KR20040040685A - Method of local salicidation for semiconductor device - Google Patents

Method of local salicidation for semiconductor device Download PDF

Info

Publication number
KR20040040685A
KR20040040685A KR1020020068880A KR20020068880A KR20040040685A KR 20040040685 A KR20040040685 A KR 20040040685A KR 1020020068880 A KR1020020068880 A KR 1020020068880A KR 20020068880 A KR20020068880 A KR 20020068880A KR 20040040685 A KR20040040685 A KR 20040040685A
Authority
KR
South Korea
Prior art keywords
layer
forming
etch stop
substrate
metal
Prior art date
Application number
KR1020020068880A
Other languages
Korean (ko)
Inventor
김진호
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020020068880A priority Critical patent/KR20040040685A/en
Publication of KR20040040685A publication Critical patent/KR20040040685A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Abstract

PURPOSE: A local salidation method of a semiconductor device having a boundless contact is provided to be capable of forming a metal salicide layer only on a gate line for reducing leakage current at a source/drain junction portion in an active region. CONSTITUTION: An etch stop layer(41) is formed on a substrate(1). At this time, the substrate has an MOS(Metal Oxide Semiconductor) structure. A sacrificial layer is deposited on the resultant structure. A polysilicon gate(13) is exposed by partially removing the sacrificial layer and the etch stop layer. A metal silicide layer(43) is formed on the exposed gate alone. An interlayer dielectric(49) is formed on the resultant structure. A plurality of contact holes are formed by sequentially patterning the interlayer dielectric and the etch stop layer. A plurality of contact plugs(51,53) are formed in the contact holes.

Description

무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법{Method of local salicidation for semiconductor device}Method of local saliation of a semiconductor device including a borderless contact {Method of local salicidation for semiconductor device}

본 발명은 반도체 장치 제조 방법에 관한 것으로, 보다 상세하게는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for local salination of a semiconductor device including a borderless contact.

반도체 장치의 소자 고집적화로 인하여 배선 폭이 줄어들고, 콘택 플러그의 면적도 줄어들어 배선에 있어서의 저항이 점차 커지고 있다. 한편으로 소자 동작의 고속화와 효율성을 위해 배선이나 콘택, 소오스/드레인의 시트 저항이 줄어들 것이 요구되고 있다.Due to the high integration of semiconductor devices, the wiring width is reduced, the area of the contact plug is also reduced, and the resistance in the wiring is gradually increased. On the other hand, it is required to reduce the sheet resistance of wiring, contacts, and source / drain for high speed and efficiency of device operation.

종래에 배선 물질로 알미늄을 사용하였으나 알미늄은 후속 열공정을 수행하기 어렵다는 단점이 있고, 좁은 틈새를 매우기에 적합하지 않았다. 한편, 도핑된 폴리실리콘은 이런 문제를 해결할 수 있는 재료이나 금속에 비해 저항이 크고 콘택 계면 저항이 커지는 문제가 있다. 이런 저항의 문제를 줄이기 위해 배선층의 일부를 내화성 금속이나 금속 화합물로 바꾸는 기술이 많이 적용되고 있다.Conventionally, aluminum is used as a wiring material, but aluminum has a disadvantage in that it is difficult to perform a subsequent thermal process, and it is not suitable for narrow gaps. On the other hand, doped polysilicon has a problem that the contact resistance is large and the resistance is larger than the material or metal that can solve this problem. In order to reduce such a problem of resistance, a lot of techniques have been applied to replace part of the wiring layer with a refractory metal or a metal compound.

금속 화합물로 실리콘과의 화합물인 실리사이드를 많이 사용하고 있으며, 자기 정렬형 실리사이드(self aligned silicide)를 살리사이드(salicide)라 약칭하고 있다. 근래의 일반적인 살리사이드 형성 공정은 폴리실리콘 게이트를 가지는 MOS(Metal oxide silicon) 구조가 형성되 기판에 티타늄, 코발트, 백금 등의 금속을 적층하고 게이트 상부의 폴리실리콘과 소오스/드레인 영역의 단결정 실리콘이 이들 금속과 반응하여 실리사이드를 형성하게 하고, 게이트 측벽의 실리콘 산화막 혹은 실리콘 질화막으로 이루어진 스페이서 위에는 실리사이드 반응이 이루어지지 못하게 하는 것이다.As a metal compound, silicide which is a compound with silicon is used a lot, and self-aligned silicide is abbreviated as salicide. Recently, the salicide forming process has formed a metal oxide silicon (MOS) structure having a polysilicon gate, in which metals such as titanium, cobalt, and platinum are stacked on a substrate, and polysilicon on the gate and single crystal silicon in the source / drain regions are formed. The silicide is formed by reacting with the metal, and the silicide reaction does not occur on the spacer formed of the silicon oxide film or the silicon nitride film on the gate sidewall.

