the surface of a cold rolled steel sheet prepared as in Example 2 and applied in the form of a slurry. At this time, the Si content of the Fe-Si-based powder was 60%, the particle size of the powder was -25mesh, the colloidal silica used a solution of 30% solids in the market. The blending ratio was mixed with 100 parts by weight of Fe-Si powder based on solid content, and a colloidal silica solution such that silica was 20 parts by weight based on the solid content.

이렇게 Fe-Si계 소성분말이 도포된 강판을 400℃의 온도에서 건조한 후, 대형코일로 만들었다. 그리고 권취된 강판에 대하여 하기 표 4와 같이 확산소둔온도 및 분위기가스비를 변화시켜 5시간동안 확산소둔처리를 행하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한 후, 표면의 확산소둔 후의 상태를 관찰한 다음, 실시예 2와 같은 코팅제를 도포하여 절연코팅층이 형성된 무방향성 규소강판을 제조하였다.The steel sheet coated with the Fe-Si-based small component powder was dried at a temperature of 400 ° C., and then made into a large coil. Then, the coated steel sheet was subjected to diffusion annealing for 5 hours by changing the diffusion annealing temperature and the atmospheric gas ratio as shown in Table 4 below. After observing the state after, the coating agent as in Example 2 was applied to prepare a non-oriented silicon steel sheet having an insulating coating layer.

이와 같이 제조된 제품들의 소재Si함량과 자기적 특성등을 조사하여 하기 표 4에 나타내었으며, 이때의 그 구체적인 평가방법등은 실시예 1과 동일하다.The Si content and magnetic properties of the products manufactured as described above are shown in Table 4 below, and the specific evaluation method is the same as in Example 1.

구분division 확산소둔조건Diffusion Annealing Condition 자기적 특성Magnetic properties 표면상태Surface condition 소재Si(%)Material Si (%) 온도(℃)Temperature (℃) H2/N2+H2(%)H 2 / N 2 + H 2 (%) B8(Tesla)B 8 (Tesla) W10/50(W/Kg)W 10/50 (W / Kg) W10/400(W/Kg)W 10/400 (W / Kg) W5/1000(W/Kg)W 5/1000 (W / Kg) 비교예1Comparative Example 1 950950 5050 1.351.35 0.690.69 10.0310.03 9.979.97 작은holeSmall hole 4.74.7 비교예2Comparative Example 2 10001000 5050 1.321.32 0.670.67 9.419.41 9.359.35 결함다수Defect 5.15.1 발명예1Inventive Example 1 10501050 5050 1.281.28 0.620.62 8.598.59 8.388.38 양호Good 5.95.9 발명예2Inventive Example 2 11001100 5050 1.271.27 0.620.62 8.488.48 8.368.36 양호Good 6.06.0 발명예3Inventive Example 3 11751175 5050 1.271.27 0.610.61 8.468.46 8.318.31 양호Good 6.16.1 비교예3Comparative Example 3 12251225 5050 1.231.23 0.680.68 9.239.23 9.389.38 결함다수Defect 6.36.3 비교예4Comparative Example 4 11251125 00 1.411.41 0.780.78 10.5210.52 10.4810.48 양호Good 3.53.5 비교예5Comparative Example 5 11251125 1010 1.381.38 0.740.74 9.879.87 9.859.85 양호Good 3.73.7 발명예4Inventive Example 4 11251125 2525 1.271.27 0.610.61 8.468.46 8.338.33 양호Good 6.16.1 발명예5Inventive Example 5 11251125 7070 1.271.27 0.600.60 8.438.43 8.298.29 양호Good 6.26.2

상기 표 4에 나타난 바와 같이, 그 확산소둔 온도뿐만 아니라 분위기가스조건이 적정하게 제어된 본 발명예(1~5)는 소재 Si량이 증가되어 상용주파수와 고주파에서의 철손도 극히 우수하였으며, 아울러 표면결함이 발생이 없었다.As shown in Table 4, the present invention examples (1 to 5) in which not only the diffusion annealing temperature but also the atmospheric gas conditions are appropriately controlled, the amount of Si of the material is increased so that the iron loss at the commercial frequency and the high frequency is extremely excellent. There was no defect.

