KR20040028328A - A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility - Google Patents

A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility Download PDF

Info

Publication number
KR20040028328A
KR20040028328A KR1020020059480A KR20020059480A KR20040028328A KR 20040028328 A KR20040028328 A KR 20040028328A KR 1020020059480 A KR1020020059480 A KR 1020020059480A KR 20020059480 A KR20020059480 A KR 20020059480A KR 20040028328 A KR20040028328 A KR 20040028328A
Authority
KR
South Korea
Prior art keywords
plating
cathode
anode
current density
plating layer
Prior art date
Application number
KR1020020059480A
Other languages
Korean (ko)
Inventor
김창하
강길례
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020020059480A priority Critical patent/KR20040028328A/en
Publication of KR20040028328A publication Critical patent/KR20040028328A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/619Amorphous layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE: A method for manufacturing an amorphous structured nickel-phosphorus alloy electroplating layer with improved ductility is provided to improve mechanical connecting property by proceeding plating as applying periodic-reverse pulse current to the cathode. CONSTITUTION: In a method for manufacturing an amorphous ductile nickel-phosphorus alloy electroplating layer, the method is characterized in that plating is carried out by installing the cathode and the anode in an ordinary electrolytic plating bath, maintaining current density of the cathode to 0.2 to 0.3 A/cm¬2 and current density of the anode to 0.2 to 0.35 A/cm¬2 at a certain temperature until a certain thickness of coating is deposited on a substrate, and maintaining plating time of the cathode to 6 to 9 times of plating time of the anode, wherein a copper plate is used as the cathode, and wherein a platinum mesh is used as the anode.

Description

연성이 향상된 비정질 니켈-인 전기합금 도금층의 제조방법{A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility}A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility}

본 발명은 다양한 실내외 환경에 설치되는 통신망 장비의 표면에 도금되어 장비의 환경저항성 및 기계 접속성 등을 향상 시킬 수 있는 니켈-인(Nickel-Phosphorus) 전기합금 도금층의 제조방법에 관한 것으로, 특히 역주기 펄스전류 (Periodic-Reverse Pulse Current)를 이용하여 니켈-인 전기합금 도금층의 연성 (Ductility)을 크게 향상시켜 기계 접촉성을 개선한 니켈-인 전기합금 도금층의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a nickel-phosphorus electroalloy plating layer which is plated on the surface of communication network equipment installed in various indoor and outdoor environments to improve the environmental resistance and mechanical connectivity of the equipment. The present invention relates to a method of manufacturing a nickel-phosphorus electroalloy plated layer having improved mechanical contactability by greatly improving the ductility of the nickel-phosphorus electroalloy plated layer using periodic pulse current.

전국적으로 음성 및 데이터 통신이 이루어지기 위해서는 전화국간 및 전화국과 가입자간에 케이블로 연결되어 있어야 하며, 중간 중간에 무수한 통신망 장비들이 설치되어 있어야 한다. 이런 통신망 장비들은 전화국사 등 양호한 환경에만 설치되는 것이 아니라 건물의 지하실, 맨홀 등 지하공간, 야외공간 등 열악한 환경에도 설치되어 무리없이 작동되어야 한다. 이러한 다양한 환경에 설치된 통신망 장비들이 제대로 작동하기 위해서는 여러가지 성능이 우수해야 한다. 이중에서 환경저항성(부식저항성)과 기계접속성 등은 통신망 장비들이 기본적으로 갖추어야 하는 성능이다. 대부분의 통신망 장비들은 환경저항성을 높이기 위해 다양한 금속들을 장비표면에 도금하는 경우가 많다. 또한 통신망 장비에는 필수적으로 통신선을 연결해주는 컨넥터들이 설치되는데, 이러한 컨넥터들은 환경저항성 뿐만 아니라 기계적 접속 성능도 우수해야 한다.To make voice and data communication nationwide, there must be cable connection between telephone stations and between subscribers and subscribers, and numerous network equipment must be installed in the middle. These network equipments are not only installed in a good environment such as a telephone company but also installed in a poor environment such as a basement of a building, a manhole, and an outdoor space. In order to function properly, network equipment installed in these various environments must have excellent performance. Among them, environmental resistance (corrosion resistance) and mechanical connectivity are basically the performance that network equipment should have. Most network equipment often plate various metals on the equipment surface to increase environmental resistance. In addition, the network equipment is essentially equipped with a connector for connecting the communication line, these connectors should be excellent in mechanical connection performance as well as environmental resistance.

