JPS61264182A - Production of grain oriented silicon steel sheet having excellent magnetic characteristic - Google Patents

Production of grain oriented silicon steel sheet having excellent magnetic characteristic

Info

Publication number
JPS61264182A
JPS61264182A JP15209385A JP15209385A JPS61264182A JP S61264182 A JPS61264182 A JP S61264182A JP 15209385 A JP15209385 A JP 15209385A JP 15209385 A JP15209385 A JP 15209385A JP S61264182 A JPS61264182 A JP S61264182A
Authority
JP
Japan
Prior art keywords
annealing
mgo
sheet
silicon steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15209385A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kobayashi
康宏 小林
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15209385A priority Critical patent/JPS61264182A/en
Publication of JPS61264182A publication Critical patent/JPS61264182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet having excellent magnetic characteristics by incorporating a slight amt. of Mo into a silicon steel of low carbon and contg. S or Se, subjecting the steel to hot rolling and cold rolling to form a sheet material, subjecting the sheet to decarburization annealing, coating an MgO separating agent for annealing on the surface and subjecting the sheet to final finish annealing thereby forming a uniform thin forsterite film on the surface. CONSTITUTION:The grain oriented silicon steel slab contg., by weight %, <0.06% C, 2.0-4.0% Si and 0.003-0.1% Mo and contg. 1 or 2 kinds of 0.008-0.1% S and 0.003-0.1% Se is hot rolled to form the sheet material. The sheet material is subjected to >=2 passes including intermediate annealing or one pass of cold rolling to the final sheet thickness. The sheet is subjected to decarburization annealing and primary recrystallization annealing and thereafter MgO having 0.08-0.18mu grain size measured by an X-ray diffraction method or the compd. consisting essentially or such MgO is coated on the surface as the separating agent for annealing and the sheet is subjected to the final finish annealing. The extremely thin and uniform forsterite (Mg2SiO4) film is formed on the surface and the grain oriented silicon steel sheet having the extremely high magnetic flux density and less iron loss is obtd.

Description

【発明の詳細な説明】 本発明は磁気特性のすぐれた一方向性珪素鋼板の製造方
法に係り、特に均一な薄型の7オルステライト質被膜を
有し磁束密度が極めて高く鉄損が低い一方向性珪素鋼板
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a unidirectional silicon steel sheet with excellent magnetic properties, and particularly to a unidirectional silicon steel sheet with a uniform thin 7-orsterite coating, extremely high magnetic flux density, and low iron loss. The present invention relates to a method of manufacturing a silicon steel sheet.

主として変圧器等の鉄心用材料として用いられる一方向
性珪素鋼板に要求される特性は、一定の磁化力において
得られる磁束密度が高いこと、および一定の磁束密度を
与えた場合にその鉄損が低いことである。通常これらの
代表値として磁化力1000A/m における磁束密度
B,。テスラ、および磁束密度1.70テスラ、周波数
5 0 8条における鉄損”t,A。 W / k9に
て表わされる。これらの両特性を含む磁気特性を向上さ
せるためだ現在まで多くの研究がなされ、特に素材の成
分、熱間および冷間圧延法、熱処理方法等の改善知よっ
てそれぞれに少なからざる成果が得られている。
The characteristics required of unidirectional silicon steel sheets, which are mainly used as core materials for transformers, are that the magnetic flux density obtained at a constant magnetization force is high, and that the iron loss is low when a constant magnetic flux density is applied. That's low. Normally, a representative value of these is the magnetic flux density B at a magnetizing force of 1000 A/m2. tesla, and the iron loss at a magnetic flux density of 1.70 tesla and a frequency of 508, expressed as t,A. In particular, considerable results have been achieved through improvements in the composition of raw materials, hot and cold rolling methods, heat treatment methods, etc.

従来の一方向性珪素鋼板は、通常Si : 2、0〜4
.0%を含む低炭素鋼だ微量の〜(n、S、Se等のイ
ンヒビター生成元素を含ませて溶製した素材を熱間圧延
した後、中間焼鈍を含む2回以上もしくは1回の冷間圧
延により所定の板厚に仕上げ、該冷延鋼板に脱炭を兼ね
た1次再結晶焼鈍を施し、この脱炭鋼板の表面にMgO
を主成分とする焼鈍分離剤を塗布した後最終仕上げ焼鈍
する工程をとることによって製造されている。すなわち
、1次、2次の再結晶焼鈍によって2次再結晶粒を(1
10)<001>方位に揃って発達させると共に、鋼板
中の不純物が除去されて良好な磁気特性が得られる。
Conventional unidirectional silicon steel sheets usually have Si: 2,0 to 4.
.. Low carbon steel containing 0% - After hot-rolling a material containing trace amounts of inhibitor-forming elements such as n, S, Se, etc., it is subjected to two or more times including intermediate annealing or one cold rolling process. Finished to a predetermined thickness by rolling, the cold-rolled steel sheet is subjected to primary recrystallization annealing that also serves as decarburization, and MgO is added to the surface of this decarburized steel sheet.
It is manufactured by applying a final annealing process after applying an annealing separator mainly composed of. That is, primary and secondary recrystallization annealing transforms the secondary recrystallized grains into (1
10) It develops in the <001> direction, and impurities in the steel sheet are removed, resulting in good magnetic properties.

この際、脱炭鋼板の表面に塗布したMgOが、脱炭焼鈍
後の鋼板表面に生成したS io2を主成分とする酸化
層と最終仕上げ焼鈍中に反応しMg、5i04なるフォ
ルステライト質の被膜が鋼板表面に形成されることは公
知である。このフォルステライト質被膜は単に鋼板間の
電気的絶縁性を保持するのみならず、Ga55粒と称さ
れる2次再結晶粒が圧延方向によく揃った高い磁束密度
を有する一方向性珪素鋼板においては、2次再結晶粒内
の磁区幅を狭めて渦電流損を減少させることにより鉄損
特性をも向上させる効果があり、更に鋼板を積層して変
圧器鉄心に組立てた際、不可避的に印加される圧縮応力
を緩和し、磁歪特性、磁気特性の悪化を防止する効果が
あるので、この焼鈍分離剤の性状は一方向性珪素鋼板の
製造に極めて重要な影響を及ぼすものである。
At this time, the MgO applied to the surface of the decarburized steel sheet reacts with the oxide layer mainly composed of S io2 generated on the surface of the steel sheet after decarburization annealing during the final finish annealing, forming a forsterite coating called Mg, 5i04. It is well-known that . is formed on the surface of a steel plate. This forsterite coating not only maintains electrical insulation between the steel sheets, but also produces unidirectional silicon steel sheets with high magnetic flux density in which secondary recrystallized grains called Ga55 grains are well aligned in the rolling direction. has the effect of improving iron loss characteristics by narrowing the magnetic domain width within secondary recrystallized grains and reducing eddy current loss, and furthermore, when laminating steel plates and assembling them into a transformer core, unavoidable The properties of this annealing separator have an extremely important effect on the production of grain-oriented silicon steel sheets, since it has the effect of alleviating applied compressive stress and preventing deterioration of magnetostrictive and magnetic properties.

しかしフォルステライトは非磁性物質であり、上記の効
果を導くに必要な被膜1以上の7オルステライトが鋼板
表面に存在することは磁束密度、鉄損のいずれをも劣化
させることは公知である。
However, forsterite is a non-magnetic substance, and it is known that the presence of a coating of 1 or more of 7 orsterite, which is necessary to induce the above effect, on the surface of a steel sheet deteriorates both magnetic flux density and iron loss.

湿水素中で脱炭後最終仕上げ焼鈍を実施し、その焼鈍分
離剤としてMgOを両用する限シは、7オルステライト
質被膜の形成を避けることができなく、また上記の効果
もあるので、その被膜形成量は必要最少限の均一な薄型
被膜であることが磁気特性の向上のために必須要件であ
る。しかし従来は、上記の如き満足すべき薄層被膜の形
成は甚だ困難であり、その結果すぐれた磁気特性を有す
る一方向性珪素鋼板の安定生産はきわめて困難であった
As long as final annealing is carried out after decarburization in wet hydrogen and MgO is used as an annealing separator, the formation of an orsterite film cannot be avoided, and the above effects are also present. In order to improve magnetic properties, it is essential to form a thin, uniform coating with the minimum amount required. However, in the past, it has been extremely difficult to form a satisfactory thin film as described above, and as a result, it has been extremely difficult to stably produce unidirectional silicon steel sheets having excellent magnetic properties.

本発明の目的は、上記従来技術の欠点を克服し磁束密度
が極めて高く、かつ鉄損も低い一方向性珪素鋼板の安定
した製造方法を提供するにある。
An object of the present invention is to overcome the drawbacks of the above-mentioned conventional techniques and to provide a stable method for manufacturing grain-oriented silicon steel sheets having extremely high magnetic flux density and low iron loss.

本発明の要旨とするところは次の如くである。The gist of the present invention is as follows.

すなわち、重量比にてC:0.06%以下、Si:2.
0〜4.0%、Mo:0.003〜0.1%を含み、か
−)S : 0.008〜0.1%、Se:O,OO3
〜0.1%のうちより選ばれたいずれか1種または2種
を含有する一方向性珪素鋼素材を熱間圧延する工程と、
前記熱延鋼板を中間焼鈍を含む2回以上もしくは1回の
冷間圧延により所定の板厚に仕上げる工程と、前記冷延
鋼板に脱炭を兼ねた一次再結晶焼鈍を施す工程と、前記
脱炭鋼板の表面に焼鈍分離剤を塗布する工程と、前記焼
鈍分離剤を塗布した鋼板を最終仕上げ焼鈍する工程とを
有して成る一方向性珪素鋼板の製造方法において、前記
焼鈍分離剤は粉末X線回折法による回折線幅の拡がりか
ら測定した粒径が0.08〜0.18μの範囲にあるM
gOもしくはMgOを主成分とする化合物であることを
特徴とする磁気特性 鋼板の製造方法、である。
That is, in terms of weight ratio, C: 0.06% or less, Si: 2.
0 to 4.0%, Mo: 0.003 to 0.1%, S: 0.008 to 0.1%, Se: O, OO3
A step of hot rolling a unidirectional silicon steel material containing one or two selected from ~0.1%;
a step of finishing the hot-rolled steel sheet to a predetermined thickness by cold rolling two or more times including intermediate annealing or once; a step of subjecting the cold-rolled steel sheet to primary recrystallization annealing that also serves as decarburization; A method for producing a grain-oriented silicon steel sheet comprising the steps of applying an annealing separator to the surface of a carbon steel sheet, and final annealing the steel sheet coated with the annealing separator, wherein the annealing separator is a powder. M whose particle size is in the range of 0.08 to 0.18μ as measured from the broadening of the diffraction line width by X-ray diffraction method
This is a method for producing a magnetic steel sheet characterized by using a compound containing gO or MgO as a main component.

本発明者らは各種の成分を最終仕上げ焼鈍に供する素材
に添加し、フオルステライト質被膜形成に及ぼす影響を
調査する実験を繰返した結果、素材成分に微量のMOを
添加し, MgOの水利量を適当に選択することにより
活性度の適正なMgOを得ることができ、かかるMgO
を焼鈍分離剤として使用することにより、均一な薄型被
膜が形成され珪素鋼板の磁気特性が著しく向上すること
を見出した。
The present inventors added various ingredients to the material to be subjected to final annealing and repeated experiments to investigate the effects on the formation of a forsterite film. As a result, we added a small amount of MO to the material ingredients, and the amount of water used by MgO was increased. By appropriately selecting MgO, MgO with appropriate activity can be obtained.
It has been found that by using this as an annealing separator, a uniform thin film is formed and the magnetic properties of silicon steel sheets are significantly improved.

而してMgOの活性度の尺度として粉末X線回折法によ
る回折線幅の拡がりから測定した粒径が上記の如<O.
OS〜0.18μであるMgOを使用することにより最
も良い結果を収め得ることを見出し本発明を得たもので
ある。
As a measure of the activity of MgO, the particle size measured from the broadening of the diffraction line width by powder X-ray diffraction is as shown above.
The present invention was achieved by finding that the best results could be obtained by using MgO with an OS of ~0.18μ.

一般に7オルステライト質被膜の形成は、脱炭焼鈍後の
鋼板表面に存在するSin,を主成分とするサブスケー
ルと焼鈍分離剤のMgOとの固相反応によりMg, S
 i O,が形成されるものであることは既に述べたと
おりである。通常塗布されるMgO量はサジスケール中
の5in2がすべて7オルステライトになった場合の必
要量よりも相当量多いが、形成される被膜量はほぼサブ
スケール中のSin、量によって決定されるものと考え
られる。従って薄型被膜を形成させる要件としては、脱
炭焼鈍後のサブスケールの量を少なくすることである。
In general, the formation of a 7-orsterite film is caused by a solid phase reaction between the subscale mainly composed of Sin, which is present on the surface of the steel sheet after decarburization annealing, and MgO, which is an annealing separator.
As already mentioned, i O is formed. The amount of MgO applied is usually considerably larger than the amount required when all 5in2 in the saji scale becomes 7 orsterite, but the amount of film formed is determined by the amount of Sin in the subscale. it is conceivable that. Therefore, a requirement for forming a thin film is to reduce the amount of subscale after decarburization annealing.

しかし、過度にサブスケールが少ないと最終仕上げ焼鈍
時に形成されたフォルステライト質被膜が薄きに過ぎて
鋼板との密着性が悪化して好ましくない。
However, if there are too few subscales, the forsterite coating formed during final finish annealing will be too thin, resulting in poor adhesion to the steel plate, which is undesirable.

更に考慮すべき点は、MgOを水スラリーにして鋼板に
塗布する際、MgOの一部が水和し1g (OH)tと
なり、これが鋼板コイル内に持ち込まれ、焼鈍中に分解
して発生するH、Oにより鋼板を酸化してFeOを生成
する。かくの如くして生成したFeOが更に最終仕上げ
焼鈍のH2中で還元された時に発生するH2Oによシ新
たにSin、を生ずるので、その結果脱炭焼鈍によって
形成されたサブスケール量から予想される被膜量よりも
最終仕上げ焼鈍後の被膜量が多いことがあることに注意
しなければならない。
Another point to consider is that when MgO is made into a water slurry and applied to the steel sheet, a portion of the MgO is hydrated and becomes 1g (OH)t, which is carried into the steel sheet coil and decomposed and generated during annealing. A steel plate is oxidized with H and O to generate FeO. When FeO thus generated is further reduced in H2 during final finish annealing, new Sin is generated by H2O, which is expected from the amount of subscale formed by decarburization annealing. It must be noted that the amount of coating after final annealing may be greater than the amount of coating applied during final annealing.

従って薄型のフォルステライト質被膜を形成する必要な
要件としては、上記MgOの持込み水分量を可能な限り
少なくすること、および鋼板のサブスケール量fc密着
性を損なわない範囲で可能な限り少なくすること、の2
要件である。しかし、従来MgOによる持込み水分量の
制御が極めて困難であったため、これが過少の場合には
白っぽく密着性の悪い被膜が形成され、また過多の場合
には膜厚が過度に厚くなり、更に被膜の点状欠陥や地鉄
の露出欠陥が生ずる。また、鋼板のサブスケール量が過
小の場合ては、鋼板のサブスケール厚みが薄く酸素の拡
散を妨げる作用が不十分で、前述したような最終仕上げ
焼鈍時の追加酸化に対して抵抗性が弱く、脱炭焼鈍後の
サブスケールの状態を最終焼鈍時における被膜形成まで
変化なく保持することができない欠点を生ずる。
Therefore, the necessary requirements for forming a thin forsterite film are to minimize the amount of water introduced into the MgO, and to minimize the subscale content of the steel sheet without impairing adhesion to fc. , no 2
It is a requirement. However, it has been extremely difficult to control the amount of moisture brought in by MgO in the past, so if it is too little, a whitish film with poor adhesion will be formed, and if it is too much, the film will become excessively thick, and the film will become thinner. Point defects and exposed defects of the base metal occur. In addition, if the subscale amount of the steel plate is too small, the subscale thickness of the steel plate is thin and the effect of preventing oxygen diffusion is insufficient, resulting in weak resistance to additional oxidation during final annealing as described above. This results in the disadvantage that the state of the subscale after decarburization annealing cannot be maintained unchanged until the formation of a film during final annealing.

かくの如く薄型の7オルステライト質被膜の形成には、
上記2゛−要件二の管理が必要であって、そのためには
焼鈍分離剤と鋼板自体の制御が必要であるが、従来はこ
れらを自由に制御する技術が確立されていなかった。
To form such a thin 7-orsterite film,
It is necessary to control the above-mentioned 2-requirement 2, and for this purpose, it is necessary to control the annealing separator and the steel plate itself, but hitherto no technology has been established to freely control these.

本発明者らは上記2要件を満足する具体的対策について
実験を重ねた結果、素材中に微量のM。
As a result of repeated experiments on specific measures to satisfy the above two requirements, the present inventors found that a trace amount of M was found in the material.

を添加することにより、追加酸化に対して極めて強く、
脱炭焼鈍後のサブスケールの状態を最終焼鈍による被膜
形成時まで大きな変化がなく保持できることが判明した
。これはフォルステライト質被膜形成後鋼板との密着性
や外観に支障がない限り、サブスケールを薄くすること
が可能であることを示すものである。
By adding , it is extremely resistant to additional oxidation,
It was found that the subscale state after decarburization annealing could be maintained without major changes until the final annealing to form a film. This shows that it is possible to reduce the thickness of the subscale after forming the forsterite film as long as it does not affect the adhesion to the steel plate or the appearance.

更に上記微量のMOを含有する素材に各種のMgOを塗
布して被膜形成実験を繰返した結果、従来の方法、すな
わち不活性なMgOを分離剤に混入して持込み水分量を
減少する代ケに、活性度がかなり高く、かつある範囲の
MgOを使用することにより均一な薄型7オルステライ
ト質被膜が形成できることを見出した。而してMgOの
活性度の尺度として粉末X線回折法による回折線幅の拡
がりから測定した粒径が0.08〜0.18μであるM
gOを使用することによって磁気特性のすぐれた一方向
性珪素鋼板を得ることができた。
Furthermore, as a result of repeating film formation experiments by applying various types of MgO to the material containing a small amount of MO, we found that instead of the conventional method, that is, mixing inert MgO into the separation agent to reduce the amount of moisture carried in. It was discovered that by using MgO with a considerably high activity and within a certain range, a uniform thin 7-orsterite coating could be formed. As a measure of the activity of MgO, MgO has a particle size of 0.08 to 0.18μ measured from the broadening of the diffraction line width by powder X-ray diffraction method.
By using gO, a unidirectional silicon steel sheet with excellent magnetic properties could be obtained.

MgOの活性度の尺度として粉末X線回折法による回折
線幅の拡がりから測定した粒径を基礎としたのは次の理
由による。すなわち、MgOの活性度は主として原料M
g(OHLの焼成温度と焼成時間によって決定され、焼
成温度が高くなるほど、また焼成時間が長くなるほどM
gOの単結晶粒子の焼結が進行し活性度が低くなる。す
なわち、MgOの単結晶粒子の大きさはMgOの活性度
にきわめて大きい影響を及ぼすものである。焼成後の機
械的な粉砕によっても粒径は変化するが、かくの如き粒
度は物理的な性質を支配するのみであって活性度に関し
ては影響は極めて少い。上記X線の回折線幅の拡がりに
よって得られる粒径はMgOの単結晶粒子の大きさを示
すものであり、従ってこの値をもってMgOの活性度を
定量的に測定する尺度とすることは合理的である。
The reason why the particle size measured from the broadening of the diffraction line width by powder X-ray diffraction method was used as a measure of the activity of MgO is as follows. In other words, the activity of MgO is mainly determined by the raw material M.
g (determined by OHL firing temperature and firing time, the higher the firing temperature and the longer the firing time, the higher the M
Sintering of the gO single crystal particles progresses and the activity decreases. That is, the size of MgO single crystal particles has a very large effect on the activity of MgO. The particle size also changes due to mechanical pulverization after calcination, but such particle size only controls physical properties and has very little effect on activity. The particle size obtained by the broadening of the X-ray diffraction line width indicates the size of the MgO single crystal particle, and therefore it is reasonable to use this value as a measure to quantitatively measure the activity of MgO. It is.

次に本発明における限定理由について説明する。Next, the reasons for limitations in the present invention will be explained.

先ず、素材の成分組成の限定理由は次の如くである。First, the reason for limiting the component composition of the material is as follows.

Cは0,06%を越して多くなると脱炭゛焼鈍時に長時
間を要し生産性を低下させると共に、脱炭も不十分とな
って磁気特性を劣化させるので0.06%以下に限定し
た。
If C exceeds 0.06%, decarburization and annealing will take a long time, reducing productivity, and decarburization will also become insufficient, deteriorating magnetic properties, so it was limited to 0.06% or less. .

Si: Siは2.0%未満になると素材としての比抵抗が少な
く、良好な鉄損値が得られない。また4、 0%を越し
て多くなると冷間圧延時の加工性が著しく低下し板割れ
等の欠陥が発生するので2.0〜4,0%の範囲に限定
した。
Si: When Si is less than 2.0%, the specific resistance as a material is low, and a good core loss value cannot be obtained. Moreover, if the content exceeds 4.0%, the workability during cold rolling will be significantly reduced and defects such as plate cracks will occur, so the content is limited to a range of 2.0 to 4.0%.

Mo: Moは0.003%未満の場合には、耐追加酸化性が乏
しく良好な薄型フォルステライト被膜の形成が困難とな
9.また0、1%を越すと熱間および冷間の加工性が低
下し鉄損も劣化するので0.003〜0.1%の範囲に
限定した。上記の耐追加酸化性は、脱炭焼鈍後の鋼板表
Iのサブスケールの酸素量と、最終仕上げ焼鈍後の7オ
ルステライト質被膜の酸素量との比にて示し、この比が
2を越える場合を追加酸化があると考えている。これは
2M”gO+5102→Mg25in、なる反応によっ
てフオ″ルステライト質被膜が形成され、・酸素の化学
量論的変化が2倍になることから導かれるものである。
Mo: If Mo is less than 0.003%, additional oxidation resistance will be poor and it will be difficult to form a good thin forsterite film.9. Moreover, if it exceeds 0.1%, hot and cold workability will deteriorate and iron loss will also deteriorate, so it is limited to a range of 0.003 to 0.1%. The above additional oxidation resistance is expressed as the ratio of the subscale oxygen content in Table I of the steel sheet after decarburization annealing to the oxygen content of the 7 orsterite coating after final finish annealing, and this ratio exceeds 2. It is believed that there is additional oxidation in the case. This is derived from the fact that a fluorstellite film is formed by the reaction 2M"gO+5102→Mg25in, and the stoichiometric change in oxygen is doubled.

次に本発明者らの行った素材のMo含有量と耐追加酸化
性および冷間加工性との関係を示す実験結果について記
載しMO添加の効果を明らかにする。
Next, the results of an experiment conducted by the present inventors showing the relationship between the Mo content of the material, additional oxidation resistance, and cold workability will be described, and the effect of MO addition will be clarified.

使用素材は、C:0.043%、si:3.20%、M
n:0.060%、Se:0.018%、Sb : 0
.0222を含む基本組成を有する鋼にMOを全熱添加
しない場合および0.001%、0.003%、0.0
08%、0.020%、0.051%、0.10%、0
.21%と変化させた素材について通常の方法にて熱間
、冷間圧延を施し脱炭焼鈍後本発明によるX線回折によ
る粒径0.13μのMgOを焼鈍分離剤として塗布した
後、最終仕上げ焼鈍を施したもので、脱炭焼鈍後のサブ
スケール中の酸素量が1.70 S’101’のものに
ついて測定した結果である。結果は第1表に示すとおり
である。
Materials used are C: 0.043%, Si: 3.20%, M
n: 0.060%, Se: 0.018%, Sb: 0
.. When MO is not added to steel with a basic composition including 0222 and 0.001%, 0.003%, 0.0
08%, 0.020%, 0.051%, 0.10%, 0
.. The material changed to 21% was subjected to hot and cold rolling in a conventional manner, decarburized annealed, and then coated with MgO having a particle size of 0.13μ as determined by X-ray diffraction according to the present invention as an annealing separator, and then final finished. This is the result of measurement on a specimen that has been annealed and has an oxygen content of 1.70 S'101' in the subscale after decarburization annealing. The results are shown in Table 1.

第1表から明らかな如く、MOを添加しない供第1表 試材&1およびMo:O,001%の煮2では冷間加工
性は良好であるが、耐追加酸化性は不良である。しかし
MO’0.003〜0.10%の範囲では追加酸化性が
ほぼ一定となり、安定した耐追加酸化性を示し、冷間加
工性も良好である。MO=0.10%を越えると熱間お
よび冷間加工性が低下し、かつ鉄損も劣化するのでQ、
003〜0.1%の範囲が最適であり、この範囲内の微
量添加によって脱炭焼鈍時の追加酸化に対して抵抗性が
極めて強くなり、脱炭焼鈍後のサブスケールの状態を最
終焼鈍時の被膜形成まで大きな変化なく鋼板被膜を保持
できることが大きな効果であって、本発明の特徴の一つ
である。
As is clear from Table 1, the cold workability of Sample &1 in Table 1 to which no MO was added and Sample 2 with Mo:O, 001% was good, but the resistance to additional oxidation was poor. However, in the range of MO'0.003 to 0.10%, the additional oxidation property becomes almost constant, showing stable additional oxidation resistance and good cold workability. If MO exceeds 0.10%, hot and cold workability will decrease, and iron loss will also deteriorate, so Q.
A range of 0.003 to 0.1% is optimal, and by adding a small amount within this range, resistance to additional oxidation during decarburization annealing becomes extremely strong, and the subscale state after decarburization annealing is maintained at the final annealing. It is a great effect that the steel plate coating can be maintained without major changes until the coating is formed, and is one of the features of the present invention.

S、 Se : s、、seは共にMnと結合してMn8.Mn5ei形
成しインヒビターとして作用させるために添加するもの
で、そのためs : o、 o o s%未満、Se:
0、003%未満の場合には生成するMnS、MnSe
の1次再結晶粒成長抑制効果が弱く、またいずれ′も0
.1 %を越すと熱間および冷間加工性が著しく劣化す
るので8 二〇、008〜0.1%、8e:0.003
〜0.1%の範囲に限定した。これらのSおよびSeは
上記限定範囲内で・いずれか単独もしくは複合して添加
することにより最終仕上げ焼鈍において(1101<0
01>方位の2次再結晶粒を先鋭に発達させることがで
きる。
S, Se: s, , se both combine with Mn to form Mn8. It is added to form Mn5ei and act as an inhibitor, so s: o, o o less than s%, Se:
If the amount is less than 0,003%, MnS and MnSe generated
The effect of suppressing primary recrystallized grain growth is weak, and both ' is 0.
.. If it exceeds 1%, hot and cold workability deteriorates significantly, so 820, 008 to 0.1%, 8e: 0.003
It was limited to a range of ~0.1%. These S and Se can be added either alone or in combination within the above-mentioned range to achieve final annealing (1101<0
01> secondary recrystallized grains can be sharply developed.

次に焼鈍分離剤MgOの活性度の尺度として使用した粉
末X線回折法による回折線幅の拡がりから測定した粒径
の限定理由について説明する。
Next, the reason for limiting the particle size measured from the broadening of the diffraction line width by powder X-ray diffraction method used as a measure of the activity of the annealing separator MgO will be explained.

MgOの活性度はSin、を主成分とする鋼板のサブス
ケールとの反応および水スラリー中での水利反応に関係
することは既に述べたが、粒径が0.08□未満の細粒
のMgO″f用いると被膜外績は良好であるが、MgO
の水和による鋼板コイル内の持込み水分が多く、追加酸
化も起って被膜量が多くなり磁気特性を劣化させる。ま
た非常に細粒のMgOを用いた場合には、更に被膜の点
状欠陥が発生する。
As already mentioned, the activity of MgO is related to the reaction with the subscale of the steel plate mainly composed of Sin and the water utilization reaction in the water slurry. When using ``f, the coating performance is good, but MgO
A large amount of moisture is carried into the steel plate coil due to hydration, and additional oxidation also occurs, increasing the amount of coating and deteriorating the magnetic properties. In addition, when very fine grained MgO is used, point defects occur in the coating.

しかし、MgOの粒径が犬となって0.18μを越すと
、フォルステライト質被膜の外観が不均一となり、更に
粗粒のMgOを使用すると被膜の密着性が悪化して白っ
ぽい外観となシ商品価値を著しく減するので好ましくな
い。
However, if the particle size of MgO becomes too large and exceeds 0.18μ, the appearance of the forsterite film becomes uneven, and if coarser MgO is used, the adhesion of the film worsens, resulting in a whitish appearance. This is not desirable because it significantly reduces the product value.

上記の理由からMgOの粒径を0.08〜0.18μの
範囲に限定した。
For the above reasons, the particle size of MgO was limited to a range of 0.08 to 0.18 microns.

なお、MgOの粒径が0.18μの場合と、0.40μ
の場合の水和性を比較するに、焼成MgOを20℃の水
中に30分間静置した後、1000℃で2時間灼熱処理
した後の減量で比較すると前者は1.50%、後者は0
.57%であり、この値は水利性を示す水和量をも表わ
し、前者は十分活性があるのに対し後者は活性が著しく
減退していることを示している。従って本発明ではMg
Oの粒径の上限として0.18μを採用した。
In addition, when the particle size of MgO is 0.18μ and when the particle size is 0.40μ
To compare the hydration properties of the two cases, the weight loss after leaving calcined MgO in water at 20°C for 30 minutes and then scorching it at 1000°C for 2 hours is 1.50% for the former and 0 for the latter.
.. The value is 57%, and this value also represents the amount of hydration that indicates water availability, and while the former has sufficient activity, the latter shows that the activity has decreased significantly. Therefore, in the present invention, Mg
0.18μ was adopted as the upper limit of the O particle size.

MgOの単結晶は通常、凝集してより大きな疑似粒子を
形成する。光学顕微鏡や光透過式の粒度分布測定器を用
いて得られる粒度分布はこのような疑似粒子の分布であ
る。また、X線回折線の幅拡がりから求められるMgO
の粒子径は、多数のMgO単結晶の平均粒子径を表わし
ている。従ってX線回折線の幅拡がりから求めた粒子径
を有するMgOも凝集状態により相応の粒度分布を示し
ているはずである。上記の如(MgO単結晶の平均粒子
径で表わされる粒径がO,OS〜0.18μの範囲にあ
る本発明によるMgOの粒度分布を、前記の光透過式粒
度分布測定器で測定すると凝集された疑似粒子を測定す
ることとなり、その結果2μ以下に65〜90%の粒子
が存在する粒度分布を示す。
Single crystals of MgO typically aggregate to form larger pseudoparticles. The particle size distribution obtained using an optical microscope or a light transmission type particle size distribution measuring device is a distribution of such pseudo particles. In addition, MgO obtained from the width expansion of the X-ray diffraction line
The particle size represents the average particle size of a large number of MgO single crystals. Therefore, MgO having a particle size determined from the broadening of the X-ray diffraction line should also exhibit a corresponding particle size distribution depending on the state of aggregation. As mentioned above, when the particle size distribution of MgO according to the present invention, whose particle size expressed as the average particle size of the MgO single crystal is in the range of O,OS ~ 0.18μ, is measured using the above-mentioned light transmission type particle size distribution analyzer, The resulting pseudoparticles were measured, and the results showed a particle size distribution in which 65 to 90% of the particles were below 2μ.

また、MgOを粒子の状態゛から観察すると、粒径が0
.08〜0.18μの範囲にある本発明のMgOは、母
塩であるMg(OH)2の六角板状の形骸を残し、その
中にMgO粒子が凝集している高活性のものと、ある程
度焼成が進み六角板状形骸の全く見られない不活性のも
のが適量に混在しているので、すぐれたフォルステライ
ト質被膜を得ることができるものと考えられる、これに
対し従来公知のMgOは粒度分布に適正な規準がないの
で、六角板状の形骸を有する高活性のMgOと不活性の
MgOとの混合割合が当然不適切となる結果として、粒
径が0.08μ未満もしくは0.18μを越える粒子が
存在することとなら、良好なフォルステライト質被膜を
得られなかったものと考えられる。
Also, when observing MgO from the particle state, the particle size is 0.
.. The MgO of the present invention, which is in the range of 0.08 to 0.18μ, has a high activity that leaves a hexagonal plate-like skeleton of Mg(OH)2, which is the mother salt, and has MgO particles aggregated therein. It is thought that an excellent forsterite coating can be obtained because an appropriate amount of inert material with no hexagonal plate-like structure is observed as the firing progresses.In contrast, conventionally known MgO has a small particle size. Since there is no proper standard for distribution, the mixing ratio of highly active MgO with a hexagonal plate-like shape and inert MgO is naturally inappropriate, and as a result, the particle size is less than 0.08μ or 0.18μ. If there are particles exceeding the above range, it is considered that a good forsterite coating could not be obtained.

前述の如< MgOの活性は原料Mg (OH) 2の
焼成条件に依存し、本発明者らの実験による第2表に示
す各種の焼成温度によって原料Mg (OH) zを焼
成し、焼成MgOの活性度を示す水和反応性t−20℃
の水中に30分間静置した後1000℃にて2時間の灼
熱を行った際の減量率にて示すと第2表のとおりである
As mentioned above, the activity of MgO depends on the firing conditions of the raw material Mg (OH) 2. Hydration reactivity t-20℃ showing the activity of
Table 2 shows the weight loss rate when the sample was left standing in water for 30 minutes and then scorched at 1000°C for 2 hours.

第2表より明らかな如く、1100℃を越す燐等  2
  表 成はMgOの水利反応性、すなわち活性度を著しく低減
する。これは本発明者の上記実験結果より0.18μを
越す粒径のMgOであって、かかる活性度の低いMgO
にては良好な薄型フォルステライト被膜が形成されない
。薄型で外観、密着性とも良好なフォルステライト被膜
を形成できるのは、上記灼熱減量率にて1.5〜4チの
値を示す範囲である。
As is clear from Table 2, phosphorus, etc. exceeding 1100℃ 2
Surface formation significantly reduces the water reactivity, ie, the activity, of MgO. According to the inventor's above experimental results, this is MgO with a particle size exceeding 0.18μ, and MgO with such low activity
A good thin forsterite film cannot be formed under these conditions. A thin forsterite film with good appearance and adhesion can be formed within a range where the ignition loss rate is 1.5 to 4 inches.

すなわち、上記灼熱条件における減量率が1.5%ti
[の場合にはフォルステライト質被膜量は余り減少せず
、外観も不均一であり鋼板との密着性も良好ではない。
That is, the weight loss rate under the scorching heat conditions is 1.5%ti.
In the case of [, the amount of forsterite coating does not decrease much, the appearance is non-uniform, and the adhesion to the steel plate is not good.

また減量率が4%を越えるMgOを使用する場合は、外
観、密着性とも良好であるが、最終仕上げ焼鈍工程にお
いて追加酸化が発生して被膜量が多くなり磁気特性が劣
化する。上記MgOの灼熱減量率1.5〜4チに対応す
る活性度の尺度とする粉末X線回折法による回折線幅の
拡がりから測定したMgOの粒径は0.08〜0.18
μであるので本発明ではその適正粒径を0,08〜0.
18μの範囲に限定した。
In addition, when MgO with a weight loss rate exceeding 4% is used, although the appearance and adhesion are good, additional oxidation occurs in the final annealing process, the amount of coating increases, and the magnetic properties deteriorate. The particle size of MgO measured from the broadening of the diffraction line width by powder X-ray diffraction, which is a measure of activity corresponding to the ignition loss rate of MgO of 1.5 to 4 cm, is 0.08 to 0.18.
μ, so in the present invention, the appropriate particle size is 0.08 to 0.08.
It was limited to a range of 18μ.

実施例I C:0.042%、Si:3.25%、Mn:0.06
0%、Mo:01013%、S:0.018%を含有す
る熱間圧延、均一化焼鈍および1回の中間焼鈍を含む2
回の冷間圧延を経て0.311111の最終板厚とし、
次いで露点60℃、水素65チ残部窒素から成る820
℃のガス雰囲気中で脱炭焼鈍を施した。脱炭焼鈍後のサ
ブスケール中の酸素量は1.6017m”であった。こ
の脱炭鋼板に第3表に示す粒径のMgOを塗布し乾燥し
た後、コイルに巻取った。この鋼帯を820℃から3℃
ハrの加熱速度で1000いて被膜外観を観察し被膜中
の酸素量、磁気特性BIOおよびW17150を測定し
た結果を第3表に示した。
Example I C: 0.042%, Si: 3.25%, Mn: 0.06
0%, Mo: 01013%, S: 0.018%, including hot rolling, homogenization annealing and one intermediate annealing.
The final plate thickness was 0.311111 after cold rolling.
Next, 820 with a dew point of 60°C and consisting of 65% hydrogen and the balance nitrogen.
Decarburization annealing was performed in a gas atmosphere at ℃. The amount of oxygen in the subscale after decarburization annealing was 1.6017 m''. MgO with the particle size shown in Table 3 was applied to this decarburized steel sheet, dried, and then wound into a coil. from 820℃ to 3℃
The appearance of the coating was observed at a heating rate of 1,000 hrs., and the amount of oxygen in the coating, magnetic properties BIO, and W17150 were measured. The results are shown in Table 3.

第3表 第3表より明らかな如く、本発明によるX線回折法によ
るMgOの粒径0.08〜0.18μの範囲にある本発
明鋼!3,4.5は外観は灰色で均一であり、本発明の
限定外の比較鋼よりも磁気特性が著しくすぐれているこ
とを示している。
Table 3 As is clear from Table 3, the steel of the present invention has an MgO grain size in the range of 0.08 to 0.18μ as measured by the X-ray diffraction method according to the present invention! No. 3 and No. 4.5 had a uniform gray appearance, indicating that the magnetic properties were significantly superior to comparative steels not covered by the scope of the present invention.

実施例2 C: 0.040%、Si:3.25%、Mn:0.0
64%、Mo:0.O15’%、Se:0.018%を
含有するスラブを脱炭焼鈍工程まで実施例1と同一方法
にて処理した。脱炭焼鈍後のサブスケール中の酸素量は
1.65 ? /m”であった。この脱炭鋼板に第4表
に示す種々粒径の異なる分離剤を塗布し乾燥した後コイ
ルに巻取った。この場合の焼鈍分離剤は主成分MgO(
7)ほかiCT io 2 1.5%、5rS041.
 O%を添加したものであった。この銅帯を850℃で
50時間保持する2次再結晶焼鈍を行なった後11′8
0℃で5時間水素中で純化焼鈍を行って得た一方向性珪
素鋼板について実施例1と同様に磁気特性を測定した結
果は第4表に示すとおりである。
Example 2 C: 0.040%, Si: 3.25%, Mn: 0.0
64%, Mo: 0. A slab containing 15'% O and 0.018% Se was treated in the same manner as in Example 1 up to the decarburization annealing step. The amount of oxygen in the subscale after decarburization annealing is 1.65? /m''. Separating agents with various particle sizes shown in Table 4 were applied to this decarburized steel plate, dried, and then wound into a coil.
7) Others iCT io 2 1.5%, 5rS041.
0% was added. After performing secondary recrystallization annealing of this copper strip at 850°C for 50 hours, 11'8
The magnetic properties of unidirectional silicon steel sheets obtained by purification annealing in hydrogen at 0° C. for 5 hours were measured in the same manner as in Example 1, and the results are shown in Table 4.

奪  4  表 r□□ 1・ 巨 材を使用し焼鈍分離剤としてMgOを主成分とし少量の
TiO2、SrSO4を添加した場合でも本発明による
X線回折法による粒径を0,08〜0.18μの範囲に
保持する限り、外観が均一な灰色であり本発明の限定外
の比較例よりはるかに表面性状が良好であると共に磁気
特性の著しくすぐれた一方向性珪素鋼板を得ることがで
きることを示している。
4 Table r□□ 1. Even when a large material is used and the annealing separator is MgO as the main component and small amounts of TiO2 and SrSO4 are added, the particle size according to the X-ray diffraction method according to the present invention is 0.08 to 0.18μ. It is shown that as long as the temperature is maintained within the range of , it is possible to obtain a unidirectional silicon steel sheet that has a uniform gray appearance, has a much better surface quality than comparative examples outside the scope of the present invention, and has significantly superior magnetic properties. ing.

実施例3 C:0.043%、Si:3.20%、Mn:0,06
0%、Mo:0.012 %、Se :0.018 %
 、Sb:0.022チを含有するスラブを脱炭焼鈍工
程まで実施例1と同一方法にて処理した。脱炭焼鈍後の
サブスケール中の酸素量は1.70?/−であった。こ
の脱炭鋼板に第5表に示す種々粒径の異なるMgOを主
成分とじTi021.5%、SrSO41,O% k 
fjs 加り、 PC焼鈍分離剤を塗布し乾燥した後コ
イルに巻取った。この銅帯を850℃で50時間保持す
る2次再結晶焼鈍を行なった後1180℃で5時間水素
中で加熱保持する純化焼鈍を行って得た一方向性珪素鋼
板について実施例1と同様に焼鈍分離剤特性および磁気
特性を測定した。結果は第5表に示すとおりである。
Example 3 C: 0.043%, Si: 3.20%, Mn: 0.06
0%, Mo: 0.012%, Se: 0.018%
, Sb:0.022H was treated in the same manner as in Example 1 up to the decarburization annealing step. The amount of oxygen in the subscale after decarburization annealing is 1.70? It was /-. This decarburized steel plate is mainly composed of MgO with various grain sizes shown in Table 5, Ti021.5%, SrSO41,0% k
fjs was added, a PC annealing separator was applied, and after drying, it was wound into a coil. A unidirectional silicon steel sheet obtained by performing secondary recrystallization annealing by holding this copper strip at 850°C for 50 hours and then purification annealing by heating and holding in hydrogen at 1180°C for 5 hours was treated in the same manner as in Example 1. The annealing separator properties and magnetic properties were measured. The results are shown in Table 5.

第5表より明らかなとおり、この場合も成品の外観およ
び磁気特性とも本発明による粒径の焼鈍分離剤を使用し
た成品は限定外の比較例に比し格段にすぐれていること
を示している。
As is clear from Table 5, in this case as well, the product using the annealing separator with the particle size of the present invention is significantly superior to the non-limited comparative examples in terms of appearance and magnetic properties. .

湾5表 上記実施例1,2.3において比較例A7.1421の
各供試材の素材成分中には本発明によるM。
Bay 5 Table In Examples 1 and 2.3 above, M according to the present invention was included in the material components of each sample material of Comparative Example A7.1421.

を含まず、その他の成分同一の素材を使用したものでお
る。
It does not contain , and is made from materials with the same other ingredients.

上記各実施例より明らかなとおり、本発明による一方向
性珪素鋼板は素材成分組成を限定し、特にMo:0.0
03〜0.1 % l添加し、更に焼鈍分離剤として使
用するMgOもしくはMgOを主成分とする化合物の使
用に際しては粉末X線回折法による回折線幅の拡がりか
ら測定し九粒径がいずれも0.08〜0.18μの範囲
にある如く管理することによって次の如き効果を収める
ことができた。
As is clear from the above examples, the unidirectional silicon steel sheet according to the present invention has a limited material composition, especially Mo: 0.0
When using MgO or a compound mainly composed of MgO, which is added in an amount of 0.3 to 0.1% and further used as an annealing separator, the particle size is measured from the broadening of the diffraction line width by powder X-ray diffraction method. By controlling the thickness to be within the range of 0.08 to 0.18μ, the following effects could be achieved.

(イ)MOを添加することによって最終仕上げ焼鈍時の
追加酸化に対する抵抗が強く、その結果生成したサブス
ケールの状態を最終焼鈍時の被膜形成時まで変化なく保
持できるので絶縁被膜を極めて薄型のものにすることが
できた。
(b) By adding MO, the resistance to additional oxidation during final annealing is strong, and the resulting subscale state can be maintained unchanged until the coating is formed during final annealing, making the insulation coating extremely thin. I was able to do it.

(ロ)  MgOもしくはMgOを主成分とする焼鈍分
離剤の活性度に影響を及ぼすX線回折法による粒径を限
定管理するので持込み水分量を適正に制御し密着性の良
好な薄型のフォルステライト質被膜を安定して形成する
ことができる。
(b) Since the particle size is controlled in a limited manner by X-ray diffraction, which affects the activity of MgO or an annealing separator mainly composed of MgO, the amount of moisture brought in can be properly controlled and a thin forsterite with good adhesion can be produced. A quality film can be stably formed.

(ハ)(イ)、(ロ)の結果として外観は均一な灰色を
呈する密着性の良好な薄型絶縁被膜を有し、その磁束密
度は1.88〜1.93 Tと極めて高く、かつその鉄
損値が1.02〜1.12W/A9と低い、すぐれた磁
気特性を有する一方向性珪素鋼板を安定して製造できる
ようになった、
(c) As a result of (a) and (b), it has a thin insulating coating with good adhesion that exhibits a uniform gray appearance, and its magnetic flux density is extremely high at 1.88 to 1.93 T. It has become possible to stably produce unidirectional silicon steel sheets with excellent magnetic properties and low iron loss values of 1.02 to 1.12 W/A9.

Claims (1)

【特許請求の範囲】[Claims] (1)重量比にてC:0.06%以下、Si:2.0〜
4.0%、Mo:0.003〜0.1%を含み、かつS
:0.008〜0.1%、Se:0.003〜0.1%
のうちより選ばれたいずれか1種または2種を含有する
一方向性珪素鋼素材を熱間圧延する工程と、前記熱延鋼
板を中間焼鈍を含む2回以上もしくは1回の冷間圧延に
より所定の板厚に仕上げる工程と、前記冷延鋼板に脱炭
を兼ねた一次再結晶焼鈍を施す工程と、前記脱炭鋼板の
表面に焼鈍分離剤を塗布する工程と、前記焼鈍分離剤を
塗布した鋼板を最終仕上げ焼鈍する工程とを有して成る
一方向性珪素鋼板の製造方法において、前記焼鈍分離剤
は粉末X線回折法による回折線幅の拡がりから測定した
粒径が0.08〜0.18μの範囲にあるMgOもしく
はMgOを主成分とする化合物であることを特徴とする
磁気特性のすぐれた一方向性珪素鋼板の製造方法。
(1) C: 0.06% or less, Si: 2.0~ by weight ratio
4.0%, Mo: 0.003 to 0.1%, and S
:0.008~0.1%, Se:0.003~0.1%
A step of hot rolling a unidirectional silicon steel material containing one or two selected from the above, and a step of cold rolling the hot rolled steel sheet two or more times including intermediate annealing or once. a step of finishing the plate to a predetermined thickness; a step of subjecting the cold-rolled steel sheet to primary recrystallization annealing that also serves as decarburization; a step of applying an annealing separator to the surface of the decarburized steel sheet; and a step of applying the annealing separator. In the method for producing a unidirectional silicon steel sheet, the annealing separator has a particle size of 0.08 to 0.08 as measured from the broadening of the diffraction line width by powder X-ray diffraction. A method for producing a unidirectional silicon steel sheet with excellent magnetic properties characterized by using MgO or a compound mainly composed of MgO in the range of 0.18μ.
JP15209385A 1985-07-10 1985-07-10 Production of grain oriented silicon steel sheet having excellent magnetic characteristic Pending JPS61264182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15209385A JPS61264182A (en) 1985-07-10 1985-07-10 Production of grain oriented silicon steel sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15209385A JPS61264182A (en) 1985-07-10 1985-07-10 Production of grain oriented silicon steel sheet having excellent magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS61264182A true JPS61264182A (en) 1986-11-22

Family

ID=15532891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15209385A Pending JPS61264182A (en) 1985-07-10 1985-07-10 Production of grain oriented silicon steel sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS61264182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002039A (en) * 2017-06-14 2019-01-10 新日鐵住金株式会社 Directional electromagnetic steel sheet for controlling laser magnetic domain and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002039A (en) * 2017-06-14 2019-01-10 新日鐵住金株式会社 Directional electromagnetic steel sheet for controlling laser magnetic domain and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
KR100967049B1 (en) Method for manufacturing a high-silicon steel sheet
JP2017122247A (en) Production method of grain oriented magnetic steel sheet
JP4484710B2 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2006503189A5 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP3277058B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP5853968B2 (en) Method for producing grain-oriented electrical steel sheet
JPS61264182A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP5928362B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
KR100957930B1 (en) Method for manufacturing high silicon non-oriented electrical steel sheet with superior magnetic properties
JPS58193373A (en) Manufacture of unidirectional silicon steel sheet excellent in magnetic property
KR100900661B1 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP3277059B2 (en) Annealing separator for grain-oriented electrical steel sheets
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
WO2022158541A1 (en) Method for producing grain-oriented electrical steel sheet
KR100900660B1 (en) Coating composition with superior powder coating and surface properties
JP3455019B2 (en) Unidirectional electrical steel sheet for instruments with excellent low-field magnetic properties and manufacturing method
KR100905652B1 (en) Coating composition and method for manufacturing high silicon electrical steel sheet