이에 반하여, 그 소둔온도가 상대적으로 낮은 비교예(1~2)는 소재 Si량 증가량이 미미하여 철손개선 정도가 미약하였으며, 아울러 표면결함이 발생하였다. 그리고 소둔온도가 너무 높은 비교예(3)도 표면결함이 다수 발생하였으며, 자기특성도 좋지 않았다.On the contrary, in Comparative Examples (1 to 2) having relatively low annealing temperatures, the amount of increase in the amount of Si of the material was insignificant, so that the iron loss was poor, and surface defects occurred. In Comparative Example (3) where the annealing temperature was too high, many surface defects occurred, and the magnetic properties were also poor.

한편, 확산소둔시의 전체가스중의 수소비가 상대적으로 적은 비교예(4~5)에서는 소재내 Si량의 변화가 거의 없어 고규소강을 얻을 수 없었으며, 또한 자성 개선정도도 미약하였다.On the other hand, in Comparative Examples (4 to 5) in which the hydrogen ratio in the total gas during diffusion annealing was relatively small, there was almost no change in the amount of Si in the material, so that high silicon steel could not be obtained and the degree of magnetic improvement was also weak.

상술한 바와 같이, 본 발명은 통상의 냉간압연공정을 통하여 제조된 규소강판 표면에, 소정의 입도와 Si함량을 갖도록 조성된 Fe-Si계 복합화합물 소성분말을 슬러리형태로 도포한후 고온확산소둔함으로써 자기적 특성이 우수한 고Si강판을 대량으로 효과적으로 제조할 수 있다.As described above, the present invention is applied to the surface of the silicon steel sheet produced by a common cold rolling process, the slurry of Fe-Si composite compound composition formed to have a predetermined particle size and Si content in the form of a slurry, followed by high temperature diffusion annealing By doing so, it is possible to efficiently manufacture high Si steel sheets having excellent magnetic properties in large quantities.

Claims (8)

강판의 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 함유하는 Fe-Si계 소성분말을 슬러리 형태로 도포한후 건조시키는 단계 ; 그리고Applying to the surface of the steel sheet a slurry of Fe-Si-based powder containing a particle size of -25mesh and containing Si in a range of 20 to 70% by weight in the form of a slurry, followed by drying; And 상기 건조된 강판을 1050~1200℃, 20%이상의 수소함유 질소가스 분위기하에서 확산소둔처리하는 단계;를 포함하는 고규소강판 제조방법.And a step of diffusion annealing the dried steel sheet in a 1050-1200 ° C., at least 20% hydrogen-containing nitrogen gas atmosphere. 제 1항에 있어서, 상기 Fe-Si계 소성분말은 Fe-Si계 복합화합물형태의 분말인 것을 특징으로 하는 고규소강판 제조방법.The method of claim 1, wherein the Fe-Si-based small component powder is a Fe-Si-based composite powder manufacturing method characterized in that the powder. 제 1항에 있어서, 상기 슬러리가 도포될 강판은 Si을 2.0~3.3중량% 함유하고 있는 것을 특징으로 하는 고규소강판 제조방법.2. The method of claim 1, wherein the steel sheet to be coated with the slurry contains 2.0 to 3.3% by weight of Si. 제 1항에 있어서, 상기 슬러리가 도포된 강판을 200~700℃에서 건조시키는 것을 특징으로 하는 고규소강판 제조방법.The method of claim 1, wherein the slurry-coated steel sheet is dried at 200 ~ 700 ℃. Si 2.0~3.3중량%를 함유한 강판 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 포함하는 Fe-Si계 소성분말을 슬러리 형태로 도포한 후 건조시키는 단계 ; 그리고Applying to the surface of the steel sheet containing 2.0 to 3.3% by weight of Si, Fe-Si-based small powder containing a particle size of -25mesh in a range of 20 to 70% by weight in the form of a slurry, followed by drying; And 그 강판내 Si이 표면결함을 발생함이 없이 실질적으로 균일하게 4.0중량% 이상 확산침투되도록 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 고온확산 소둔시키는 단계;를 포함하는 고규소강판 제조방법.A high-temperature diffusion annealing of the dried steel sheet in a hydrogen-containing nitrogen gas atmosphere of 20% or more so that Si in the steel sheet diffuses and penetrates more than 4.0 wt% substantially uniformly without generating surface defects. Way. 제 5항에 있어서, 상기 Fe-Si계 소성분말은 Fe-Si계 복합화합물형태의 분말인 것을 특징으로 하는 고규소강판 제조방법.The method of claim 5, wherein the Fe-Si-based small component powder is a Fe-Si-based composite powder powder manufacturing method. 제 5항에 있어서, 상기 건조된 강판을 1050~1200℃온도범위에서 확산소둔처리하는것을 특징으로 하는 고규소 강판 제조방법.The method of claim 5, wherein the dried steel sheet is subjected to diffusion annealing at a temperature range of 1050 ~ 1200 ℃. 제 5항에 있어서, 상기 슬러리가 도포된 강판을 200~700℃에서 건조시키는 것을 특징으로 하는 고규소강판 제조방법.The method of claim 5, wherein the slurry-coated steel sheet is dried at 200 ~ 700 ℃.
KR1020020069646A 2002-11-11 2002-11-11 Method for manufacturing a high-silicon steel sheet KR100967049B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020020069646A KR100967049B1 (en) 2002-11-11 2002-11-11 Method for manufacturing a high-silicon steel sheet
EP03811151A EP1560938B1 (en) 2002-11-11 2003-11-11 Coating composition, and method of manufacturing high silicon electrical steel sheet using said composition
US10/519,227 US7435304B2 (en) 2002-11-11 2003-11-11 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
PCT/KR2003/002412 WO2004044251A1 (en) 2002-11-11 2003-11-11 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
CNB2003801005093A CN1325665C (en) 2002-11-11 2003-11-11 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP2004551259A JP4484710B2 (en) 2002-11-11 2003-11-11 Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020069646A KR100967049B1 (en) 2002-11-11 2002-11-11 Method for manufacturing a high-silicon steel sheet

Publications (2)

Publication Number Publication Date
KR20040041772A true KR20040041772A (en) 2004-05-20
KR100967049B1 KR100967049B1 (en) 2010-06-29

Family

ID=35346958

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020069646A KR100967049B1 (en) 2002-11-11 2002-11-11 Method for manufacturing a high-silicon steel sheet

Country Status (2)

Country Link
KR (1) KR100967049B1 (en)
CN (1) CN1325665C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905652B1 (en) * 2002-11-27 2009-06-30 주식회사 포스코 Coating composition and method for manufacturing high silicon electrical steel sheet
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
CN103692726A (en) * 2013-12-19 2014-04-02 重庆万达薄板有限公司 Chrome-free insulating coating electrical steel strip and production method thereof
CN108796427A (en) * 2017-05-02 2018-11-13 贵州理工学院 A kind of Powder Diffusion continuously prepares the method and device of high-silicon steel thin strip
CN112563010A (en) * 2020-09-14 2021-03-26 中国航发北京航空材料研究院 Anti-corrosion treatment method for iron powder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038038A1 (en) * 2010-10-07 2012-04-12 Thyssenkrupp Electrical Steel Gmbh Process for producing an insulation coating on a grain-oriented electro-steel flat product and electro-flat steel product coated with such an insulation coating
KR101477383B1 (en) * 2013-03-28 2014-12-29 현대제철 주식회사 Oriented electrical steel sheet and method of manufacturing the same
KR101642281B1 (en) 2014-11-27 2016-07-25 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
CN107626927A (en) * 2016-07-18 2018-01-26 鞍钢股份有限公司 A kind of manufacture method of high silicon composite electrical steel arrowband product
CN107900351A (en) * 2017-12-18 2018-04-13 中南大学 A kind of powder rolling manufacture method of high silicon steel thin belt material
CN107999765A (en) * 2017-12-18 2018-05-08 中南大学 A kind of method that powder warm-rolling prepares Fe-6.5%Si soft magnetic materials thin strips
CN107914017A (en) * 2017-12-18 2018-04-17 中南大学 A kind of powder warm-rolling preparation method of Fe 6.5%Si soft magnetic materials thin strips
CN110317938B (en) * 2018-03-29 2021-02-19 宝山钢铁股份有限公司 Method for manufacturing high silicon grain-oriented electrical steel plate
CN109266820A (en) * 2018-11-30 2019-01-25 湖南上临新材料科技有限公司 A kind of preparation process of new-type high silicon steel solid rotor surface copper coating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017064A (en) * 1983-07-08 1985-01-28 Shogo Izumi Formation of silicon-diffused coating or silicon nitride coating on surface of steel
JPH0643607B2 (en) * 1986-03-28 1994-06-08 日本鋼管株式会社 Method for producing high silicon steel strip in continuous line
JPH086157B2 (en) * 1987-04-20 1996-01-24 富士通株式会社 Method for manufacturing vibration-proof magnetic alloy
JPH09249916A (en) * 1996-03-15 1997-09-22 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet and separation agent for annealing
JP2000212679A (en) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
KR100900662B1 (en) * 2002-11-11 2009-06-01 주식회사 포스코 Coating composition and, method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property using thereof
KR100900661B1 (en) * 2002-11-11 2009-06-01 주식회사 포스코 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905652B1 (en) * 2002-11-27 2009-06-30 주식회사 포스코 Coating composition and method for manufacturing high silicon electrical steel sheet
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
CN103692726A (en) * 2013-12-19 2014-04-02 重庆万达薄板有限公司 Chrome-free insulating coating electrical steel strip and production method thereof
CN108796427A (en) * 2017-05-02 2018-11-13 贵州理工学院 A kind of Powder Diffusion continuously prepares the method and device of high-silicon steel thin strip
CN112563010A (en) * 2020-09-14 2021-03-26 中国航发北京航空材料研究院 Anti-corrosion treatment method for iron powder

Also Published As

Publication number Publication date
CN1692165A (en) 2005-11-02
CN1325665C (en) 2007-07-11
KR100967049B1 (en) 2010-06-29

Similar Documents

Publication Publication Date Title
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
KR100900662B1 (en) Coating composition and, method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property using thereof
KR100967049B1 (en) Method for manufacturing a high-silicon steel sheet
JP4484711B2 (en) Method for producing high silicon grained electrical steel sheet
JP4484710B2 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP2006501371A5 (en) Manufacturing method of high silicon grained electrical steel sheet
JP2006503189A5 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
KR100957930B1 (en) Method for manufacturing high silicon non-oriented electrical steel sheet with superior magnetic properties
KR100900661B1 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
KR101623874B1 (en) Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet
KR100900660B1 (en) Coating composition with superior powder coating and surface properties
KR960006026B1 (en) Process for production of oriented electrical steel sheet having excellent magnetic properties
KR100711470B1 (en) Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
KR100276341B1 (en) The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating
KR100946069B1 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
KR100905652B1 (en) Coating composition and method for manufacturing high silicon electrical steel sheet
JP2014148723A (en) Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet
KR20190077773A (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
KR101060913B1 (en) Manufacturing method of high silicon oriented electrical steel sheet with excellent iron loss characteristics
KR100946070B1 (en) Method for manufacturing high silicon electrical steel sheet
KR100721821B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
KR20030053746A (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
JP2002194434A (en) Method for producing low core less grain oriented electrical steel sheet having excellent high frequency magnetic characteristic and film characteristic
JPS61264182A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPS58193373A (en) Manufacture of unidirectional silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130614

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140619

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 9