대표적인 도금층으로는 금, 은, 주석등이 있다. 금이나 은 도금층의 경우는 부식저항성이 우수하고 기계 접속성이 뛰어나지만, 고가라는 단점을 갖고 있고, 주석의 경우는 저가라는 장점이 있지만, 접속시 파손되거나 기지(Substrate)에서 떨어져 나가는 문제점을 갖고 있다.Typical plating layers include gold, silver, tin and the like. In the case of gold or silver plated layer, it has excellent corrosion resistance and excellent mechanical connection, but has the disadvantage of being expensive, and in the case of tin, it has the advantage of being inexpensive, but it has a problem of being broken or falling off from the substrate during connection. have.

대한민국 특허공보 1995-2055호에는 직류도금에 의한 니켈-인 합금막 제조방법이 개시되어 있다.Korean Patent Publication No. 1995-2055 discloses a method for producing a nickel-phosphorus alloy film by direct current plating.

상기 선행 기술은 기판후에 전착에 의해 비정질 연성의 니켈-인 합금막 구조를 형성하는 방법으로서, 0.5-1.0몰/ℓ의 니켈, 1.5-3.0 몰/ℓ의 아인산, 0.1-0.6몰/ℓ의 인산 및 0.6몰/ℓ 이하의 염산을 포함하고, 염소 이온의 양은 적어도1.25M이고 니켈 이온의 두배보다 많은 전해도금욕에 기판을 음극으로 침지하고; 기판위에 소정 두께의 코팅이 전착되기 까지 5℃-95℃의 온도와 20-800㎃/㎠의 음극 전류 밀도를 유지하는 단계를 포함한다.The prior art is a method of forming an amorphous ductile nickel-phosphorus alloy film structure by electrodeposition after a substrate, wherein 0.5-1.0 mol / l nickel, 1.5-3.0 mol / l phosphorous acid, 0.1-0.6 mol / l phosphoric acid And up to 0.6 mol / l hydrochloric acid, the amount of chlorine ions being at least 1.25M and immersing the substrate as a cathode in an electroplating bath of more than twice the nickel ions; Maintaining a temperature of 5 ° C.-95 ° C. and a cathode current density of 20-800 mA / cm 2 until the coating of predetermined thickness is deposited on the substrate.

하지만, 이와 같은 종래의 직류 도금 방법에 의한 니켈-인 전기합금도 기계 접속성을 만족시킬만한 연성을 가지지 못하는 문제점이 있었다. 이와 같은 종래 기술의 문제점의 이하의 본 발명의 실험 결과에서 더욱 분명해질 것이다.However, the nickel-phosphorus electroalloy by the conventional direct current plating method also has a problem that it does not have a ductility enough to satisfy the mechanical connectivity. This problem of the prior art will become more apparent in the experimental results of the present invention below.

따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 역주기 펄스전류를 음극에 가하면서 도금을 진행하여, 기계 접속성을 높이기 위한 연성이 우수한 비정질 구조(Amorphous Structure)를 갖는 니켈-인 전기합금 도금층의 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention is to solve the problems of the prior art as described above, the plating proceeds while applying the reverse period pulse current to the cathode, nickel having an amorphous structure (Amorphous structure) excellent in ductility to increase the mechanical connectivity It is an object of the present invention to provide a method for manufacturing a phosphorus electroalloy plated layer.

도 1은 직류, 일반 펄스전류, 역주기 펄스전류의 파형을 나타낸 도면.1 is a diagram showing waveforms of direct current, general pulse current, and reverse cycle pulse current.

도 2는 음극도금시간에 따른 연성의 변화를 나타낸 도면.2 is a view showing a change in ductility according to the cathode plating time.

도 3은 양극전류밀도에 따른 연성의 변화를 나타낸 도면.3 is a view showing a change in ductility according to the anode current density.