그러나, 소오스/드레인 영역의 실리사이드의 층구조 형성이 불량하면 기판과 소오스/드레인 접합에 전류 누설이 발생할 수 있다. 한편, 정전기 방전(ESD)에 의한 반도체 장치 파괴를 막기 위해 형성되는 정전기 방지 트랜지스터의 경우 드레인 단의 저항이 높아야 기능을 충분히 발휘할 수 있으나 통상의 살리사이드 공정을 도입하는 경우 게이트 전극과 콘택의 거리가 길어도 실리사이드에 의해 저항이 줄어들게 되므로 정전기 방지 기능을 충분히 가질 수 없다는 문제가 있다. 따라서, 소오스/드레인과 같은 활성 영역 표면에는 실리사이드 형성을 하지 않고, 게이트 라인의 상부에만 실리사이드층을 형성하는 로컬 살리사이드 형성 공정이 최근 많이 채택되고 있다.However, poor formation of the silicide layer structure of the source / drain regions may cause current leakage in the substrate and the source / drain junctions. On the other hand, in the case of an antistatic transistor formed to prevent the destruction of a semiconductor device by an electrostatic discharge (ESD), the resistance of the drain terminal may be high to fully function, but when a typical salicide process is introduced, the distance between the gate electrode and the contact may be increased. Even if it is long, the resistance is reduced by the silicide, there is a problem that can not have enough antistatic function. Accordingly, many local salicide formation processes have been recently adopted in which silicide formation is not performed on the surface of an active region such as a source / drain, but a silicide layer is formed only on the gate line.

한편, 반도체 장치의 소자 고집적화에 따라 셀 크기 감소로 여러 공정상의 한계가 노출되면서 이를 극복하기 위한 방법의 하나로 무경계 콘택(borderless contact)이 이용되고 있다. 무경계 콘택은 STI 방식의 소자 분리막에 걸쳐서 활성 영역에 콘택을 형성하는 방법이며, 통상 실리콘 산화막과 실리콘 질화막 사이의 식각 선택비를 이용하여 형성한다.Meanwhile, borderless contact has been used as a method for overcoming various process limitations due to cell size reduction due to the high integration of semiconductor devices. A borderless contact is a method of forming a contact in an active region over an STI type isolation layer, and is usually formed using an etching selectivity between a silicon oxide film and a silicon nitride film.

그러나, 통상의 로컬 살리시데이션 공정을 적용하면 후속의 층간 절연막 식각시 식각 정지막 역할을 하는 질화막을 형성하지 못하기 때문에 콘택 홀 형성을 위한 층간 절연막 식각시 소자 분리막이 과도하게 식각되어 형성되는 무경계 콘택과 기판 혹은 웰(WELL)이 전기적으로 단락되는 문제가 생긴다. 즉, 로컬 살리시데이션 공정을 적용할 경우, 소자 고집적화에 유용한 무경계 콘택을 사용하기 어려운 문제가 있다.However, when a conventional local salicide process is applied, a nitride film that serves as an etch stop layer cannot be formed during subsequent interlayer insulating layer etching, so that the boundary layer formed by excessively etching the device isolation layer during etching of the interlayer insulating layer for forming the contact hole is formed. There is a problem that the substrate or the well (WELL) is electrically shorted. That is, when applying a local salicide process, there is a problem that it is difficult to use a borderless contact useful for high device integration.

도1 내지 도4는 종래의 로컬 살리시데이션 공정에서 무경계 콘택을 형성할 경우의 문제를 설명하는 공정 단면도들이다.1 to 4 are cross-sectional views illustrating a problem in forming a borderless contact in a conventional local salination process.

도1의 상태를 형성하기 위해, 우선, 트렌치 소자 분리막(3)이 형성된 기판(1)에 게이트 절연막(11), 폴리실리콘 게이트막(13)을 차례로 형성한다. 패터닝을 통해 게이트 라인을 형성한다. 실리콘 질화막 스페이서(15)를 게이트 라인 측벽에 형성한다. 게이트 라인을 이온주입 마스크로 이온주입을 실시하여 소오스/드레인 영역같은 활성 영역(17)을 형성한다. 층간 절연막(19)을 적층하고 평탄화를실시한다.In order to form the state of FIG. 1, first, a gate insulating film 11 and a polysilicon gate film 13 are sequentially formed on the substrate 1 on which the trench element isolation film 3 is formed. Patterning forms a gate line. The silicon nitride film spacers 15 are formed on the sidewalls of the gate lines. The gate line is implanted with an ion implantation mask to form an active region 17 such as a source / drain region. The interlayer insulating film 19 is laminated and planarized.

도2를 참조하면, 층간 절연막(19)에 대한 에치 백이나 평탄화 공정의 계속을 통해 게이트 라인의 폴리실리콘 게이트막(13) 상부를 노출시킨다.Referring to FIG. 2, the upper portion of the polysilicon gate layer 13 of the gate line is exposed through the etch back or the planarization process for the interlayer insulating layer 19.

도3을 참조하면, 기판 전면에 코발트나 티타늄을 적층시키고 열처리하여 실리사이드화를 진행한다. 이때, 폴리실리콘 게이트막(13)이 노출된 게이트 라인 상부만 실리사이드화가 진행되어 금속 실리사이드(21)가 형성된다. 이어서 금속막을 제거할 수 있는 식각 물질로 실리사이드화가 이루어지지 않은 금속막을 제거한다.Referring to FIG. 3, cobalt or titanium is laminated on the entire surface of the substrate and subjected to heat treatment to perform silicideization. At this time, only the upper portion of the gate line where the polysilicon gate layer 13 is exposed may be silicided to form the metal silicide 21. Subsequently, the metal film that is not silicided is removed with an etching material capable of removing the metal film.

도4를 참조하면, 다시 기판 전면에 층간 절연막(29)을 적층한다. 노광과 식각 공정으로 이루어지는 패터닝 작업을 실시하여 게이트 상부와 소자 분리막(3)을 가로지르며 활성 영역(17)의 일부를 드러내는 콘택 홀을 형성한다. 이때 소자 분리막(3)과 층간 절연막(29)은 실리콘 산화막으로 이루어지므로 선택비를 갖지 못하고 따라서 소자 분리막(3) 일부가 기판(1)면 아래로 식각된다. 이어서, 폴리실리콘 등의 도전막 적층과 CMP(Chemical mechanical polishing)를 통해 콘택 홀을 채우는 콘택 플러그(31,33)가 형성된다. 이때, 소자 분리막(3)을 가로질러 양쪽 셀의 활성 영역(17)에 접촉되는 콘택 플러그(33)는 소자 분리막(3)이 식각으로 상부가 제거된 결과 기판(1)과 직접 단락된다.Referring to FIG. 4, an interlayer insulating film 29 is again stacked on the entire substrate. A patterning operation including an exposure and an etching process is performed to form a contact hole crossing the upper gate and the device isolation layer 3 and exposing a part of the active region 17. In this case, since the device isolation layer 3 and the interlayer insulating layer 29 are made of a silicon oxide layer, the device isolation layer 3 and the interlayer insulating layer 29 do not have a selectivity. Subsequently, contact plugs 31 and 33 are formed to fill contact holes through conductive film stacking such as polysilicon and chemical mechanical polishing (CMP). At this time, the contact plug 33 which contacts the active region 17 of both cells across the device isolation layer 3 is directly short-circuited with the substrate 1 as a result of the device isolation layer 3 being etched off.

본 발명은 종래의 로컬 살리시데이션 공정을 채택할 때 무경계 콘택을 선택하기 어렵고, 무경계 콘택을 형성할 경우, 콘택 플러그와 기판이나 웰이 직접 닿아 전기적으로 단락되는 문제점을 해결할 수 있는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법을 제공하는 것을 목적으로 한다.The present invention is difficult to select a borderless contact when adopting a conventional local salination process, when forming a borderless contact, including a borderless contact that can solve the problem that the contact plug and the substrate or well directly contact and electrically shorted An object of the present invention is to provide a method for local salination of a semiconductor device.

도1 내지 도4는 종래의 로컬 살리시데이션 공정에서 무경계 콘택을 형성할 경우의 문제를 설명하는 공정 단면도들이다.1 to 4 are cross-sectional views illustrating a problem in forming a borderless contact in a conventional local salination process.

도5 내지 도8은 본 발명의 일 실시예에 따르는 반도체 장치의 로컬 살리시데이션 방법을 나타내는 공정 단면도들이다.5 through 8 are cross-sectional views illustrating a method of local salination of a semiconductor device according to an embodiment of the present invention.

도9 내지 도12는 본 발명의 다른 실시예에 따르는 반도체 장치의 로컬 살리시데이션 방법을 나타내는 공정 단면도들이다.9 through 12 are process cross-sectional views illustrating a local salination method of a semiconductor device according to another exemplary embodiment of the present invention.

상기 목적을 달성하기 위한 본 발명은, MOS 구조가 이루어진 기판에 식각 정지막을 형성하는 단계, 식각 정지막 위로 기판에 희생막을 적층하는 단계, 희생막과 식각 정지막의 일부를 제거하여 게이트 상부만을 드러내는 단계, 드러난 게이트 상부에 실리사이드를 형성하는 단계, 실리사이드가 형성된 기판 위로 층간 절연막을 형성하는 단계, 패터닝을 실시하여 층간 절연막과 식각 정지막을 통과하는 콘택 홀을 형성하는 단계, 콘택 홀을 채우는 콘택 플러그를 형성하는 단계를 포함하여 이루어진다.According to an aspect of the present invention, an etch stop layer is formed on a substrate having a MOS structure, a sacrificial layer is laminated on the etch stop layer, and a portion of the sacrificial layer and the etch stop layer is removed to expose only the gate top. Forming silicide on the exposed gate; forming an interlayer insulating film over the substrate on which the silicide is formed; forming a contact hole through the interlayer insulating film and the etch stop layer by patterning; forming a contact plug to fill the contact hole It comprises a step.

이때, 콘택 홀 가운데 적어도 하나는 소자 분리막을 가로질러 활성 영역을 드러내는 무경계 콘택 홀로 형성된다.At least one of the contact holes may be formed as a borderless contact hole exposing the active region across the device isolation layer.

본 발명에서 공정을 안전하게 진행하기 위해 식각 정지막을 두차례에 걸쳐 형성할 수 있다. 즉, 실리사이드를 형성하는 단계에 이어 기판 전체에 걸쳐 희생막을 제거하고 두번째 식각 정지막을 형성하는 단계가 이루어질 수 있다. 식각 정지막으로는 실리콘 산화막과 식각 선택비가 우수한 실리콘 질화막을 통상 사용할 수 있다.In the present invention, an etch stop layer may be formed twice in order to safely proceed with the process. That is, after the silicide is formed, the sacrificial layer may be removed and the second etch stop layer may be formed over the entire substrate. As the etch stop film, a silicon nitride film excellent in etching selectivity and a silicon oxide film can be generally used.

본 발명에서 게이트의 폴리실리콘과 함께 실리사이드를 형성하는 금속으로는 코발트, 백금, 니켈, 티타늄 등을 사용할 수 있으며, 실시사이드화를 위해서는 금속막 적층 후 통상 600도 내지 700도씨의 온도에서 열처리를 하게 된다. 또한, 실리사이드화가 이루어지지 않은 금속막을 제거한 뒤 실리사이드의 안정화를 위한700도씨 이상의 추가 열처리가 이루어지는 것이 바람직하다.In the present invention, cobalt, platinum, nickel, titanium, and the like may be used as the metal forming the silicide together with the polysilicon of the gate, and in order to carry out the embodiment, heat treatment is performed at a temperature of 600 to 700 degrees after lamination of a metal film. Done. In addition, it is preferable that an additional heat treatment of 700 ° C. or more is performed for the stabilization of the silicide after removing the silicided metal film.

본 발명에서 콘택 플러그를 형성할 때에는 콘택 홀에 베리어 금속과 텅스텐 같은 금속을 순차적으로 적층하여 채우고, 층간 절연막 위쪽의 베리어 금속과 텅스텐을 CMP로 제거한다. CMP 대신 건식 식각에 의한 에치 백 방법을 사용할 수 있다.In forming the contact plug in the present invention, a barrier metal and a metal such as tungsten are sequentially stacked and filled in the contact hole, and the barrier metal and tungsten on the interlayer insulating film are removed by CMP. Instead of CMP, a dry etch back method can be used.

이하 도면을 참조하면서 실시예들을 통해 본 발명을 좀 더 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

(실시예 1)(Example 1)

도5 내지 도8은 본 발명의 일 실시예에 따르는 반도체 장치의 로컬 살리시데이션 방법을 나타내는 공정 단면도들이다.5 through 8 are cross-sectional views illustrating a method of local salination of a semiconductor device according to an embodiment of the present invention.

도5를 참조하면, 우선, 트렌치 소자 분리막(3)이 형성된 기판(1)에 게이트 절연막(11), 폴리실리콘 게이트막(13)을 차례로 형성한다. 패터닝을 통해 게이트 라인을 형성한다. 실리콘 질화막 스페이서(15)를 게이트 라인 측벽에 형성한다. 게이트 라인을 이온주입 마스크로 고농도 이온주입을 실시하여 소오스/드레인 영역같은 활성 영역(17)을 형성한다. 실리콘 질화막으로 이루어진 제1 식각 정지막(41)을 기판 전면에 적층하고 실리콘 산화막으로 이루어지는 희생막(39)을 적층한다. 이어서, CMP에 의한 평탄화를 실시하여 게이트 라인의 상부가 드러나게 한다.Referring to FIG. 5, first, the gate insulating film 11 and the polysilicon gate film 13 are sequentially formed on the substrate 1 on which the trench element isolation film 3 is formed. Patterning forms a gate line. The silicon nitride film spacers 15 are formed on the sidewalls of the gate lines. High concentration ion implantation is performed using the gate line with an ion implantation mask to form an active region 17 such as a source / drain region. A first etch stop film 41 made of a silicon nitride film is stacked on the entire substrate, and a sacrificial film 39 made of a silicon oxide film is stacked. Next, planarization by CMP is performed to expose the top of the gate line.

도6을 참조하면, 게이트 라인의 상부에서 제1 식각 정지막(41)을 제거하여 폴리실리콘 게이트막(13)이 드러나게 한다. 이어서 희생막(39)에 대한 식각을 실시하여 게이트 라인 상부 외에서 기판에 제1 식각 정지막(41)이 노출되도록 한다.Referring to FIG. 6, the polysilicon gate layer 13 is exposed by removing the first etch stop layer 41 from the top of the gate line. Subsequently, the sacrificial layer 39 is etched to expose the first etch stop layer 41 to the substrate outside the upper gate line.

도7을 참조하면, 도6의 상태에서 기판에 코발트막을 적층한다. 이어서 700도이상의 열처리를 통해 게이트막(13) 상부에서 폴리실리콘과 코발트가 반응하여 코발트 실리사이드층(43)을 형성시킨다. 식각을 통해 기판 전면에서 코발트를 제거시키면 게이트 라인 상부에만 코발트 실리사이드층(43)이 형성된 상태가 된다. 이어서, 기판 전면에 제2 식각 정지막(45)을 적층한다.Referring to FIG. 7, a cobalt film is laminated on the substrate in the state shown in FIG. Subsequently, polysilicon and cobalt react on the gate layer 13 through heat treatment of 700 degrees or more to form a cobalt silicide layer 43. When cobalt is removed from the entire surface of the substrate through etching, the cobalt silicide layer 43 is formed only on the gate line. Subsequently, a second etch stop layer 45 is stacked on the entire surface of the substrate.

도8을 참조하면, 제2 식각 정지막(45) 위로 층간 절연막(49)이 형성된다. CMP를 실시하여 층간 절연막(49)을 평탄화시킨 상태에서 패터닝을 통해 콘택 홀을 형성시킨다. 패터닝에서 일단 실리콘 산화막으로 이루어진 층간 절연막(49)에 콘택 홀이 형성되고, 이어서 홀 저면의 실리콘 질화막으로 이루어진 식각 정지막(41,45)이 선택적으로 제거된다. 콘택 홀로서 게이트 전극 상부를 노출시키는 것과 소자 분리막(3)을 가로질러 두 개의 활성 영역(17)에 닿는 무경계 콘택 홀이 형성된다. 이 가운데 무경계 콘택 홀에서는 층간 절연막(49)이 제거될 때 제1 및 제2 식각 정지막(41,45)이 소자 분리막(3)을 보호하며 식각 정지막(41,45)이 제거될 때에는 식각 선택비에 의해 소자 분리막(3)은 손상되지 않는다.Referring to FIG. 8, an interlayer insulating layer 49 is formed on the second etch stop layer 45. CMP is performed to form contact holes through patterning while the interlayer insulating film 49 is planarized. In patterning, a contact hole is formed in an interlayer insulating film 49 made of a silicon oxide film, and then the etch stop films 41 and 45 made of a silicon nitride film on the bottom of the hole are selectively removed. A borderless contact hole is formed that exposes the top of the gate electrode as a contact hole and contacts two active regions 17 across the device isolation film 3. In the borderless contact hole, the first and second etch stop layers 41 and 45 protect the device isolation layer 3 when the interlayer insulating layer 49 is removed, and when the etch stop layers 41 and 45 are removed, the first and second etch stop layers 41 and 45 protect the device isolation layer 3. The element isolation film 3 is not damaged by the selectivity.

콘택 홀이 형성된 기판에는 얇은 베리어 메탈과 텅스텐 도전막이 적층된다. 그리고, CMP(Chemical mechanical polishing)를 통해 층간 절연막 위의 도전막은 제거되고 콘택 홀을 채우는 콘택 플러그(51,53)만 남게 된다. 이때, 소자 분리막(3)을 가로질러 양쪽 셀의 활성 영역(17)에 접촉되는 콘택 플러그(53)는 기판(1)과 단락될 염려가 없고, 기판(1)의 활성 영역(17)에는 실리사이드가 형성되지 않으므로 정전 파괴 방지에 적합하도록 드레인 면저항을 확보할 수 있다.A thin barrier metal and a tungsten conductive film are stacked on the substrate on which the contact holes are formed. The conductive film on the interlayer insulating film is removed through chemical mechanical polishing (CMP), leaving only the contact plugs 51 and 53 filling the contact holes. At this time, the contact plug 53, which is in contact with the active region 17 of both cells across the device isolation layer 3, may not be shorted with the substrate 1, and silicide may be formed in the active region 17 of the substrate 1. Since no is formed, drain sheet resistance can be ensured to be suitable for preventing electrostatic breakdown.

(실시예 2)(Example 2)

도9 내지 도12는 본 발명의 다른 실시예에 따르는 반도체 장치의 로컬 살리시데이션 방법을 나타내는 공정 단면도들이다.9 through 12 are process cross-sectional views illustrating a local salination method of a semiconductor device according to another exemplary embodiment of the present invention.

도9를 참조하면, 우선, 트렌치 소자 분리막(3)이 형성된 기판(1)에 게이트 절연막(11), 폴리실리콘 게이트막(13), 캡핑용 산화막(14)을 차례로 형성한다. 패터닝을 통해 게이트 라인을 형성한다. 실리콘 질화막 스페이서(15)를 게이트 라인 측벽에 형성한다. 게이트 라인을 이온주입 마스크로 고농도 이온주입을 실시하여 소오스/드레인 영역같은 활성 영역(17)을 형성한다. 실리콘 질화막으로 이루어진 제1 식각 정지막(41)을 기판 전면에 적층하고 실리콘 산화막으로 이루어지는 희생막(39)을 적층한다. 이어서, CMP에 의한 평탄화를 실시하여 게이트 라인의 상부가 드러나게 한다.Referring to FIG. 9, first, a gate insulating film 11, a polysilicon gate film 13, and a capping oxide film 14 are sequentially formed on a substrate 1 on which the trench element isolation film 3 is formed. Patterning forms a gate line. The silicon nitride film spacers 15 are formed on the sidewalls of the gate lines. High concentration ion implantation is performed using the gate line with an ion implantation mask to form an active region 17 such as a source / drain region. A first etch stop film 41 made of a silicon nitride film is stacked on the entire substrate, and a sacrificial film 39 made of a silicon oxide film is stacked. Next, planarization by CMP is performed to expose the top of the gate line.

도10을 참조하면, 게이트 라인의 상부에서 제1 식각 정지막(41)을 제거하여 캡핑용 산화막(14)이 드러나게 한다. 이어서 캡핑용 산화막(14)과 희생막(39)에 대한 식각을 실시하여 게이트 라인 상부에는 폴리실리콘 게이트막(13)이 드러나게 하고, 그 외에서 기판에 제1 식각 정지막(41)이 노출되도록 한다.Referring to FIG. 10, the capping oxide layer 14 is exposed by removing the first etch stop layer 41 from the top of the gate line. Subsequently, the capping oxide layer 14 and the sacrificial layer 39 are etched to expose the polysilicon gate layer 13 on the gate line and to expose the first etch stop layer 41 to the substrate. .

도11을 참조하면, 도10의 상태에서 기판에 코발트막을 적층한다. 이어서 700도 이상의 열처리를 통해 게이트 상부에서 폴리실리콘과 코발트가 반응하여 코발트 실리사이드층(43)을 형성시킨다. 식각을 통해 기판 전면에서 코발트를 제거시키면 게이트 상부에만 코발트 실리사이드층(43)이 형성된 상태가 된다. 이어서, 기판 전면에 실리콘 질화막으로 이루어진 제2 식각 정지막(45)을 적층한다.Referring to FIG. 11, a cobalt film is laminated on the substrate in the state of FIG. Subsequently, polysilicon and cobalt react on the gate through heat treatment of 700 degrees or more to form a cobalt silicide layer 43. When cobalt is removed from the entire surface of the substrate through etching, the cobalt silicide layer 43 is formed only on the gate. Subsequently, a second etch stop layer 45 made of a silicon nitride film is stacked on the entire surface of the substrate.

도12를 참조하면, 제2 식각 정지막(45) 위로 층간 절연막(49)이 형성된다.CMP를 실시하여 층간 절연막(49)을 평탄화시킨 상태에서 패터닝을 통해 콘택 홀을 형성시킨다. 콘택 홀이 형성된 기판에는 얇은 베리어 메탈과 텅스텐 도전막이 적층된다. 그리고, CMP(Chemical mechanical polishing)를 통해 층간 절연막(49) 위의 도전막은 제거되고 콘택 홀을 채우는 콘택 플러그(51,53)만 남게 된다.Referring to FIG. 12, an interlayer insulating layer 49 is formed on the second etch stop layer 45. A contact hole is formed through patterning while CMP is performed to planarize the interlayer insulating layer 49. A thin barrier metal and a tungsten conductive film are stacked on the substrate on which the contact holes are formed. Then, the conductive film on the interlayer insulating film 49 is removed through chemical mechanical polishing (CMP), leaving only the contact plugs 51 and 53 filling the contact holes.

그 구체적 과정과 효과는 실시예 1의 도8에 대한 설명과 동일하다.The specific process and effects are the same as the description of FIG. 8 of the first embodiment.

본 발명에 의하면, 게이트 라인 상부에만 금속 살리사이드가 형성되므로 활성 영역에서 소오스/드레인 접합부분에 누설 전류의 염려가 줄어들고, 정전 방지의 효과를 얻기 용이하며 동시에 기판과의 단락이 없는 무경계 콘택의 형성이 용이하므로 소자의 고집적화에 도움이 될 수 있다.According to the present invention, since the metal salicide is formed only on the gate line, the fear of leakage current is reduced at the source / drain junction in the active region, and it is easy to obtain an antistatic effect and at the same time form a borderless contact without a short circuit with the substrate. This ease can be helpful for high integration of the device.

Claims (8)

MOS 구조가 이루어진 기판에 식각 정지막을 형성하는 단계,Forming an etch stop layer on the substrate having the MOS structure, 상기 식각 정지막 위로 기판에 희생막을 적층하는 단계,Stacking a sacrificial layer on a substrate over the etch stop layer; 상기 희생막과 상기 식각 정지막의 일부를 제거하고 폴리실리콘 게이트 상부만을 드러내는 단계,Removing a portion of the sacrificial layer and the etch stop layer and exposing only an upper portion of the polysilicon gate; 드러난 상기 게이트 상부에 금속 실리사이드를 형성하는 단계,Forming a metal silicide on the exposed gate, 금속 실리사이드가 형성된 기판 위로 층간 절연막을 형성하는 단계,Forming an interlayer insulating film over the substrate on which the metal silicide is formed, 패터닝을 실시하여 상기 층간 절연막과 상기 식각 정지막을 통과하는 콘택 홀을 형성하는 단계,Patterning to form contact holes passing through the interlayer insulating layer and the etch stop layer; 상기 콘택 홀을 채우는 콘택 플러그를 형성하는 단계를 포함하여 이루어지는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.And forming a contact plug filling the contact hole. 제 1 항에 있어서,The method of claim 1, 상기 희생막과 상기 층간 절연막은 실리콘 산화막으로 형성하고, 상기 식각 정지막은 실리콘 질화막으로 형성하는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.And the sacrificial layer and the interlayer insulating layer are formed of a silicon oxide layer, and the etch stop layer is formed of a silicon nitride layer. 제 1 항에 있어서,The method of claim 1, 금속 실리사이드를 형성하는 금속으로는 코발트, 백금, 니켈, 티타늄 가운데하나를 사용하는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.A method for local salivation of a semiconductor device comprising a borderless contact, characterized in that one of the metals forming the metal silicide is one of cobalt, platinum, nickel, and titanium. 제 1 항에 있어서,The method of claim 1, 상기 금속 실리사이드를 형성하는 단계는 기판에 금속막을 적층하는 단계,Forming the metal silicide may include depositing a metal film on a substrate; 열처리를 통해 노출된 실리콘층과 상기 금속막 사이의 실리사이드화를 실시하는 단계,Silicidating the silicon layer and the metal layer exposed through heat treatment; 실리사이드화가 이루어지지 않은 금속막을 제거하는 단계,Removing the non-silicided metal film, 금속 실리사이드의 안정화를 위한 700도씨 이상의 추가 열처리 단계를 구비하여 이루어지는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.A method for local salination of a semiconductor device comprising a borderless contact, characterized in that it comprises an additional heat treatment step of at least 700 degrees Celsius for stabilization of the metal silicide. 제 1 항에 있어서,The method of claim 1, 상기 콘택 플러그를 형성하는 단계는Forming the contact plug 상기 콘택 홀에 베리어 금속과 금속을 순차적으로 적층하여 채우는 단계와Sequentially filling and filling barrier metal and metal in the contact hole; 상기 층간 절연막 위쪽에서 상기 베리어 금속과 상기 금속을 CMP로 제거하는 단계를 구비하여 이루어지는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.And removing the barrier metal and the metal by CMP over the interlayer insulating film. 제 1 항에 있어서,The method of claim 1, 상기 금속 실리사이드를 형성하는 단계에 이어 기판 전체에 걸쳐 희생막을 제거하는 단계와 추가적인 식각 정지막 형성 단계가 더 구비되는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.And forming a metal silicide, and then removing the sacrificial layer over the entire substrate and forming an additional etch stop layer. 10. MOS 트랜지스터가 형성된 기판에 제1 식각 정지막을 기판 전면에 적층하는 단계,Stacking a first etch stop layer on the entire surface of the substrate on which the MOS transistor is formed; 상기 제1 식각 정지막과 식각 선택비를 가지는 희생막을 적층하는 단계,Stacking a sacrificial layer having an etch selectivity with the first etch stop layer; 상기 희생막에 대한 평탄화를 실시하여 게이트 라인 상부를 노출시키는 단계,Planarizing the sacrificial layer to expose an upper portion of the gate line; 노출된 상기 게이트 라인 상부에서 상기 제1 식각 정지막을 제거하는 단계,Removing the first etch stop layer on the exposed gate line; 기판 전면에 걸쳐 잔류된 상기 희생막을 제거하는 단계,Removing the sacrificial film remaining over the entire substrate; 상기 게이트 라인 상부에 폴리실리콘층과 금속의 반응에 의한 금속 실리사이드층을 형성하는 단계,Forming a metal silicide layer on the gate line by a reaction between a polysilicon layer and a metal, 상기 금속 실리사이드층 위로 기판 전면에 제2 식각 정지막을 적층하는 단계,Stacking a second etch stop layer on the entire surface of the substrate over the metal silicide layer; 상기 제2 식각 정지막 위로 층간 절연막을 형성하는 단계,Forming an interlayer insulating layer on the second etch stop layer; 패터닝을 통해 상기 층간 절연막과 상기 제1 및 제2 층간 절연막을 통과하는 콘택 홀을 형성하는 단계,Forming a contact hole through the interlayer insulating layer and the first and second interlayer insulating layers through patterning; 상기 콘택 홀을 채우는 콘택 플러그를 형성하는 단계를 구비하여 이루어지는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.And forming a contact plug that fills the contact hole. 제 7 항에 있어서,The method of claim 7, wherein 상기 게이트는 게이트막 형성시 폴리실리콘층 위에 캡핑용 산화막을 더 적층하여 형성하고,The gate is formed by further stacking a capping oxide film on the polysilicon layer when forming the gate film, 상기 게이트에서 상기 캡핑용 산화막은 잔류된 상기 희생막을 제거하는 단계에서 함께 제거하는 것을 특징으로 하는 무경계 콘택을 포함하는 반도체 장치의 로컬 살리시데이션 방법.And the capping oxide film in the gate is removed together in the step of removing the remaining sacrificial film.
KR1020020068880A 2002-11-07 2002-11-07 Method of local salicidation for semiconductor device KR20040040685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020068880A KR20040040685A (en) 2002-11-07 2002-11-07 Method of local salicidation for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020068880A KR20040040685A (en) 2002-11-07 2002-11-07 Method of local salicidation for semiconductor device

Publications (1)

Publication Number Publication Date
KR20040040685A true KR20040040685A (en) 2004-05-13

Family

ID=37337970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020068880A KR20040040685A (en) 2002-11-07 2002-11-07 Method of local salicidation for semiconductor device

Country Status (1)

Country Link
KR (1) KR20040040685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907888B1 (en) * 2007-11-01 2009-07-14 주식회사 동부하이텍 Semiconductor element and manufacturing method thereof
KR101035644B1 (en) * 2004-05-18 2011-05-19 매그나칩 반도체 유한회사 Method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035644B1 (en) * 2004-05-18 2011-05-19 매그나칩 반도체 유한회사 Method for manufacturing semiconductor device
KR100907888B1 (en) * 2007-11-01 2009-07-14 주식회사 동부하이텍 Semiconductor element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6987043B2 (en) Method of manufacturing semiconductor device having a plurality of trench-type data storage capacitors
KR100579365B1 (en) Structure and method of fabricating embedded vertical dram arrays with silicided bitline and polysilicon interconnect
US6383878B1 (en) Method of integrating a salicide process and a self-aligned contact process
JP2009158591A (en) Semiconductor device and process for manufacturing same
KR20000028534A (en) Method for forming contact of semiconductor device
KR100278996B1 (en) Method of forming a contact of a semiconductor device
US6281051B1 (en) Semiconductor device and manufacturing method thereof
US7432199B2 (en) Method of fabricating semiconductor device having reduced contact resistance
US20020048884A1 (en) Vertical source/drain contact semiconductor
JP2004095745A (en) Semiconductor device and method for manufacturing the same
US7180116B2 (en) Self-aligned metal electrode to eliminate native oxide effect for metal insulator semiconductor (MIS) capacitor
US20020096700A1 (en) Non-volatile semiconductor memory device and method of manufacturing the same
KR20210148931A (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
KR100278994B1 (en) Method of forming a contact of a semiconductor device
KR20040040685A (en) Method of local salicidation for semiconductor device
KR100485893B1 (en) Method of manufacturing semiconductor device
JP2008098240A (en) Semiconductor device and its manufacturing method
KR100688059B1 (en) Method for manufacturing semiconductor device
KR100394524B1 (en) Method For Manufacturing Semiconductor Devices
KR100550345B1 (en) Method for forming silicide layer of semiconductor device
KR20030070968A (en) semiconductor device having local salicidation structure and method for fabricating the same
KR20000039307A (en) Method for forming contact of semiconductor device
KR100620196B1 (en) Method for forming semiconductor element
KR20040008600A (en) Method for forming a contact hole in semiconductor memory device
KR20050002075A (en) Method for fabrication of semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination