KR20040021720A - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
KR20040021720A
KR20040021720A KR1020020051318A KR20020051318A KR20040021720A KR 20040021720 A KR20040021720 A KR 20040021720A KR 1020020051318 A KR1020020051318 A KR 1020020051318A KR 20020051318 A KR20020051318 A KR 20020051318A KR 20040021720 A KR20040021720 A KR 20040021720A
Authority
KR
South Korea
Prior art keywords
thermoelectric
type
ceramic substrate
type thermoelectric
filling member
Prior art date
Application number
KR1020020051318A
Other languages
Korean (ko)
Inventor
류영호
Original Assignee
강장호
디에이치테크놀로지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강장호, 디에이치테크놀로지(주) filed Critical 강장호
Priority to KR1020020051318A priority Critical patent/KR20040021720A/en
Publication of KR20040021720A publication Critical patent/KR20040021720A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: A thermoelectric device is provided to improve the intensity and the durability by inserting a mixture of Mo and Sn into a gap between an N-type thermoelectric semiconductor and a P-type thermoelectric semiconductor. CONSTITUTION: A thermoelectric device includes the first ceramic substrate, one or more N-type thermoelectric semiconductors(N), one or more P-type thermoelectric semiconductors(P), and the second ceramic substrate. The N-type thermoelectric semiconductors(N) and the P-type thermoelectric semiconductors(P) are fixed in a predetermined interval on the first ceramic substrate. The N-type thermoelectric semiconductors(N) and the P-type thermoelectric semiconductors(P) are connected to each other by using conductors. The second ceramic substrate is covered thereon. A metallic filling member is inserted into a gap between the N-type thermoelectric semiconductors(N) and the P-type thermoelectric semiconductors(P). The metallic filling member is formed with Sn or a mixture(50) of Sn and Mo.

Description

열전소자{Thermoelectric module}Thermoelectric module

본 발명은 열전소자에 관한 것이다.The present invention relates to a thermoelectric element.

주지된 바와 같이, 열전소자는 대기오염을 일으키는 원인물질의 하나인 프레온 가스 등을 대체하여 냉각수단으로 활용되고 있을 뿐만아니라, 제벡효과(Seebeck effect)에 의한 소형 발전기로도 널리 사용되고 있는 소자이다.As is well known, the thermoelectric element is not only utilized as a cooling means by replacing a freon gas, which is one of the substances causing air pollution, and is also widely used as a small generator by the Seebeck effect.

특히, 반도체(열전반도체)를 매개로 금속이 상호 접지되어져 형성된 루프에 전류를 흘리면 페르미에너지 차이로 전위차가 발생하게 되고, 전자가 한쪽 금속면에서 다른 쪽으로 이동하기 위해 필요한 에너지를 가지고 가기 때문에(흡열) 냉각이 일어나는 반면, 다른 금속면은 상기 전자가 가지고 온 에너지만큼 열에너지를 내놓기 때문에(방열) 가열이 일어나는데, 이를 펠티어 효과(Peltier effect)라고 하며 열전소자에 의한 냉각장치의 작동원리가 된다.In particular, when a current flows in a loop formed by metals being grounded through a semiconductor (thermoelectric semiconductor), a potential difference is generated due to a difference in Fermi energy, and electrons carry energy necessary to move from one metal surface to another (heat absorption) While cooling takes place, heating occurs because other metals give out heat energy as much as the energy brought by the electrons (radiation), which is called the Peltier effect and is the operating principle of the cooling device by the thermoelectric element.

이때, 상기 반도체의 종류와, 전류가 흐르는 방향에 따라 흡열과 방열의 위치가 결정되며, 재질에 따라 그 효과에도 차이가 발생한다.At this time, the location of the endotherm and the heat dissipation is determined according to the type of the semiconductor and the direction in which the current flows, and a difference occurs in the effect depending on the material.

도 1은 열전소자에 구비된 N.P형 열전반도체의 구조도인바 이를 참조하여 작동상태를 설명하면, N형 열전반도체(N)와 P형 열전반도체(P)가 도체(M)를 매개로 직렬연결된 회로에 직류전류(D.C)가 가해지면, (-)로 대전된 금속/반도체 접점(1, 2)에서는 주위로부터 열에너지를 흡수한 전자가 열전반도체 내부로 이동되어 흡열이 일어나고, (+)로 대전된 접점에서는 전자의 열에너지 방출에 의해 방열(3, 4)이 일어나게 된다. 또한, 전류의 방향을 역으로 하면 상기 흡열 및 방열부위 또한 뒤바뀌게 된다.1 is a structural diagram of an NP-type thermoelectric semiconductor provided in a thermoelectric element. Referring to the description of the operating state, a circuit in which an N-type thermoelectric semiconductor (N) and a P-type thermoelectric semiconductor (P) are connected in series via a conductor (M) is shown. When a direct current (DC) is applied to the metal, the negatively charged metal / semiconductor contacts (1, 2) move electrons absorbing thermal energy from the surroundings into the thermoelectric semiconductor, causing endotherm, and positively charged At the contacts, heat radiation 3 and 4 occurs due to the release of electron thermal energy. In addition, if the direction of the current is reversed, the endothermic and heat dissipating portions are also reversed.

한편, 상기 열전반도체(N, P)의 재질에 따라서도 열전효율에 차이가 생기는데, 현재 열전지수가 우수하여 널리 활용되고 있는 열전재료에는 BiTe계와, PbTe계등이 있다.On the other hand, there is a difference in the thermoelectric efficiency also depending on the material of the thermoelectric semiconductor (N, P), the thermoelectric materials are widely used because of the excellent number of thermal cells, BiTe-based, PbTe-based and the like.

하지만, 상기 열전재료를 활용하여 최적화된 경우라도 N형 열전반도체와 P형 열전반도체가 한쌍으로 된 열전쌍의 공급전력당 흡열 및/또는 방열량은 매우 미미하다. 이러한 이유로 열전반도체(N, P)가 냉각장치 등에 실제로 활용되는 경우에는 상기 열전쌍을 복수개 연결하여 흡열 및/또는 방열량을 양적으로 늘리고 있으며, 이러한 소자를 열전소자라 하여 냉각장치등에 널리 응용되고 있다.However, even when optimized using the thermoelectric material, the heat absorption and / or heat dissipation per power supply of the thermocouple in which the N-type and P-type thermocouples are paired is very small. For this reason, when the thermoelectric semiconductors (N, P) are actually utilized in a cooling device, a plurality of thermocouples are connected to increase the amount of heat absorption and / or heat dissipation, and these devices are widely used in cooling devices and the like as thermoelectric devices.

미설명부호인 'E.F' 및 'H.F'는 N형 열전반도체와 P형 열전반도체에서 각각 일어나는 전자류(Electron Flow)와 정공류(Hole Flow)의 방향을 나타낸 것이다.Unexplained symbols 'E.F' and 'H.F' indicate directions of electron flow and hole flow occurring in N-type and P-type thermoelectric semiconductors, respectively.

도 2는 종래 열전소자를 도시한 부분절개 사시도이며, 도 3은 도 2의 부분 단면도인바 이를 참조하여 설명하면, 다수의 상기 열전쌍을 평판위에 배치하여 직렬회로가 되도록 도체를 연결한 후 직류전류(41, 42)를 가함으로써 상기 열전쌍들을 중심으로 방열과 흡열이 대향하게 발생되는 구조를 이룬다.FIG. 2 is a partial cutaway perspective view of a conventional thermoelectric device, and FIG. 3 is a partial cross-sectional view of FIG. 2. Referring to this, a plurality of thermocouples are disposed on a plate to connect a conductor to form a series circuit, and then a DC current ( 41, 42) forms a structure in which heat dissipation and heat absorption oppose the thermocouples.

일반적으로, 상기 도체는 전류의 흐름이 원활히 이루어질 수 있도록 구리(30)와 같은 전도성이 우수한 재료가 쓰이는 한편, 납(20)을 매개로 구리(30)와 열전반도체(N, P)를 접지시키게 된다. 또한, 상기 열전반도체(N, P)로 이루어진 구조물의 형태를 보존하는 동시에 외력에 의한 파손이 억지될 수 있도록 상기 구조물의 상하면에 보강재가 도포되는데, 흔히 세라믹(10)과 같은 절연물질이 널리 활용되고 있으며 이때도 납(20)을 매개로 상기 구리(30)를 세라믹기판(10)에 접착시킨다.In general, the conductor is made of a material having high conductivity such as copper 30 to smoothly flow the current, and grounds the copper 30 and the thermal conductors (N, P) through the lead 20. do. In addition, a reinforcement is applied to the upper and lower surfaces of the structure so as to prevent the damage caused by external forces while preserving the shape of the structure consisting of the thermoelectric semiconductors (N, P), often an insulating material such as ceramic (10) widely used In this case, the copper 30 is bonded to the ceramic substrate 10 through the lead 20.

이외에도, 상기 납(20)의 확산방지, 열전반도체(N, P)와 도체간의 접착력 개선 또는, 열전효과의 향상 등을 실현하기 위한 방법으로서 다양한 물질로 이루어진 층들의 첨가 및 도포가 이루어지고 있으므로, 상기 종래기술로 설명된 열전소자의 일반적인 층구조(세라믹기판-납-구리-납-열전반도체-납-구리-납-세라믹기판)는 일예일 뿐이며, 본 발명 또한 이에 한정되는 것은 아니다.In addition, since addition and application of layers made of various materials are performed as a method for realizing the diffusion prevention of the lead 20, improvement of adhesion between the thermoelectric semiconductors (N, P) and the conductor, or improvement of the thermoelectric effect, The general layer structure (ceramic substrate-lead-copper-lead-thermoelectric semiconductor-lead-copper-lead-ceramic substrate) of the thermoelectric element described in the related art is just one example, and the present invention is not limited thereto.

하지만, 종래 열전소자는 도 3에 도시된 바와 같이, 합선방지를 위해 상기 열전반도체(N, P)들이 소정간격으로 이격되도록 배치되며, 납(20)을 매개로 구리(30)와 열전반도체(N, P)가 고정ㆍ접지되어지는 한편, 상하면에 도포된 세라믹기판(10)에 의해 소자의 형태유지 및, 외력에 대한 보호가 이루어질 뿐이어서 작은 충격에도 쉽게 파손되거나 접지상태가 변해 오작동을 일으킬 수 있었다. 또한, 종래 열전소자는 최대온도로부터 최저온도로의 변화가 반복해서 일어남에 따라 열전반도체와 도체간의 기계적 변동 및 구성부재의 물성변화로 인한 내구성의 저하로 그 수명이 짧아지는 문제점이 있었다.However, in the conventional thermoelectric device, as shown in FIG. 3, the thermoelectric semiconductors N and P are disposed to be spaced apart at predetermined intervals to prevent short circuits, and the copper 30 and the thermoelectric semiconductors are formed through the lead 20. N, P) is fixed and grounded, and the ceramic substrate 10 coated on the upper and lower surfaces only maintains the shape of the element and protects against external forces, so that even a small impact can be easily broken or the ground state changes, causing malfunction. Could. In addition, the conventional thermoelectric device has a problem in that its life is shortened due to the decrease in durability due to the mechanical variation between the thermoelectric semiconductor and the conductor and the change in the physical properties of the component as the change from the maximum temperature to the lowest temperature occurs repeatedly.

이에 상기 이격공간을 액상 충진부재로 채워 굳힘으로써 상기 문제를 어느정도 해결할 수 있지만 다음과 같은 조건을 만족시켜야 한다.Therefore, the problem can be solved to some extent by filling the separation space with a liquid filling member and hardening it, but the following conditions must be satisfied.

첫째, 열전소자는 N형 열전반도체(N)와 P형 열전반도체(P)가 직렬연결되고 있으므로 합선방지를 위해 충진부재는 절연체이어야 한다.First, in the thermoelectric device, since the N-type thermoelectric semiconductor (N) and the P-type thermoelectric semiconductor (P) are connected in series, the filling member should be an insulator to prevent a short circuit.

둘째, 열전소자의 흡열부와 방열부 간의 열전도율이 낮아야 한다. 만일 흡열부와 방열부 간의 열전도율이 우수하다면 그만큼 방열부의 열이 흡열부로 쉽게 전달되면서 저온이어야 할 흡열부의 온도를 증가시킬 수 있기 때문이다.Second, the thermal conductivity between the heat absorbing portion and the heat dissipating portion of the thermoelectric element should be low. If the heat conductivity between the heat absorbing portion and the heat dissipating portion is excellent, the heat of the heat dissipating portion can be easily transferred to the heat absorbing portion, so that the temperature of the heat absorbing portion to be low temperature can be increased.

셋째, 흡열부와 방열부에서는 큰 온도변화가 지속적으로 일어나게 되므로, 충진부재는 극고ㆍ저온에서도 물성변화가 작아야 한다.Third, since a large temperature change continuously occurs in the heat absorbing part and the heat dissipating part, the filling member should have a small change in physical properties even at an extremely high or low temperature.

하지만 종래 충진부재로 사용되던 금속들은 상기 첫째 및 둘째 조건을 충분히 만족시키지 못하였고, 에폭시와 같은 고분자합성물질들은 셋째 조건을 만족시키지 못하여 열전소자의 작동효율을 저해시키는 원인이 되었으며, 상기 조건들을 만족시키는 물질들은 단가가 높아 경제적인 면에서도 불리하였다.However, the metals used as the conventional filling members did not sufficiently satisfy the first and second conditions, and polymer composite materials such as epoxy did not satisfy the third condition, causing the operating efficiency of the thermoelectric element to be deteriorated. The materials used were expensive and disadvantageous in terms of economics.

이에 본 발명은 상기와 같은 문제를 해소하기 위해 안출된 것으로, 열전효율은 그대로 유지하면서 외력에 대한 강도는 물론 내구성이 향상된 열전소자를 제공함에 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to provide a thermoelectric device with improved strength as well as durability against external force while maintaining thermoelectric efficiency.

도 1은 열전소자에 구비된 N.P형 열전반도체의 구조도,1 is a structural diagram of an N.P type thermoelectric semiconductor provided in a thermoelectric element;

도 2는 종래 열전소자를 도시한 부분절개 사시도,2 is a partial cutaway perspective view of a conventional thermoelectric device;

도 3은 도 2의 부분단면도,3 is a partial cross-sectional view of FIG.

도 4는 본 발명에 따른 열전소자를 도시한 부분단면도,4 is a partial cross-sectional view showing a thermoelectric device according to the present invention;

도 4a는 도 4의 X 부분에 대한 확대도이다.4A is an enlarged view of a portion X in FIG. 4.

- 첨부도면의 주요부분에 대한 용어설명 --Explanation of terms for main parts of attached drawings-

10 ; 세라믹기판20 ; 납10; Ceramic substrate 20; lead

30 ; 구리41 ; 양극(+)30; Copper 41; Positive (+)

42 ; 음극(-)50 ; 혼합물42; Cathode (-) 50; mixture

51 ; 주석52 ; 몰리브덴51; Note 52; molybdenum

60 ; 공극60; air gap

N ; N형 열전반도체P ; P형 열전반도체N; N-type thermoelectric semiconductor P; P type thermoelectric semiconductor

D.C ; 직류전류D.C; DC current

상기의 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

제 1 세라믹기판의 일면으로 하나 이상의 N형 열전반도체 및 P형 열전반도체가 소정간격으로 이격되어 고착되되, 이형의 상기 열전반도체들이 도체를 매개로 순차적으로 직렬연결되고, 제 2 세라믹기판이 상기 제 1 세라믹기판에 대향하게 덮어 씌어져 접합된 열전소자에 있어서,One or more N-type thermocouples and P-type thermocouples are fixed to one surface of the first ceramic substrate at predetermined intervals, and the thermocouples of the release type are sequentially connected in series via a conductor, and the second ceramic substrate is connected to the second ceramic substrate. 1 A thermoelectric element bonded and covered with a ceramic substrate opposite thereto,

상기 열전반도체들의 이격공간에 분말형태의 금속성 충진부재가 내입되고,Powder-filled metallic filling member is embedded in the spaced space of the thermoelectric semiconductors,

특히, 상기 분말형태의 금속성 충진부재가 주석인 것을 특징으로 하며,In particular, the powder-type metallic filling member is characterized in that the tin,

또는, 상기 분말형태의 금속성 충진부재가 주석과 몰리브덴의 혼합물인 것을 특징으로 한다.Alternatively, the powder-type metallic filling member is characterized in that the mixture of tin and molybdenum.

이하 본 발명을 첨부된 예시도면에 의거하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명에 따른 열전소자를 도시한 부분단면도인바 이를 참조하여 설명하면, 하나이상의 N형 열전반도체(N)와 P형 열전반도체(P)가 도체(구리; 30)를 매개로 상호 직렬연결되고, 이곳에 직류전류(D.C)가 흐름으로서 작동되는 종래 열전소자에 소정간격으로 고착된 상기 N형 열전반도체(N)와 P형 열전반도체(P) 간의 이격공간으로 주석(51)이 충진된다.4 is a partial cross-sectional view showing a thermoelectric device according to the present invention. When described with reference to this, at least one N-type thermoelectric semiconductor (N) and a P-type thermoelectric semiconductor (P) are in series with each other via a conductor (copper) 30. Tin 51 is filled into the spaced space between the N-type thermoconductor N and the P-type thermoconductor P, which are connected to and fixed to a conventional thermoelectric element at a predetermined interval, in which a direct current (DC) is operated as a flow. do.

여기서는 발명에 대한 명확한 기술을 위해 본 발명에 따른 열전소자를 제조공정과 더불어 설명한다.Here, for the sake of clarity, the thermoelectric device according to the present invention will be described together with the manufacturing process.

일반적으로, 열전소자의 제조공정은 상ㆍ하판 제조(세라믹 공급, 납도포, 구리도포, 납도포), NㆍP형 열전반도체(N, P) 실장, 와이어 작업 및, 상ㆍ하판 접합 순으로 이루어진다.In general, the manufacturing process of thermoelectric elements is in order of top and bottom plate manufacturing (ceramic supply, lead coating, copper coating, lead coating), N-P type thermoelectric semiconductor (N, P) mounting, wire work, and top and bottom plate joining. Is done.

세라믹 공급작업은 상기 NㆍP형 열전 반도체(N, P)를 보호하는 동시에 납(20) 및 구리(30)와 같은 도체가 도포되는 기판의 형성단계로서, 상기 기판은 펠티어 효과에 따라 발생되는 방열 및 흡열에 의한 영향을 외부로 전달하게 된다.The ceramic supply operation is a step of forming a substrate on which the conductors such as lead 20 and copper 30 are applied while protecting the N-P type thermoelectric semiconductors (N, P), and the substrate is generated according to the Peltier effect. The effect of heat dissipation and heat absorption is transmitted to the outside.

일반적으로, 상기 기판은 부도체이면서 열용량이 큰 것이 바람직한데, 이는 펠티어 효과에 의해 발생된 열변환(흡열, 방열)에 따라 온도가 쉽게 변하는 것을 방지하기 위함이며(뚝배기와 같은 역할을 한다.), 세라믹이 주로 활용된다. 여기서는 상기 기판을 방열판, 흡열판 또는 세라믹 기판(제 1 세라믹기판, 제 2 세라믹기판) 등으로 혼용하겠다.In general, it is preferable that the substrate is a non-conductor and has a large heat capacity, in order to prevent the temperature from being easily changed by heat conversion (endotherm, heat dissipation) generated by the Peltier effect. Ceramic is mainly utilized. Here, the substrate is mixed with a heat sink, a heat absorbing plate, or a ceramic substrate (a first ceramic substrate, a second ceramic substrate), or the like.

상ㆍ하판 제조과정 중의 일부인 구리도포의 경우에는 세밀한 작업이 요구된다. 이는 상기 구리(30)가 하나이상의 N형 열전반도체(N)와 P형 열전반도체(P)를 상호 직렬로 접지시키는 매개이기 때문이다.(연결이 제대로 이루어지지 않으면 열전소자의 작동이 불가능하거나 오작동을 일으켜 열전효율을 크게 저하시키는 문제가 발생한다) 특히, 실제로 냉각장치등에 활용되는 열전소자는 N형 열전반도체(N)와 P형 열전반도체(P)로 구성된 다수의 열전쌍이 도체를 매개로 직렬연결되므로 그 구성이 매우 복잡하게 된다. 따라서, 상기 구리(30)를 도포하기 전에는 회로도 즉, 도포위치에 대한 설계가 선행되어야 한다.In the case of copper coating, which is part of the upper and lower plate manufacturing process, detailed work is required. This is because the copper 30 is a medium for grounding one or more N-type thermoelectric semiconductors (N) and P-type thermoelectric semiconductors (P) in series with each other. (If the connection is not properly made, the thermoelectric element cannot be operated or malfunctions. In particular, in the case of a thermoelectric device used in a cooling system, in particular, a plurality of thermocouples composed of an N-type thermocouple (N) and a P-type thermocouple (P) are connected in series via a conductor. The connection is very complicated. Therefore, before applying the copper 30, the circuit diagram, that is, the design for the application position must be preceded.

한편, 납도포의 경우 구리(30)와 세라믹기판(10), 구리(30)와 열전반도체(N, P)간의 접착력을 증대시키기 위한 것으로서 일종의 납땜작업이라 할 수 있다. 합선방지를 위해 납(20)이 도포되는 위치는 구리(30)의 도포위치와 일치해야 하며, 상기 구리도포와 마찬가지로 세밀한 작업이 요구되는 과정이다.On the other hand, in the case of lead coating is to increase the adhesive strength between the copper 30 and the ceramic substrate 10, copper 30 and the thermoelectric semiconductor (N, P) can be referred to as a kind of soldering operation. The position where lead 20 is applied to prevent short circuit should coincide with the application position of copper 30, which is a process requiring detailed work like the copper coating.

이렇게 상기 상ㆍ하판이 제조되면, 상판 또는 하판에 N형 열전반도체(N)와 P형 열전반도체(P)가 각각 실장된다. 앞서 언급된 바와같이 열전소자는 하나이상의 상기 열전쌍들이 상호 직렬연결된 직접소자의 일종이므로 N형 열전반도체(N)와 P형 열전반도체(P)를 제 위치에 정확히 실장시켜야 하며, 이는 상기 구리도포 및 납도포에서 적용된 설계에 의한다.When the upper and lower plates are manufactured as described above, the N-type thermoconductor N and the P-type thermoconductor P are mounted on the upper or lower plate, respectively. As mentioned above, the thermoelectric element is a kind of direct element in which one or more of the thermocouples are connected in series with each other, and thus the N-type thermoelectric semiconductor (N) and the P-type thermoelectric semiconductor (P) must be accurately mounted in place. By design applied in lead coating.

이후, 직류전류(D.C)를 공급하는 매개인 와이어(41, 42 ; 도 2 참조)가 연결된다. 상기 와이어(41, 42)는 외부기판과 열전소자 간의 이음부재인 동시에 전원공급로이므로, 앞서 언급된 구리(30), 납(20) 및, 열전반도체(N, P)의 설계에 따른 해당위치에 접지ㆍ고정된다.Thereafter, the wires 41 and 42 (see FIG. 2), which supply the DC current D.C, are connected. Since the wires 41 and 42 are joint members and power supply paths between the external substrate and the thermoelectric element, the corresponding positions according to the design of the copper 30, the lead 20, and the thermoelectric semiconductors (N, P) mentioned above. It is grounded and fixed to.

이상의 과정을 거친 후, 상기 충진부재를 열전반도체(N, P)의 이격공간 안으로 채워 넣는다.After the above process, the filling member is filled into the spaced space of the thermoelectric semiconductor (N, P).

본 발명에서는 분말형태로 가공된 충진부재가 내입되며, 특히, 온도변화에 따라 물성변화가 적은 금속성인 것이 바람직하며, 도 4a를 참조하여 설명한다.In the present invention, the filling member processed in the form of powder is embedded, in particular, it is preferred that the change in physical properties with a small change in temperature, it will be described with reference to Figure 4a.

분말형태의 상기 충진부재는 일정한 공극(60)이 형성되면서 흡열부 및 방열부 간의 열전도율을 낮추게 된다. 또한, 전기 전도율을 크게 떨어뜨려 종래보다는 상대적으로 우수한 절연효과를 기대할 수 있어 열전효율의 저하를 가능한한 억제할 수 있게 된다.The filling member in the form of powder lowers the thermal conductivity between the heat absorbing portion and the heat dissipating portion while a predetermined void 60 is formed. In addition, it is possible to significantly reduce the electrical conductivity to expect a relatively excellent insulation effect than the prior art it is possible to suppress the degradation of the thermoelectric efficiency as much as possible.

한편, 상기 충진부재는 급격한 온도변화에도 물성의 변화가 적으면서 열전도율 및 전기전도율이 작은 것이 유리한데, 본 발명에서는 다른 금속에 비해 전기전도율 및 열전도율이 상대적으로 작은 주석(51)이 활용된다. 상기 주석(51)은 비용이 저렴하면서 열전소자의 충진부재로는 바람직한 성질을 가지므로 분말형태의 주석(51)이 상기 이격공간 안으로 충진되면 보다 작은 전기전도율 및 열전도율을 기대할 수 있으며, 이에따라 열전효율의 저하를 방지할 수 있게 된다.On the other hand, the filling member is advantageous in that the thermal conductivity and the electrical conductivity is small while the change in physical properties is small even under a sudden temperature change, in the present invention, the tin (51), the electrical conductivity and thermal conductivity is relatively small compared to other metals are utilized. Since the tin 51 is inexpensive and has a desirable property as a filling member of the thermoelectric element, when the tin 51 in the form of powder is filled into the separation space, a smaller electric conductivity and a thermal conductivity can be expected. Can be prevented from deteriorating.

하지만, 상온에서의 주석(51)은 베타-주석으로서, N형 열전반도체(N)와 P형 열전반도체(P)의 보호제 역할 즉, 충진부재의 기능을 이상적으로 발휘할 수 있지만 영하 30도 이하로 온도가 떨어지면 알파-주석으로 물성변화를 일으켜 제 역할을 수행하지 못하게 된다. 이에 분말형태의 몰리브덴(52)을 소정량 더 혼합하여 활용하는 것이 바람직하다.However, tin (51) at room temperature is a beta-tin, which can ideally function as a protective agent of the N-type thermoelectric semiconductor (N) and the P-type thermoelectric semiconductor (P), that is, the function of the filling member. When the temperature drops, the properties of alpha-tin can change, preventing them from functioning. Therefore, it is preferable to mix and use a predetermined amount of molybdenum 52 in powder form.

몰리브덴(52)은 극저온(약 영하 273도)과 극고온(약 영상 2000도)에서도 물성이 거의 변하지 않으면서 열전도율 및 전기전도율이 비교적 떨어지므로, 주석(51)의 단점을 보완하면서 분말형태의 충진부재인 주석(51)이 내입된 열전소자가 그 기능과 수명을 다할 수 있도록 도와준다.Molybdenum 52 has a relatively low thermal conductivity and electrical conductivity at very low temperatures (about minus 273 degrees Celsius) and very high temperatures (about 2000 degrees Celsius), so that thermal conductivity and electrical conductivity are relatively low. Tin 51, which is a member, helps the embedded thermoelectric element to reach its function and lifespan.

본 발명에서는 주석(51)과 몰리브덴(52)의 혼합비율을 7 : 3으로 하였으며 상황에 따라 그 증감이 가능하므로 본 발명은 이에 한정되는 것은 아니다.In the present invention, the mixing ratio of the tin 51 and the molybdenum 52 is set to 7: 3, and the increase and decrease of the tin 51 and the molybdenum 52 is not limited thereto.

한편, 분말형태의 주석(51) 및 몰리브덴(52) 혼합물(50)을 상기 이격공간으로 만입시키면, 입자들의 유동성이 떨어지면서 상호 지지하게 되므로 외력에 대한 열전소자의 강도와 내구성은 향상된다.On the other hand, when the tin 51 and molybdenum 52 mixture 50 in the powder form into the separation space, since the fluidity of the particles are lowered to support each other, the strength and durability of the thermoelectric element against external force is improved.

상기한 바와 같이 분말형태의 주석(51) 및 몰리브덴(52) 혼합물(50)을 상기 열전반도체(N. P) 간의 이격공간에 내입시키는 충진작업 이후에는 앞서 제조된 나머지 다른 한판(상판 또는 하판)을 정확히 덮어 에폭시를 매개로 상기 열전반도체(N, P)가 실장된 판과 접합시키는 작업을 한다. 한편, 상기 에폭시 작업은 열전소자를 밀폐시켜 외부로부터의 물리적ㆍ화학적 영향을 차단하고 외형을 갖추도록 하는 과정이다.As described above, after the filling operation in which the tin 51 and molybdenum 52 mixtures 50 in powder form are introduced into the space between the thermoelectric semiconductors (N.P), the other one of the previous ones prepared (upper or lower) The cover is precisely covered and bonded to the plate on which the thermoelectric semiconductors (N, P) are mounted via an epoxy. On the other hand, the epoxy operation is a process to seal the thermoelectric element to block the physical and chemical effects from the outside and to have an appearance.

상기한 제조공정을 통해 분말형태의 충진부재로 채워져 제조된 열전소자는 외부 충격에 대한 강도 및 내구성이 크게 향상되는데, 최고전압을 걸어 흡열부 및 방열부가 최대 온도에서 최저 온도로 변하는 것을 1주기로 하는 반복실험에서도 충진부재가 없는 열전소자는 3000 ~ 5000 회에서 단락이 일어난 반면, 분말형태의 주석 및 몰리브덴의 혼합물을 내입한 경우에는 6만회 이상이 가능하다는 실험 데이터를 통해 내구성이 향상됨을 알 수 있으며, 이때의 열전효율의 변화량은 미미하였다.The thermoelectric element manufactured by filling the filling member in the form of powder through the above manufacturing process greatly improves the strength and durability against external impact. The cycle is performed by changing the heat absorbing part and the heat radiating part from the maximum temperature to the lowest temperature by applying the highest voltage. In the repeated experiments, the thermoelectric element without the filling member was short-circuited at 3000 to 5000 times. However, when the mixture of tin and molybdenum in the form of powder was inserted, the durability data was improved through the experimental data that more than 60,000 times were possible. At this time, the change in thermoelectric efficiency was insignificant.

이상 상기와 같은 본 발명에 따르면, 분말형태의 몰리브덴과 주석 혼합물을 N형 열전반도체와 P형 열전반도체 간의 이격공간에 충진시킴으로써, 저비용으로도 외력에 대한 강도의 향상은 물론, 열전소자가 작동되면서 초래되는 구성부재의 물성변화 및 기계적 변동의 감소로 인한 내구성의 증대 효과가 있다.According to the present invention as described above, by filling the molybdenum and tin mixture in the powder form in the space between the N-type and P-type thermoconductor, while improving the strength to the external force at a low cost, as well as operating the thermoelectric element There is an effect of increasing the durability due to the reduction of the physical properties and mechanical variations of the resulting component.

Claims (3)

제 1 세라믹기판의 일면으로 하나 이상의 N형 열전반도체 및 P형 열전반도체가 소정간격으로 이격되어 고착되되, 이형의 상기 열전반도체들이 도체를 매개로 순차적으로 직렬연결되고, 제 2 세라믹기판이 상기 제 1 세라믹기판에 대향하게 덮어씌어져 접합된 열전소자에 있어서,One or more N-type thermocouples and P-type thermocouples are fixed to one surface of the first ceramic substrate at predetermined intervals, and the thermocouples of the release type are sequentially connected in series via a conductor, and the second ceramic substrate is connected to the second ceramic substrate. 1 A thermoelectric element bonded and covered with a ceramic substrate so as to face each other, 상기 열전반도체들의 이격공간에 분말형태의 금속성 충진부재가 내입된 것을 특징으로 하는 열전소자.The thermoelectric device, characterized in that the metallic filling member in the form of powder is embedded in the spaced space of the thermoelectric semiconductors. 제 1 항에 있어서,The method of claim 1, 상기 분말형태의 금속성 충진부재가 주석인 것을 특징으로 하는 열전소자.And the powder-filled metallic filling member is tin. 제 1 항에 있어서,The method of claim 1, 상기 분말형태의 금속성 충진부재가 주석과 몰리브덴의 혼합물인 것을 특징으로 하는 열전소자.The powder-type metallic filling member is a thermoelectric element, characterized in that the mixture of tin and molybdenum.
KR1020020051318A 2002-08-29 2002-08-29 Thermoelectric module KR20040021720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020051318A KR20040021720A (en) 2002-08-29 2002-08-29 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020051318A KR20040021720A (en) 2002-08-29 2002-08-29 Thermoelectric module

Publications (1)

Publication Number Publication Date
KR20040021720A true KR20040021720A (en) 2004-03-11

Family

ID=37325715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020051318A KR20040021720A (en) 2002-08-29 2002-08-29 Thermoelectric module

Country Status (1)

Country Link
KR (1) KR20040021720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780734B1 (en) * 2007-06-07 2007-11-30 정세진 Method menufacturing thermoelectric module unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980075400A (en) * 1997-03-31 1998-11-16 김기호 Thermoelectric module
JP2001230457A (en) * 2000-02-16 2001-08-24 Ube Ind Ltd Thermoelectric conversion module and its manufacturing method
US6297441B1 (en) * 2000-03-24 2001-10-02 Chris Macris Thermoelectric device and method of manufacture
JP2002084005A (en) * 2000-07-03 2002-03-22 Komatsu Ltd Thermoelectric module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980075400A (en) * 1997-03-31 1998-11-16 김기호 Thermoelectric module
JP2001230457A (en) * 2000-02-16 2001-08-24 Ube Ind Ltd Thermoelectric conversion module and its manufacturing method
US6297441B1 (en) * 2000-03-24 2001-10-02 Chris Macris Thermoelectric device and method of manufacture
JP2002084005A (en) * 2000-07-03 2002-03-22 Komatsu Ltd Thermoelectric module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780734B1 (en) * 2007-06-07 2007-11-30 정세진 Method menufacturing thermoelectric module unit

Similar Documents

Publication Publication Date Title
US20060118159A1 (en) Thermoelectric direct conversion device
US6767766B2 (en) Electronic module with integrated programmable thermoelectric cooling assembly and method of fabrication
US20150204585A1 (en) Thermoelectric module and heat conversion device including the same
US20150311420A1 (en) Thermoelectric module
US20150130076A1 (en) Semiconductor module and method for manufacturing the same
JP6711001B2 (en) Semiconductor device and manufacturing method
CA2768803A1 (en) Thermoelectric modules with improved contact connection
US20090237890A1 (en) Semiconductor device and method for manufacturing the same
US6670687B2 (en) Semiconductor device having silicon carbide layer of predetermined conductivity type and module device having the same
CN103430300A (en) Power electronic devices with edge passivation
CN111433924A (en) Heat conversion device
JP5159264B2 (en) Thermoelectric device and thermoelectric module
US20220181533A1 (en) Thermoelectric conversion module
US7012332B2 (en) Semiconductor device having sealing structure for wide gap type semiconductor chip
US10475721B2 (en) Power semiconductor device and method for manufacturing same
JP6246057B2 (en) Semiconductor device
KR20070046233A (en) Thermoelectric module
KR20040021720A (en) Thermoelectric module
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
US6982482B2 (en) Packaging of solid state devices
JPH04303955A (en) Semiconductor package
KR102456680B1 (en) Thermoelectric element
US20230044428A1 (en) Thermoelectric device
US5133795A (en) Method of making a silicon package for a power semiconductor device
JP2013247123A (en) Thermoelectric conversion device

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application