상기 목적을 달성하기 위한 본 발명은, 비정질 연성의 니켈 인 전기합금 도금층의 제조방법에 있어서, 통상의 전해 도금욕에 음극과 양극을 마련하고, 기판위에 소정의 두께의 코팅이 전착될 때까지 일정 온도에서 음극전류밀도를 0.2-0.3 A/㎠로, 양극전류밀도를 0.2-0.35 A/㎠로 하고, 음극도금시간을 양극도금시간에 비해 6-9배로 하여 도금을 수행하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a cathode and an anode in a conventional electrolytic plating bath in a method of manufacturing an amorphous ductile nickel phosphorous electroalloy plating layer, and is fixed until a coating having a predetermined thickness is electrodeposited on a substrate. At the temperature, the cathode current density is 0.2-0.3 A / cm 2, the anode current density is 0.2-0.35 A / cm 2, and the plating is carried out at a cathode plating time of 6-9 times that of the anode plating time.

본 발명에서는 직류도금이나 일반 펄스도금 방법이 아닌 역주기 펄스 전류를 이용하여 니켈-인 전기합금 도금층을 제조함으로써, 비정질구조의 도금층의 장점을 그대로 유지하면서 기계 접속성과 관련이 있는 연성(Ductility)을 크게 향상시킨 합금 도금층을 얻을 수 있었다.In the present invention, by manufacturing a nickel-phosphorus electro-alloy plated layer using a reverse cycle pulse current rather than a direct current plating or a general pulse plating method, while maintaining the advantages of the amorphous layer of the coating layer, the ductility associated with mechanical connectivity is maintained. The alloy plating layer which greatly improved was obtained.

먼저, 니켈-인 합금도금층을 제조하는 방법을 설명하면 다음과 같다.First, a method of manufacturing a nickel-phosphorus alloy plating layer is as follows.

니켈-인 합금도금을 하기 위하여 음극으로는 구리판을, 양극으로는 백금망을 사용하였다. 도금욕 조성은 NiSO4.6H2O 150 g/l, NiCl2.6H2O 45 g/l, H3PO340g/l, H3PO440 ml/l이며, 도금욕의 pH는 1-1.4 정도이다. 도금 온도는 80℃ 이며, 도금시간은 직류도금의 경우 20분 정도이다. 이때 도금층의 두께는 25-30 um 이다. 일반펄스전류와 역주기 펄스전류를 이용하여 도금하는 경우에는 직류도금에서의 음극전하량과 같게 되도록 도금시간을 조정하였다. 따라서, 일반 펄스전류나 역주기 펄스전류로 도금하는 경우, 직류도금 과정보다 도금시간이 길어지게 된다.In order to perform nickel-phosphorus alloy plating, a copper plate was used as the cathode, and a platinum network was used as the anode. The plating bath composition of NiSO 4 .6H 2 O 150 g / l, NiCl 2 .6H 2 O 45 g / l, H 3 PO 3 40g / l, H 3 , and PO 4 40 ml / l, pH of the plating bath is 1 -1.4 degree. Plating temperature is 80 ℃, plating time is about 20 minutes in the case of direct current plating. At this time, the thickness of the plating layer is 25-30um. When plating using the general pulse current and the reverse cycle pulse current, the plating time was adjusted to be equal to the amount of negative charge in the DC plating. Therefore, when plating with a general pulse current or a reverse cycle pulse current, the plating time is longer than the DC plating process.

도1은 직류도금, 일반 펄스도금, 역주기 펄스도금에서의 전류파형을 나타낸다. 특히 역주기 펄스전류에서는 도금과정에서 양극전류를 일정시간 가해줌으로써 도금층의 조성 및 도금층에 장입되는 불순물의 농도 등에 직접적인 영향을 줄 수 있다.Fig. 1 shows current waveforms in direct current plating, general pulse plating, and reverse period pulse plating. In particular, the reverse cycle pulse current may directly affect the composition of the plating layer and the concentration of impurities charged in the plating layer by applying a positive current for a predetermined time during the plating process.

니켈-인 합금도금층을 제조하는데 이용 가능한 변수로는 음극도금시간 (Cathodic plating time), 양극전류밀도(Anodic current density), 양극도금시간 (Anodic plating time), 음극전류밀도(Cathodic current density) 등이 있다. 이중에서 양극도금시간과 음극전류밀도는 최적의 조건에서 고정되었다. 최적의 양극도금시간은 0.1초이며, 최적의 음극전류밀도는 0.25 A/㎠ 이다. 본 발명에서는 양극도금시간과 음극전류밀도를 고정시키고 나서, 음극도금시간과 양극전류밀도를 변경하면서 최적의 성질을 갖는 도금층을 얻고자 하였다.The variables available to fabricate the nickel-phosphorus alloy plating layer include cathodic plating time, anode current density, anode plating time, and cathode current density. have. Among them, the anode plating time and cathode current density were fixed under optimum conditions. The optimum anode plating time is 0.1 seconds and the optimum cathode current density is 0.25 A / cm 2. In the present invention, after fixing the anode plating time and cathode current density, it was intended to obtain a plating layer having optimum properties while changing the cathode plating time and anode current density.

도금층의 연성을 측정하기 위한 방법으로는 표준밴드시험방법(ASTME 855-84)을 이용하였다. 이 방법에서는 시료를 구부리면서 도금층이 파괴되는 각도를 측정한다. 파괴 각도가 클수록 도금층의 연성이 우수하다고 볼수 있다. 특히 이 시험에서는 180 도가 최대각에 해당한다.A standard band test method (ASTME 855-84) was used as a method for measuring the ductility of the plated layer. In this method, the angle at which the plating layer is broken is measured while bending the sample. The greater the fracture angle, the more excellent the ductility of the plated layer. In particular, in this test, 180 degrees corresponds to the maximum angle.

먼저, 역주기 펄스전류를 이용하여 제조한 도금층과의 성질비교를 위하여 직류와 일반펄스전류 도금층의 연성을 측정하였다. 직류도금의 경우에 도금층의 파괴각도는 110-120도 정도로 나타났다. 일반펄스 도금에서도 여러 변수를 변화시키면서 다양한 도금층을 제조한 후에 각각에 대하여 연성을 측정하였다. 이 경우에도 100-120도 정도로 직류도금과 거의 유사한 연성을 얻을 수 있었다. 이상의 결과로부터 일반 펄스도금에서는 직류도금에 비하여 특이한 장점이 나타나지 않는다는 사실을 알 수 있다.First, the ductility of the direct current and the general pulse current plating layer was measured in order to compare the properties with the plating layer prepared using the reverse period pulse current. In the case of DC plating, the fracture angle of the plating layer was about 110-120 degrees. In general pulse plating, ductility was measured for each of various plated layers after changing various parameters. In this case as well, the ductility almost similar to that of DC plating was obtained at about 100-120 degrees. From the above results, it can be seen that in general pulse plating, there is no particular advantage over DC plating.

역주기 펄스도금층의 성질들을 조사하기 위하여 먼저 양극도금시간을 0.1 초로 고정시키고 나서, 음극도금시간을 0.3초에서 1.0 초까지 바꾸면서 도금을 한 후에 니켈-인 합금도금층의 연성을 측정하여, 그 결과를 도2에 나타내었다. 이때 음극전류밀도는 0.25 A/㎠으로 고정하였으며, 양극전류밀도는 0.25A/㎠와 0.35 A/㎠ 를 선택하였다. 음극도금시간이 0.6-0.9 초인 경우 도금층의 파괴각도는 160 도 이상이었으며, 이 범위 밖에서는 파괴각도가 급격하게 낮아졌다. 이는 역주기 펄스전류를 이용하여 도금하게 되면 음극도금시간이 양극도금시간에 비해 6배에서 9배 되는 범위에서 연성이 크게 향상되는 효과를 얻을수 있음을 의미한다.In order to investigate the properties of the reverse-period pulse plating layer, first fix the anode plating time to 0.1 seconds, then plate the plating with changing the cathode plating time from 0.3 seconds to 1.0 seconds, and then measure the ductility of the nickel-phosphorus alloy plating layer. 2 is shown. At this time, the cathode current density was fixed to 0.25 A / ㎠, the anode current density was selected 0.25A / ㎠ and 0.35 A / ㎠. When the cathode plating time was 0.6-0.9 seconds, the breakdown angle of the plated layer was 160 degrees or more, and the breakdown angle rapidly decreased outside this range. This means that when the plating using the reverse period pulse current, the ductility is greatly improved in the range of 6 to 9 times the cathode plating time compared to the anode plating time.

음극도금시간이 1초라는 것은 양극도금시간이 음극도금시간에 1/10 밖에 안된다는 의미로, 이는 도금 조건이 거의 직류도금과 유사하게 된다는 것이다. 일반적으로 도금과정에서 음극(Cathode) 부위에서는 금속이온이 환원반응을 거쳐 도금되는 동시에 막대한 수소가 발생하게 된다. 결국 발생된 수소의 상당량은 도금층에 장입되어 도금층의 수소취성(Hydrogen embrittlement)을 유발시킨다. 결과적으로 도금층은 쉽게 파손되며, 연성이 크게 떨어지게 된다. 음극도금시간이 1초에 해당하는 도금층에서 연성이 갑자기 떨어지는 현상은 도금층의 수소취성으로 설명이 가능할 수 있다고 판단된다.The cathode plating time of 1 second means that the anode plating time is only 1/10 of the cathode plating time, which means that the plating conditions are almost similar to that of direct current plating. In general, metal ions are plated through a reduction reaction at the cathode part of the plating process, and massive hydrogen is generated. Eventually, a significant amount of generated hydrogen is charged to the plating layer, causing hydrogen embrittlement of the plating layer. As a result, the plating layer is easily broken, and the ductility is greatly degraded. The sudden drop in ductility in the plating layer corresponding to 1 second of the cathode plating time may be explained by the hydrogen embrittlement of the plating layer.

음극도금시간이 0.5 초 이하에서는 도금과정에서 상대적으로 양극도금시간의 비중이 높아지게 된다. 음극(Cathode)에 양극전류(Anodic current)를 흘려보내게 되면 음극근처에 있는 수소이온들이 음극에서 멀리 떨어지게 되는 효과가 발생하며, 결과적으로 음극전류(Cathodic current)를 가하여 도금하는 과정에서 수소발생을 억제하게 되어 수소에 의한 연성 감소 효과가 낮아지게 된다. 그러나 양극전류가 흐르는 과정에서는 인(Phosphorus)이 니켈에 비해 상대적으로 도금층에 더 많이 함유하게 되며, 이로 인해 음극도금시간이 0.5초 이하에서는 도금층의 연성이 낮아지는 것으로 판단된다.If the cathode plating time is less than 0.5 seconds, the proportion of the anode plating time becomes relatively high during the plating process. When an anode current flows through the cathode, the hydrogen ions in the vicinity of the cathode are separated from the cathode. As a result, hydrogen is generated during plating by applying a cathode current. It is suppressed and the ductility reduction effect by hydrogen becomes low. However, phosphorus (Phosphorus) is more contained in the plating layer than the nickel in the process of the anode current flow, it is determined that the ductility of the plating layer is lowered when the cathode plating time is 0.5 seconds or less.

이상의 결과로부터 음극전류밀도가 0.25 A/㎠ 와 양극도금시간이 0.1초로 고정된 상태에서 니켈-인 합금도금층의 연성을 크게 향상시키는 최적의 음극도금 시간은 0.6-0.9초인 것을 알 수 있다.From the above results, it can be seen that the optimum cathode plating time for greatly improving the ductility of the nickel-phosphorus alloy plating layer in the state where the cathode current density is 0.25 A / cm 2 and the anode plating time is fixed to 0.1 second is 0.6-0.9 seconds.

다음은 양극전류밀도에 따른 도금층의 연성변화를 조사하였으며, 그 결과를 도3에 나타내었다. 이때 도금조건은 음극도금시간이 0.8초, 양극도금시간이 0.1 초, 음극전류밀도가 0.25 A/㎠ 이었다. 양극전류밀도가 0.2-0.35 A/㎠에서는 높은 연성을 유지하지만, 이 범위 밖에서는 연성이 크게 낮아졌다.Next, the ductility change of the plating layer according to the anode current density was investigated, and the results are shown in FIG. 3. At this time, the plating conditions were negative electrode plating time of 0.8 seconds, positive electrode plating time of 0.1 seconds, and negative electrode current density of 0.25 A / cm 2. High ductility was maintained at the anode current density of 0.2-0.35 A / cm 2, but ductility was significantly lowered outside this range.

높은 양극전류밀도에서는 합금도금층 내에 인의 함유량이 증가하게 되어 연성이 급격하게 감소하는 것으로 판단된다. 양극전류밀도가 낮은 영역에서는 양극전류에 의한 효과가 거의 나타나지 않게 되어, 일반펄스도금과 도금조건이 유사하게 된다. 이러한 경우 양극전류밀도가 높은 영역에서 형성된 도금층보다 도금층내로 수소들이 더 많이 장입하게 된다. 결과적으로 양극전류밀도가 낮은 영역에서 형성된 도금층은 수소취성으로 인하여 도금층의 연성이 크게 떨어지는 것으로 판단된다.At high anodic current density, the phosphorus content in the alloy plating layer is increased, and the ductility is rapidly decreased. In the region where the anode current density is low, the effect due to the anode current is hardly exhibited, so that the general pulse plating and the plating conditions are similar. In this case, more hydrogen is charged into the plating layer than the plating layer formed in the region where the anode current density is high. As a result, the plating layer formed in the region having a low anode current density is judged to be greatly inferior in ductility of the plating layer due to hydrogen embrittlement.

전술한 본 발명의 실시예에서는 본 발명의 최적의 실시예만을 제시하였을 뿐, 이에 의해 본 발명의 권리범위가 한정되는 것은 아니다. 예를 들어, 음극도금시간이 양극도금시간에 비해 6-9배의 도금시간을 갖는다는 조건에서 도금시간의 변경은 가능하며, 또한, 음극전류밀도도 0.25A/㎠에서 조금의 변화가 가능하며, 그 범위는 0.2-0.3A/㎠를 갖는 것이 바람직하다.In the above-described embodiments of the present invention, only the best embodiments of the present invention are presented, and the scope of the present invention is not limited thereto. For example, the plating time can be changed under the condition that the cathode plating time has a plating time of 6-9 times that of the anode plating time, and the cathode current density can also be slightly changed at 0.25 A / cm 2. It is preferable that the range has 0.2-0.3A / cm <2>.

이상에서 본 발명에 대한 기술사상을 첨부도면과 함께 서술하였지만 이는 본발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.The technical spirit of the present invention has been described above with reference to the accompanying drawings, but this is by way of illustration of a preferred embodiment of the present invention by way of example and not by way of limitation. In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

본 발명은 상술한 바와 같이, 역주기 펄스전류를 이용하여 니켈-인 전기합금도금을 함으로써, 직류도금이나 일반 펄스도금에서보다 도금층의 연성을 크게 높혀 기존의 비정질구조의 장점을 그대로 가지면서 단점인 기계 접속성을 향상시킨 니켈-인 전기합금 도금층을 얻을 수 있다.As described above, the nickel-phosphorus electroalloy plating using the reverse cycle pulse current greatly improves the ductility of the plating layer than in the direct current plating or the general pulse plating, while maintaining the advantages of the conventional amorphous structure. A nickel-phosphorus electroalloy plating layer having improved mechanical connectivity can be obtained.

Claims (3)

비정질 연성의 니켈 인 전기합금 도금층의 제조방법에 있어서,In the method of manufacturing an amorphous ductile nickel phosphorous electroalloy plating layer, 통상의 전해 도금욕에 음극과 양극을 마련하고, 기판위에 소정의 두께의 코팅이 전착될 때까지 일정 온도에서 음극전류밀도를 0.2-0.3 A/㎠로, 양극전류밀도를 0.2-0.35 A/㎠로 하고, 음극도금시간을 양극도금시간에 비해 6-9배로 하여 도금을 수행하는 것을 특징으로 하는 비정질 니켈 인 전기합금 도금층의 제조방법.A cathode and an anode are prepared in a conventional electrolytic plating bath, the cathode current density is 0.2-0.3 A / cm 2 at a constant temperature and the anode current density is 0.2-0.35 A / cm 2 until a coating of a predetermined thickness is deposited on the substrate. A method of manufacturing an amorphous nickel phosphorous electroalloy plated layer, characterized in that the plating is carried out with the cathode plating time being 6-9 times that of the anode plating time. 제 1 항에 있어서,The method of claim 1, 상기 음극으로 구리판을 사용한 것을 특징으로 하는 비정질 니켈 인 전기합금 도금층의 제조방법.A method for producing an amorphous nickel phosphorous electroalloy plated layer, characterized in that a copper plate is used as the cathode. 제 1 항에 있어서,The method of claim 1, 상기 양극으로 백금망을 사용한 것을 특징으로 하는 비정질 니켈 인 전기합금 도금층의 제조방법.A method of manufacturing an amorphous nickel phosphorous electroalloy plated layer using a platinum net as the anode.
KR1020020059480A 2002-09-30 2002-09-30 A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility KR20040028328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020059480A KR20040028328A (en) 2002-09-30 2002-09-30 A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020059480A KR20040028328A (en) 2002-09-30 2002-09-30 A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility

Publications (1)

Publication Number Publication Date
KR20040028328A true KR20040028328A (en) 2004-04-03

Family

ID=37330544

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020059480A KR20040028328A (en) 2002-09-30 2002-09-30 A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility

Country Status (1)

Country Link
KR (1) KR20040028328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101187B1 (en) * 2010-02-09 2012-01-03 신재기 Furniture with folding support
CN103556192A (en) * 2013-10-09 2014-02-05 北京航空航天大学 Method for preparing electroformed nickel layer with high mechanical properties by using bidirectional pulse power supply
CN105344972A (en) * 2015-12-01 2016-02-24 华中科技大学 Rapid forming method for amorphous alloy parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101187B1 (en) * 2010-02-09 2012-01-03 신재기 Furniture with folding support
CN103556192A (en) * 2013-10-09 2014-02-05 北京航空航天大学 Method for preparing electroformed nickel layer with high mechanical properties by using bidirectional pulse power supply
CN103556192B (en) * 2013-10-09 2016-03-30 北京航空航天大学 A kind of bidirectional pulse power supply that adopts prepares the method with strong mechanical performance electroforming nickel dam
CN105344972A (en) * 2015-12-01 2016-02-24 华中科技大学 Rapid forming method for amorphous alloy parts

Similar Documents

Publication Publication Date Title
Qiao et al. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings
Tsuru et al. Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath
KR100783847B1 (en) Metal article coated with multilayer surface finish for porosity reduction
CA1132086A (en) In-situ plating of nickel-zinc alloy on cathode with leaching of zinc
EP0558142B1 (en) Method for the production of a metal foam and a metal foam obtained
CN102239280B (en) Conductive member and method for producing the same
EP0214667B1 (en) Palladium and palladium alloy composite electrodeposits and method for their production
CA1276128C (en) Method for selectively plating plastics
KR0127832B1 (en) Method for forming sieve material having low internal stress and sieve material so obtained
US3150065A (en) Method for plating palladium
Farndon et al. The electrodeposition of platinum onto a conducting ceramic, Ebonex®
KR20040028328A (en) A method for preparing amorphous NI-P electrical alloy plating layer with improved ductility
Correia et al. Anodic linear sweep voltammetric analysis of Ni–Co alloys electrodeposited from dilute sulfate baths
CN1165639C (en) Sn-In alloy electroplating liquid and its preparing method
US4767509A (en) Nickel-phosphorus electroplating and bath therefor
CN102041527B (en) Method for obtaining a deposit of a yellow gold alloy by galvanoplasty without using toxic metals
CN213652653U (en) Composite coating structure with aluminum alloy as matrix
JPH04318997A (en) Copper foil for printed circuit and manufacture thereof
JPS5815550B2 (en) Method for manufacturing coated lead dioxide electrode
EP0785296B1 (en) Electroplating of nickel on nickel ferrite devices
KR100321374B1 (en) METHOD FOR MANUFACTURING Zn/Fe ALLOY ELECTROPLATED STEEL SHEET EXCELLENT IN PLATING ADHESION, SURFACE ROUGHNESS AND APPEARANCE
JP2011208175A (en) Method for producing plated article, and plated article
CN216087117U (en) Cost-reduced nickel alloy multilayer gold-plating for printed circuit board
RU2192509C2 (en) Method of electrolytic deposition of iron-tungsten alloy
Abd El Rehim et al. Electrodeposition of Cd-Ni alloys from ammoniacal baths

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid