JP2001230457A - Thermoelectric conversion module and its manufacturing method - Google Patents
Thermoelectric conversion module and its manufacturing methodInfo
- Publication number
- JP2001230457A JP2001230457A JP2000038324A JP2000038324A JP2001230457A JP 2001230457 A JP2001230457 A JP 2001230457A JP 2000038324 A JP2000038324 A JP 2000038324A JP 2000038324 A JP2000038324 A JP 2000038324A JP 2001230457 A JP2001230457 A JP 2001230457A
- Authority
- JP
- Japan
- Prior art keywords
- conversion module
- electrode
- thermoelectric conversion
- type
- sprayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 48
- 239000011733 molybdenum Substances 0.000 claims abstract description 48
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 38
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000007751 thermal spraying Methods 0.000 claims abstract description 6
- 239000011810 insulating material Substances 0.000 claims description 5
- 238000009415 formwork Methods 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 25
- 238000000034 method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 12
- 229910052918 calcium silicate Inorganic materials 0.000 description 10
- 239000000378 calcium silicate Substances 0.000 description 10
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 10
- 238000005507 spraying Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- 238000010248 power generation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000007750 plasma spraying Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000005219 brazing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010285 flame spraying Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910016312 BiSb Inorganic materials 0.000 description 1
- 229910005329 FeSi 2 Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱を直接電気に変
換する熱電変換モジュール及びその製造方法に関するも
のであって、特に発電プラントやゴミ焼却施設などの大
規模な排熱を熱源とする熱電発電装置において有用なも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module for directly converting heat into electricity and a method for manufacturing the same, and more particularly to a thermoelectric module using large-scale exhaust heat as a heat source, such as a power plant or a waste incineration facility. It is useful in power generators.
【0002】[0002]
【従来の技術】熱電変換モジュールは、通常複数個のp
型熱電素子とn型熱電素子とを交互に配置し、これらの
熱電素子を金属などの導電性材料を介して電気的に直列
に接続することによって作製される。この熱電変換モジ
ュールは、熱電素子に温度差を与えることによりゼーベ
ック効果による熱起電力を発生し、電気的な負荷を接続
することにより熱の一部を電力に変換して取り出すこと
ができる。この熱電変換モジュールを用いた発電装置
は、構造が簡単で、振動、騒音、摩耗などを生じる可動
部がなく、熱源の規模を選ばないなどの特徴があるた
め、携帯型電源や、各種の排熱を電力として回収し有効
利用する手段として注目されている。2. Description of the Related Art A thermoelectric conversion module usually has a plurality of p-types.
It is manufactured by alternately arranging type thermoelectric elements and n-type thermoelectric elements, and electrically connecting these thermoelectric elements in series via a conductive material such as metal. This thermoelectric conversion module can generate a thermoelectromotive force by the Seebeck effect by giving a temperature difference to a thermoelectric element, and can convert a part of heat into electric power by connecting an electric load to take out the electric power. A power generator using this thermoelectric conversion module has features such as a simple structure, no moving parts that generate vibration, noise, wear, etc., and the scale of the heat source is not limited. It is attracting attention as a means of recovering heat as electric power and using it effectively.
【0003】一般に、このような熱電変換モジュール
は、例えば、次のような方法で作製される。まず、p型
及びn型熱電材料を焼結し、得られた焼結体を、電極と
の接合面にはんだ付けをするためのニッケルめっきなど
の表面処理を施した後、所望の大きさに切断し、p型及
びn型熱電素子を作製する。次に、p型及びn型熱電素
子を交互に配置し、所定の電気的接続となるように金属
電極にはんだ付けして、熱電変換モジュールを得る。ま
た、熱電変換モジュールを電気的に絶縁する必要がある
ことと機械的強度の向上のために、電極面は、通常、熱
伝導性の良いアルミナセラミックスなどの電気的な絶縁
板とはんだ接合することが行われている。また、この他
にも、電極面が絶縁板と固定されていないスケルトンタ
イプといわれるものが一般的に知られている。このよう
な熱電変換モジュールに係わる全般的な技術は、例え
ば、「熱電半導体とその応用」(西田勲、上村欣一著、
日刊工業新聞社発行)や「熱電変換システム技術総覧」
(梶川武信他編、リアライズ社発行)に詳述されてい
る。[0003] Generally, such a thermoelectric conversion module is manufactured by, for example, the following method. First, the p-type and n-type thermoelectric materials are sintered, and the obtained sintered body is subjected to a surface treatment such as nickel plating for soldering to a surface to be joined to the electrode, and then to a desired size. Cutting is performed to produce p-type and n-type thermoelectric elements. Next, p-type and n-type thermoelectric elements are alternately arranged and soldered to metal electrodes so as to have a predetermined electrical connection to obtain a thermoelectric conversion module. In addition, to ensure that the thermoelectric conversion module needs to be electrically insulated and to improve the mechanical strength, the electrode surface is usually soldered to an electrically insulating plate such as alumina ceramic with good heat conductivity. Has been done. In addition, a skeleton type in which an electrode surface is not fixed to an insulating plate is generally known. The general technology related to such a thermoelectric conversion module is, for example, “thermoelectric semiconductor and its application” (Isao Nishida, Kinichi Uemura,
Published by Nikkan Kogyo Shimbun) or "Thermoelectric Conversion System Technology Overview"
(Takenobu Kajikawa et al., Published by Realize).
【0004】また、信頼性を向上させた熱電変換モジュ
ールとして、各接合部での熱膨張率の差によって生ずる
破損を解決するために、各熱電素子を金属ペーストを介
して金属セグメントで挟み込みネジ止めによって固定す
る方法(例えば、特開平8−255935号公報、特開
平8−306965号公報などを参照)や、小型の素子
を用いた熱電変換モジュールの機械的強度の向上のた
め、熱電素子が樹脂、セラミックス又はガラスなどの絶
縁性の物質に埋め込まれた構造を有する熱電変換モジュ
ール(例えば、特開平8−18109号公報、特開平8
−153899号公報などを参照)も提案されている。
また、樹脂の型枠に熱電素子が埋め込まれ、電極として
アルミニウムの溶射層を用いた熱電変換モジュール(米
国特許第5,856,210 号明細書を参照)が発明されてい
る。Further, as a thermoelectric conversion module with improved reliability, each thermoelectric element is sandwiched between metal segments via a metal paste and screwed in order to solve the damage caused by the difference in the coefficient of thermal expansion at each joint. (See, for example, JP-A-8-255935 and JP-A-8-306965) and to improve the mechanical strength of a thermoelectric conversion module using a small element, the thermoelectric element is made of resin. Thermoelectric conversion module having a structure embedded in an insulating material such as ceramics or glass (for example, Japanese Patent Application Laid-Open Nos.
153899) has also been proposed.
Further, a thermoelectric conversion module (see US Pat. No. 5,856,210) in which a thermoelectric element is embedded in a resin mold and a sprayed layer of aluminum is used as an electrode has been invented.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、熱電変
換モジュールは、大きい温度差を印加するほど発電性能
が向上することが知られているが、熱電素子と電極など
の接合にはんだなどのろう材を使用すると、上限温度が
ろう材に支配されるとともに、ろう材の成分が熱電素子
中へ拡散することによる発電性能の低下が懸念される。
また、機械的強度を向上させるために、電極面が絶縁板
とはんだ接合された熱電変換モジュールでは、各部材の
熱膨張率の差によって素子破壊が生じやすく、信頼性が
劣るといった問題点があった。この点を解決するため
に、スケルトンタイプの熱電変換モジュールも提案され
ているが、機械的強度が低く、取扱いが不便であるとい
った問題点が指摘されている。また、従来の熱電素子
は、断面積がせいぜい1〜5mm角程度であるため、一
つのモジュールでの出力電流は制限される。大電流出力
を得るためには、小断面積素子を並列接続する方法があ
るが、モジュール特性のばらつきもさることながら、モ
ジュールへの熱接触状態のばらつきや接触する熱源の温
度ばらつきにより、モジュール間の出力電圧にばらつき
が生じ、そのまま並列接続することは技術的問題があ
る。However, it is known that the power generation performance of a thermoelectric conversion module is improved as a large temperature difference is applied. However, a brazing material such as solder is used for joining the thermoelectric element and the electrodes. When used, the upper limit temperature is governed by the brazing material, and there is a concern that the power generation performance may be reduced due to the diffusion of the components of the brazing material into the thermoelectric element.
Further, in the thermoelectric conversion module in which the electrode surface is soldered to the insulating plate in order to improve the mechanical strength, there is a problem that the element is easily broken due to the difference in the coefficient of thermal expansion of each member and the reliability is poor. Was. In order to solve this problem, a skeleton type thermoelectric conversion module has been proposed, but it has been pointed out that the mechanical strength is low and the handling is inconvenient. In addition, since the cross-sectional area of the conventional thermoelectric element is at most about 1 to 5 mm square, the output current of one module is limited. In order to obtain a large current output, there is a method of connecting small cross-sectional area elements in parallel.However, not only variations in module characteristics but also variations in the state of thermal contact with the modules and variations in the temperature of the contacting heat source cause variations between modules. There is a technical problem in that the output voltages of the above-mentioned devices vary, and that they are connected in parallel as they are.
【0006】また、大規模な排熱を熱源とした場合に
は、設計施工上やメンテナンス上の観点から大型の熱電
変換モジュールが望まれているが、従来の熱電変換モジ
ュールは、構造が複雑で大型化には不向きであった。ま
た、現在市販されている熱電変換モジュールは、何れ
も、熱電素子が1〜5mm角程度の小断面積素子であ
り、大電力発電用途に広く使われるには至っていない。
大断面積素子を用いた熱電変換モジュールが製造されて
いない理由は、電極としてアルミニウム層を形成した熱
電変換モジュールでは、アルミニウム電極及び該電極と
熱電素子との間の下地層であるモリブテン層が、熱電素
子を破壊するほどの大きい応力集中を起こす(後述の実
験例を参照)ため、それを緩和するため止めをえず、素
子断面積を小さくしていると推定される。従来はこの応
力発生の対策として、上述のように、素子断面積を小さ
くすることに加え、アルミニウム電極に多量の空隙を導
入して、熱膨張係数及びヤング率を調整し、熱履歴によ
り素子に発生する応力をさらに緩和していた。しかしな
がら、アルミニウム電極中に空隙を導入することは、電
極に本来要求される低抵抗特性とは、明らかに矛盾す
る。When large-scale exhaust heat is used as a heat source, a large-sized thermoelectric conversion module is desired from the viewpoint of design and construction and maintenance. However, the conventional thermoelectric conversion module has a complicated structure. It was not suitable for upsizing. Further, all of the thermoelectric conversion modules currently on the market are thermoelectric elements having a small cross-sectional area of about 1 to 5 mm square, and have not yet been widely used for large power generation.
The reason that the thermoelectric conversion module using the large cross-sectional area element is not manufactured is that, in the thermoelectric conversion module in which an aluminum layer is formed as an electrode, an aluminum electrode and a molybdenum layer that is a base layer between the electrode and the thermoelectric element are It is presumed that the stress concentration is large enough to break the thermoelectric element (see the experimental example described later), so that the cross-sectional area of the element is reduced without stopping to reduce the concentration. Conventionally, as a countermeasure against this stress generation, as described above, in addition to reducing the element cross-sectional area, a large amount of voids are introduced into the aluminum electrode to adjust the coefficient of thermal expansion and Young's modulus, The generated stress was further reduced. However, the introduction of voids in the aluminum electrode clearly contradicts the low resistance characteristics originally required of the electrode.
【0007】上述の現状に鑑み、本願出願人は、先に、
信頼性及び変換効率が高く、大型化が容易な熱電変換モ
ジュール及びその製造方法を提案した(特開平11−3
40526号公報を参照)。この熱電変換モジュール
は、素子断面積が113m2 程度の大断面積をもつ熱電
素子を使用し、1基で59W程度の大電力を発生し、し
かも従来の熱電変換モジュールに比べて信頼性が高いも
のの、3ヵ月の長期の耐久試験により15%程度の発電
量の低下が起こり、また溶射電極の形成時の熱応力によ
って素子にクラックが発生して作製歩留りが若干低いと
いう課題があった。In view of the above situation, the applicant of the present application has
A thermoelectric conversion module which has high reliability and conversion efficiency and is easy to increase in size, and a method of manufacturing the same have been proposed (Japanese Patent Laid-Open No. 11-3).
No. 40526). This thermoelectric conversion module uses a thermoelectric element having a large cross-sectional area of about 113 m 2 , generates a large power of about 59 W per unit, and has higher reliability than a conventional thermoelectric conversion module. However, a long-term durability test of three months caused a problem that a power generation amount was reduced by about 15%, and a crack was generated in the element due to thermal stress at the time of forming the sprayed electrode.
【0008】従って、本発明の目的は、従来よりはるか
に空隙が少なく緻密で優れた電気伝導性を保持した電極
構造でありながら、熱電素子に発生する応力が小さく、
熱電素子が破壊されることがないため、製造上歩留りが
高く、且つ信頼性及び変換効率が高く、大型化が容易な
電極構造を有する熱電変換モジュール、及びその製造方
法を提供することにある。[0008] Accordingly, an object of the present invention is to provide a thermoelectric element with a small stress, while having a dense and excellent electrical conductivity while having a much smaller gap than conventional ones.
An object of the present invention is to provide a thermoelectric conversion module having an electrode structure that has a high production yield, high reliability and high conversion efficiency, and can be easily increased in size, because the thermoelectric element is not destroyed, and a method for manufacturing the same.
【0009】[0009]
【課題を解決するための手段】本発明は、上記目的を、
下記の熱電変換モジュール及びその製造方法を提供する
ことにより達成したものである。「複数の貫通孔及び該
貫通孔間を連結する複数の電極用溝が設けられた電気的
且つ熱的絶縁性型枠に、p型熱電素子とn型熱電素子と
を上記貫通孔に交互に配列し、これらのp型熱電素子と
n型熱電素子とを交互に電気的に直列に接続する溶射電
極を上記電極用溝に埋設した熱電変換モジュールであっ
て、上記溶射電極がアルミニウム溶射電極であり、上記
p型及びn型熱電素子と上記溶射電極との界面に、下地
層として30〜80μmの厚みを有するモリブデンから
なる溶射層を有することを特徴とする熱電変換モジュー
ル。(以下、第1の熱電変換モジュールといった場合
は、この熱電変換モジュールを指す。)」 「複数の貫通孔及び該貫通孔間を連結する複数の電極用
溝が設けられた電気的且つ熱的絶縁性型枠に、p型熱電
素子とn型熱電素子とを上記貫通孔に交互に配列し、こ
れらのp型熱電素子とn型熱電素子とを交互に電気的に
直列に接続する溶射電極を上記電極用溝に埋設した熱電
変換モジュールであって、上記溶射電極がアルミニウム
溶射電極であり、上記p型及びn型熱電素子と上記溶射
電極との界面に、下地層として上記p型及びn型熱電素
子上への被覆率が50〜95%となるモリブデンからな
る溶射層を有することを特徴とする熱電変換モジュー
ル。(以下、第2の熱電変換モジュールといった場合
は、この熱電変換モジュールを指す。)」 「電気的且つ熱的絶縁性材料を用いて、複数の貫通孔及
び該貫通孔間を連結する複数の電極用溝が設けられた電
気的且つ熱的絶縁性型枠を作製する工程と、上記型枠の
上記貫通孔にp型熱電素子とn型熱電素子とを交互に配
列する工程と、上記の熱電素子を配列した型枠の両面に
下地層として、30〜80μmの厚みを有するモリブデ
ンからなる溶射層又は上記の熱電素子上への被覆率が5
0〜95%となるモリブデンからなる溶射層を形成する
工程と、該下地層の上にアルミニウム溶射電極を形成す
る工程と、上記型枠の上記電極用溝以外に形成された不
要なアルミニウム溶射電極を除去する工程とを含む熱電
変換モジュールの製造方法。」SUMMARY OF THE INVENTION The present invention provides the above object,
This has been achieved by providing the following thermoelectric conversion module and a method for manufacturing the same. "In an electrically and thermally insulating form provided with a plurality of through-holes and a plurality of electrode grooves connecting the through-holes, a p-type thermoelectric element and an n-type thermoelectric element are alternately provided in the through-hole. Arranged, a thermoelectric conversion module in which these p-type thermoelectric elements and n-type thermoelectric elements are electrically connected alternately and electrically in series and embedded in the electrode groove, wherein the sprayed electrodes are aluminum sprayed electrodes. A thermoelectric conversion module comprising a sprayed layer made of molybdenum having a thickness of 30 to 80 μm as an underlayer at an interface between the p-type and n-type thermoelectric elements and the sprayed electrode (hereinafter referred to as “first”). In the case of the thermoelectric conversion module, the thermoelectric conversion module is referred to.) "" An electrically and thermally insulating formwork provided with a plurality of through holes and a plurality of electrode grooves connecting the through holes, p-type thermoelectric element and n-type A thermoelectric conversion module in which electric elements are alternately arranged in the through holes, and thermal spray electrodes for electrically connecting the p-type thermoelectric elements and the n-type thermoelectric elements alternately in series are embedded in the electrode grooves. The sprayed electrode is an aluminum sprayed electrode, and the interface between the p-type and n-type thermoelectric elements and the sprayed electrode has a coverage of 50 to 95% on the p-type and n-type thermoelectric elements as a base layer. (The thermoelectric conversion module is characterized by having a thermal spray layer made of molybdenum.) (Hereinafter, the second thermoelectric conversion module refers to this thermoelectric conversion module.) " Forming an electrically and thermally insulating mold having a plurality of through-holes and a plurality of electrode grooves connecting the through-holes, and forming a p-type thermoelectric in the through-hole of the mold. Element and n-type thermoelectric element A step of one another arrangement, as an underlying layer on the both surfaces of the thermoelectric device having an array formwork, sprayed layer of molybdenum having a thickness of 30~80μm or coverage onto the above thermoelectric elements 5
A step of forming a thermal spray layer of molybdenum of 0 to 95%, a step of forming an aluminum spray electrode on the underlayer, and an unnecessary aluminum spray electrode formed other than the electrode grooves of the mold. And a step of removing the thermoelectric conversion module. "
【0010】[0010]
【発明の実施の形態】以下、まず本発明の第1の熱電変
換モジュールを図1に示す実施形態について説明する。
図1に示すように、本実施形態の熱電変換モジュール1
0は、複数の貫通孔12及び複数の電極用溝13が設け
られた電気的且つ熱的絶縁性型枠11と、該型枠11の
上記貫通孔12に交互に配列されたp型熱電素子14と
n型熱電素子15と、上記型枠11の上記電極用溝13
に埋設されたアルミニウム溶射電極16と、該溶射電極
16と上記p型及びn型熱電素子14及び15との間に
形成されたモリブデン下地層17とから構成されてい
る。そして、上記p型熱電素子14と上記n型熱電素子
15とは、上記アルミニウム溶射電極16を介して交互
に電気的に直列に接続されている。また、上記p型及び
n型熱電素子14及び15、上記モリブデン下地層17
並びに上記アルミニウム溶射電極16は、上記型枠11
に一体的に固着してある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a first thermoelectric conversion module according to the present invention will be described with reference to an embodiment shown in FIG.
As shown in FIG. 1, the thermoelectric conversion module 1 of the present embodiment
0 denotes an electrically and thermally insulating mold 11 provided with a plurality of through holes 12 and a plurality of electrode grooves 13, and p-type thermoelectric elements alternately arranged in the through holes 12 of the mold 11. 14, the n-type thermoelectric element 15, and the electrode groove 13 of the mold 11.
And a molybdenum base layer 17 formed between the sprayed electrode 16 and the p-type and n-type thermoelectric elements 14 and 15. The p-type thermoelectric elements 14 and the n-type thermoelectric elements 15 are electrically connected in series alternately via the aluminum sprayed electrodes 16. The p-type and n-type thermoelectric elements 14 and 15 and the molybdenum base layer 17
In addition, the aluminum sprayed electrode 16 is connected to the mold 11
It is integrally fixed to.
【0011】而して、上記モリブデン下地層17は、3
0〜80μmの厚み、好ましくは30〜50μmの厚み
を有するモリブデンからなる溶射層である。上記モリブ
デン下地層17の形成方法としては、一般的なプラズマ
溶射、ガス溶射、アーク溶射、高速フレーム溶射などの
方法が挙げられ、特にプラズマ溶射が好ましい。この
時、30〜80μm厚のモリブデンの薄い溶射層を得る
ためには、溶射時の粉末供給量を減らしたり、溶射パス
数を適宜調整すればよい。The molybdenum underlayer 17 has a thickness of 3
It is a sprayed layer of molybdenum having a thickness of 0 to 80 μm, preferably 30 to 50 μm. Examples of the method for forming the molybdenum base layer 17 include general methods such as plasma spraying, gas spraying, arc spraying, and high-speed flame spraying, and plasma spraying is particularly preferable. At this time, in order to obtain a thin sprayed layer of molybdenum having a thickness of 30 to 80 μm, the amount of powder supplied during spraying may be reduced, or the number of spray passes may be appropriately adjusted.
【0012】また、上記アルミニウム溶射電極16は、
一般的なプラズマ溶射、ガス溶射、アーク溶射、フレー
ム溶射などの方法により形成可能であるが、緻密で均一
な電極を得るためには、プラズマ溶射及びガス溶射の方
法により形成することが望ましい。また、上記アルミニ
ウム溶射電極16を構成するアルミニウム溶射層は、空
隙率が10%以下、特に8%以下のものが好ましい(図
2を参照)。The aluminum spray electrode 16 is
Although it can be formed by a general method such as plasma spraying, gas spraying, arc spraying, and flame spraying, it is preferable to form the electrode by plasma spraying and gas spraying in order to obtain a dense and uniform electrode. The aluminum sprayed layer constituting the aluminum sprayed electrode 16 preferably has a porosity of 10% or less, particularly preferably 8% or less (see FIG. 2).
【0013】また、上記電気的且つ熱的絶縁性型枠11
としては、珪酸カルシウムの成型体からなる型枠を使用
することができる。珪酸カルシウムはゾノトライト及び
トバモライトと言われる結晶相があり、これらに有機バ
インダーを混入し成型したものは人造木材と言われる。
この人造木材は、不燃、低熱伝導率、軽量、さらには加
工性が良いなどの特徴を有するため、熱電変換モジュー
ルの絶縁性型枠として好適である。例えば、熱伝導率に
おいては、一般的な鉛ガラスが1.2W/mKであるの
に比べ、珪酸カルシウムの成型体は0.08W/mKで
あり1/15程度と小さく、また、一般的な耐熱性樹脂
であるポリイミドの0.4W/mKと比較しても1/5
程度と小さい。また、比重においては、鉛ガラス及びポ
リイミドがそれぞれ3.0及び1.4であるのに比べ、
0.5程度と小さく、熱電変換モジュールの絶縁性型枠
材料として望ましい。The above-mentioned electrically and thermally insulating form 11
For example, a mold formed of a molded body of calcium silicate can be used. Calcium silicate has crystalline phases called zonotolite and tobermorite, and those formed by mixing an organic binder with them are called artificial wood.
This artificial wood has characteristics such as non-combustibility, low thermal conductivity, light weight, and good workability, and thus is suitable as an insulating mold for a thermoelectric conversion module. For example, the thermal conductivity is 1.2 W / mK for general lead glass, whereas the molded product of calcium silicate is 0.08 W / mK, which is as small as about 1/15. 1/5 compared to 0.4 W / mK of polyimide which is heat resistant resin
About small. In addition, in terms of specific gravity, lead glass and polyimide have a specific gravity of 3.0 and 1.4, respectively.
As small as about 0.5, it is desirable as an insulating mold material for a thermoelectric conversion module.
【0014】また、上記p型熱電素子14及び上記n型
熱電素子15として使用される熱電材料は、公知である
Bi2 Te3 系、BiSb系、FeSi2 系、PbTe
系、SiGe系などの熱電半導体の単結晶や焼結体など
を使用することが可能であるが、絶縁性型枠11として
上記の珪酸カルシウムの成型体からなる型枠を使用する
場合は、該型枠の使用可能な温度域からBi2 Te3 系
が望ましい。また、上記p型及びn型熱電素子14及び
15は、断面積が0.36cm2 以上のものを用いる場
合、特に効果が明らかとなる。実用上、断面積が0.3
6〜10cm2 のものが好適に用いられる。The thermoelectric materials used as the p-type thermoelectric element 14 and the n-type thermoelectric element 15 are known Bi 2 Te 3 , BiSb, FeSi 2 , PbTe.
It is possible to use a single crystal or a sintered body of a thermoelectric semiconductor such as a SiGe-based thermoelectric semiconductor, but when using a mold made of the above-described calcium silicate molded body as the insulating mold 11, The Bi 2 Te 3 system is preferable from the temperature range where the mold can be used. Further, when the p-type and n-type thermoelectric elements 14 and 15 have a cross-sectional area of 0.36 cm 2 or more, the effect becomes particularly clear. Practically, the cross-sectional area is 0.3
Those having a size of 6 to 10 cm 2 are preferably used.
【0015】次に、本発明の第2の熱電変換モジュール
について説明する。本発明の第2の熱電変換モジュール
は、モリブデン溶射層からなるモリブデン下地層が、p
型及びn型熱電素子上への被覆率が50〜95%、好ま
しくは70〜90%となるように斑状に形成されている
以外は、上述の本発明の第1の熱電変換モジュールと同
様に構成されている。上記の斑状のモリブデン溶射層を
得る方法としては、溶射時に溶射装置を振動させる方
法、粉末供給を間欠的にする方法、溶射装置と被溶射物
との間に網状のフィルターを用いる方法などが挙げられ
るが、再現性の面から網状のフィルターを用いる方法が
好ましい。また、上記モリブデン溶射層の厚みは、空隙
部を除いた溶射層の厚みが200μm以下であることが
好ましい。Next, a second thermoelectric conversion module of the present invention will be described. In the second thermoelectric conversion module of the present invention, the molybdenum base layer composed of the molybdenum sprayed layer is p-type.
The same as the above-described first thermoelectric conversion module of the present invention, except that the thermoelectric conversion module is formed in a patch shape so that the coverage on the mold and the n-type thermoelectric element is 50 to 95%, preferably 70 to 90%. It is configured. Examples of the method of obtaining the mottled molybdenum sprayed layer include a method of vibrating the spraying device during spraying, a method of intermittently supplying powder, a method of using a mesh filter between the spraying device and the object to be sprayed, and the like. However, a method using a mesh filter is preferable from the viewpoint of reproducibility. Further, the thickness of the molybdenum sprayed layer is preferably such that the thickness of the sprayed layer excluding voids is 200 μm or less.
【0016】上述の構成からなる本発明の第1及び第2
の熱電変換モジュールは、発電所などの排熱、ゴミ焼却
設備の排熱、自動車の排熱、太陽光などを利用した熱電
発電システムに適用することが可能である。The first and second embodiments of the present invention having the above-described structure.
The thermoelectric conversion module can be applied to a thermoelectric power generation system using exhaust heat of a power plant, exhaust heat of a garbage incineration facility, exhaust heat of an automobile, sunlight, and the like.
【0017】次に、本発明の熱電変換モジュールの製造
方法を、上述した図1に示す実施形態の熱電変換モジュ
ールを製造する場合を例にとり、図3を参照しながら説
明する。まず、電気的且つ熱的絶縁性材料を用いて、図
3(a)に示すような、複数の貫通孔12及び該貫通孔
12間を連絡する複数の電極用溝13が設けられた電気
的且つ熱的絶縁性型枠11を作製する。上記絶縁性材料
として珪酸カルシウムを用いる場合は、まず珪酸カルシ
ウムの成型体を、例えば特開昭62−123053号公
報や特開平3−3635号公報に記載されている製造方
法により製造し、得られた成型体を機械加工することに
より上記絶縁性型枠11を作製すると良い。Next, a method of manufacturing a thermoelectric conversion module according to the present invention will be described with reference to FIG. 3, taking the case of manufacturing the thermoelectric conversion module of the embodiment shown in FIG. 1 described above as an example. First, as shown in FIG. 3A, an electric and thermal insulating material is used to form an electrical and thermal insulating material in which a plurality of through holes 12 and a plurality of electrode grooves 13 communicating between the through holes 12 are provided. In addition, a thermally insulating mold 11 is manufactured. When calcium silicate is used as the insulating material, first, a molded body of calcium silicate is produced by a production method described in, for example, JP-A-62-213053 or JP-A-3-3635, and is obtained. It is preferable to fabricate the insulating mold 11 by machining the molded body.
【0018】次に、図3(b)に示すように、上記絶縁
性型枠11の上記貫通孔12に、p型熱電素子14とn
型熱電素子15とを、素子スペーサー18及び19を用
いて交互に配列する。Next, as shown in FIG. 3B, a p-type thermoelectric element 14 and an n-type
The thermoelectric elements 15 are alternately arranged using element spacers 18 and 19.
【0019】次いで、素子スペーサー18及び19を取
り外し、図3(c)に示すように、モリブデン下地層1
7を、プラズマ溶射などにより上記p型熱電素子14及
び上記n型熱電素子15の両面に形成する。この時、モ
リブデン下地層17は、30〜80μm厚の薄い溶射層
(又はp型及びn型熱電素子上への被覆率が50〜95
%の斑状の溶射層)になっていることが必要である。モ
リブデン下地層17を形成した後、アルミニウムを用い
て、上記絶縁性型枠11の両面を被覆するように、アル
ミニウム溶射電極16を形成する。Next, the element spacers 18 and 19 are removed, and as shown in FIG.
7 are formed on both surfaces of the p-type thermoelectric element 14 and the n-type thermoelectric element 15 by plasma spraying or the like. At this time, the molybdenum base layer 17 has a thin sprayed layer having a thickness of 30 to 80 μm (or a coverage of 50 to 95 on the p-type and n-type thermoelectric elements).
% Of the sprayed layer). After the molybdenum base layer 17 is formed, aluminum sprayed electrodes 16 are formed using aluminum so as to cover both surfaces of the insulating mold 11.
【0020】次いで、図3(d)に示すように、上記絶
縁性型枠11の上記電極用溝13以外に形成された不要
な溶射電極を平面研削盤などを用いて研削除去して、図
1に示す実施形態の熱電変換モジュールを得る。この不
要な溶射電極を研削除去する際、絶縁性型枠11の表面
も僅かに削り込むことによって、電極面の平面性が確保
できる。Next, as shown in FIG. 3D, unnecessary sprayed electrodes formed on the insulating mold 11 other than the electrode grooves 13 are ground and removed using a surface grinder or the like. The thermoelectric conversion module of the embodiment shown in FIG. When the unnecessary thermal spray electrode is removed by grinding, the surface of the insulating mold 11 is slightly ground to ensure the flatness of the electrode surface.
【0021】[0021]
【作用】請求項1及び2に係る本発明の熱電変換モジュ
ールは、電極がアルミニウム溶射電極で、下地層が薄い
モリブデン溶射層又は斑状のモリブデン溶射層であるた
め、熱電素子の破壊の原因となる応力集中が少なく素子
割れがない。そのため、安定して製造することができ、
歩留りが向上する。In the thermoelectric conversion module according to the first and second aspects of the present invention, the electrode is an aluminum sprayed electrode and the underlying layer is a thin molybdenum sprayed layer or a molybdenum sprayed layer. Low stress concentration and no element cracking. Therefore, it can be manufactured stably,
The yield is improved.
【0022】また、請求項3に係る本発明の熱電変換モ
ジュールは、アルミニウム溶射電極が空隙率10%以下
のアルミニウム溶射層からなるため、緻密で優れた電気
伝導性を保持した電極構造であり、発電性能が向上す
る。また、請求項4に係る本発明の熱電変換モジュール
は、素子断面積が大きいため、電力用途への利用が容易
である。The thermoelectric conversion module of the present invention according to claim 3 has a dense electrode structure having excellent electrical conductivity because the aluminum sprayed electrode is made of an aluminum sprayed layer having a porosity of 10% or less. Power generation performance is improved. Further, the thermoelectric conversion module of the present invention according to claim 4 has a large element cross-sectional area, so that it can be easily used for electric power.
【0023】また、請求項5に係る本発明の熱電変換モ
ジュールの製造方法によれば、比較的簡単な工程で歩留
り良く、大面積の熱電変換モジュールが作製でき、大規
模な熱源に適応した熱電変換モジュールを得ることがで
きる。According to the method for manufacturing a thermoelectric conversion module of the present invention according to claim 5, a large-area thermoelectric conversion module can be manufactured with a relatively simple process and a good yield, and a thermoelectric module adapted to a large-scale heat source can be manufactured. A conversion module can be obtained.
【0024】[0024]
【実施例】以下に実験例及び実施例を挙げ、本発明の効
果を具体的に説明する。EXAMPLES The effects of the present invention will be specifically described below with reference to experimental examples and examples.
【0025】実験例 熱サイクルや急激な温度変化が、熱電変換モジュールの
電極接合部分に付加された場合の熱応力分布を知るため
有限要素法を用いて解析を行った。有限要素法に用いた
解析モデルを図6に示した。このモデルの形状(円
柱)、拘束条件及び熱荷重条件の対称性を考慮して、軸
対称モデルとした。この解析に使用した電極層、下地層
及び熱電素子の物性値を下記表1に示した。また、解析
は、汎用応力解析ソルバーMSC/NASTRAN(Ver.70.5)を使
用した。Experimental Example An analysis was performed using the finite element method in order to know the thermal stress distribution when a thermal cycle or a rapid temperature change was applied to the electrode junction of the thermoelectric conversion module. FIG. 6 shows an analysis model used in the finite element method. Considering the symmetry of the shape (cylinder) of this model, the constraint condition and the thermal load condition, an axially symmetric model was used. The physical properties of the electrode layer, the underlayer, and the thermoelectric element used in this analysis are shown in Table 1 below. For analysis, a general-purpose stress analysis solver MSC / NASTRAN (Ver. 70.5) was used.
【0026】[0026]
【表1】 [Table 1]
【0027】図7に温度変化量−200℃の時の応力分
布図を示した。この応力分布図から、モリブデン下地層
の熱収縮が小さいため下地層付近でひずんでいることが
判る。また、このため、モリブデン下地層のエッジに応
力集中が起こり、それが、熱電素子内部まで影響してい
ることが判る。モリブデン下地層のエッジには軸方向
(素子長方向)に強い引張応力が生じている。よって、
モジュールへのヒートサイクル印加や、溶射電極形成時
の急激な温度変化によって、このモリブデン下地層のエ
ッジ付近を起点にし、機械的強度の弱い熱電素子側へク
ラックが進行し易いものと考えられる。FIG. 7 shows a stress distribution diagram when the temperature change amount is -200 ° C. From this stress distribution diagram, it can be seen that the molybdenum underlayer is distorted near the underlayer because the thermal shrinkage is small. Further, for this reason, it can be seen that stress concentration occurs at the edge of the molybdenum base layer, which affects the inside of the thermoelectric element. A strong tensile stress is generated at the edge of the molybdenum underlayer in the axial direction (element length direction). Therefore,
It is considered that cracks are likely to progress to the thermoelectric element side having low mechanical strength from the vicinity of the edge of the molybdenum base layer due to the application of a heat cycle to the module or a rapid temperature change at the time of forming the thermal spray electrode.
【0028】モリブデン下地層の厚みが最大主応力に及
ぼす影響を調べるため、下地層厚みを変化させ、アルミ
ニウム電極層厚みを変化させた場合の最大主応力の変化
を図8に示した。この図8から明らかなように、アルミ
ニウム電極層の厚みによる変化は、約1mm以上でほぼ
一定となるが、モリブデン下地層は薄い方が、最大主応
力が小さい値となった。また、アルミニウム電極層の厚
みが1.4mmの場合のモリブデン下地層厚みを変化さ
せた時の最大主応力の変化を図9に示した。この図で、
モリブデン下地層厚みが0.09〜0.1mm付近でプ
ロットが不連続に変化しているのは、モリブデン下地層
の軸方向のメッシュ数が低下し、精度が悪くなるためで
ある。また、この結果より、モリブデン下地層の厚み
は、最大主応力に敏感に影響を及ぼし、薄くなるほどこ
の軸方向の最大主応力が、低下することが判る。In order to examine the effect of the thickness of the molybdenum underlayer on the maximum principal stress, the change of the maximum principal stress when the thickness of the underlayer was changed and the thickness of the aluminum electrode layer was changed is shown in FIG. As is clear from FIG. 8, the change due to the thickness of the aluminum electrode layer is almost constant at about 1 mm or more, but the thinner the molybdenum underlayer, the smaller the maximum principal stress. FIG. 9 shows the change in the maximum principal stress when the thickness of the molybdenum underlayer was changed when the thickness of the aluminum electrode layer was 1.4 mm. In this figure,
The reason why the plot changes discontinuously when the thickness of the molybdenum underlayer is around 0.09 to 0.1 mm is that the number of meshes in the axial direction of the molybdenum underlayer is reduced and accuracy is deteriorated. The results also show that the thickness of the molybdenum underlayer sensitively affects the maximum principal stress, and that the principal principal stress in the axial direction decreases as the thickness decreases.
【0029】また、モリブデン下地層が均一な層になっ
ておらず、斑状に形成されている場合について、有限要
素法による解析を行った。つまり、図6の解析モデルに
おいて、モリブデン下地層に相当する界面部分のメッシ
ュを分割して応力分布を求めた。図10及び図11に示
すように、モリブデン下地層を4メッシュ毎及び1メッ
シュ毎(1メッシュ=0.1mm)に分割した結果、最
大主応力はそれぞれ59.3kgf/mm2 、26.3
kgf/mm2 であり、モリブデン下地層が均一な層と
なっているときの79.9kgf/mm2 に比較して小
さくなることが明らかとなった。The molybdenum underlayer was not formed into a uniform layer, but was formed in a patchy form. The analysis was performed by the finite element method. That is, in the analysis model of FIG. 6, the mesh of the interface portion corresponding to the molybdenum underlayer was divided to obtain the stress distribution. As shown in FIGS. 10 and 11, as a result of dividing the molybdenum underlayer every 4 meshes and every 1 mesh (1 mesh = 0.1 mm), the maximum principal stresses were 59.3 kgf / mm 2 and 26.3, respectively.
a kgf / mm 2, it was revealed that smaller compared to 79.9kgf / mm 2 when the Mo underlayer has a uniform layer.
【0030】以上の解析結果から、熱サイクルや急激な
温度変化により電極接合部に生じる最大主応力は、モリ
ブデン下地層を薄くするか、斑状の構造にすることによ
り、小さくできることが明らかとなった。From the above analysis results, it has been clarified that the maximum principal stress generated at the electrode junction due to a thermal cycle or a rapid temperature change can be reduced by making the molybdenum underlayer thin or having a mottled structure. .
【0031】実施例1 本実施例では、内燃力発電所の400℃程度の排ガスを
熱源とし、熱電素子材料としてBi2 Te3 系を、絶縁
性型枠として珪酸カルシウムの成型体からなる型枠を、
電極として空隙率8%のアルミニウム溶射電極を、モリ
ブデン下地層として厚み80μmのモリブデン溶射層を
それぞれ使用した。まず、珪酸カルシウムの成型体〔宇
部興産(株)製、登録商標;ウッディセラム〕を用い
て、図4及び図5に示す絶縁性型枠11を機械加工(N
Cルーター)によって作製した。珪酸カルシウムの成型
体は上述したように不燃、低熱伝導率、軽量、さらには
加工性が良いなどの特徴を有するため、熱電変換モジュ
ールの絶縁性型枠として好適である。ここで示す珪酸カ
ルシウムの成型体の製造方法は、例えば、特開昭62−
123053号公報7や特開平3−3635号公報に詳
しく記述されている。尚、図4(a)は、熱電変換モジ
ュールの絶縁性型枠11の低温面側の平面図であり、図
5(a)は、熱電変換モジュールの絶縁性型枠11の高
温面側の平面図である。Embodiment 1 In this embodiment, a mold made of a molded body of calcium silicate is used as a thermoelectric element material, using a Bi 2 Te 3 system as a thermoelectric element, and using an exhaust gas of about 400 ° C. from an internal combustion power plant as a heat source. To
An aluminum sprayed electrode having a porosity of 8% was used as an electrode, and a molybdenum sprayed layer having a thickness of 80 μm was used as a molybdenum base layer. First, an insulating mold 11 shown in FIGS. 4 and 5 was machined (N) by using a molded product of calcium silicate (registered trademark; Woody Serum, manufactured by Ube Industries, Ltd.).
C router). As described above, the molded body of calcium silicate has characteristics such as nonflammability, low thermal conductivity, light weight, and good workability, and thus is suitable as an insulating mold for a thermoelectric conversion module. The method for producing a molded product of calcium silicate shown here is described in, for example,
This is described in detail in JP-A-1233053 and JP-A-3-3635. FIG. 4A is a plan view of the insulating mold 11 of the thermoelectric conversion module on the low temperature side, and FIG. 5A is a plan view of the insulating mold 11 of the thermoelectric conversion module on the high temperature side. FIG.
【0032】次に、Bi2 Te3 系熱電素子を次のよう
にして作製した。まず、原子比でBi0.3 Sb1.7 Te
3 (p型)、Bi2 Te2.4 Se0.6 (n型)となるよ
うに各原料を秤量した。n型には、SbI3 を0.1重
量%添加し、キャリア密度の調整を行った。次に、これ
らの原料をガラス管に真空封入し、650℃で1時間溶
融撹拌し、Bi2 Te3 系熱電材料を作製した。これら
の熱電材料をスタンプミル及びボールミルで平均粒径1
0μm程度まで粉砕した後、390℃で12時間の還元
処理を行った。得られた熱電材料粉末をホットプレスを
用いて490℃で15分の焼結により熱電材料の焼結体
を得た。得られた焼結体を薄切り盤、超音波加工機など
を用いて円柱状の熱電素子(12φ×7mmh)を作製
した。Next, a Bi 2 Te 3 -based thermoelectric element was manufactured as follows. First, the atomic ratio of Bi 0.3 Sb 1.7 Te
Each raw material was weighed so as to be 3 (p-type) and Bi 2 Te 2.4 Se 0.6 (n-type). To the n-type, 0.1% by weight of SbI 3 was added to adjust the carrier density. Next, these materials were vacuum-sealed in a glass tube and melt-stirred at 650 ° C. for 1 hour to produce a Bi 2 Te 3 thermoelectric material. These thermoelectric materials were subjected to stamp mill and ball mill to obtain an average particle size of 1
After pulverizing to about 0 μm, a reduction treatment was performed at 390 ° C. for 12 hours. The obtained thermoelectric material powder was sintered at 490 ° C. for 15 minutes using a hot press to obtain a sintered body of the thermoelectric material. A columnar thermoelectric element (12φ × 7 mmh) was prepared from the obtained sintered body by using a slicer, an ultrasonic machine or the like.
【0033】次に、p型熱電素子14とn型熱電素子1
5をサンドブラスト処理し表面を粗面化した後、図3
(b)に示すように素子スペーサー18及び19を用い
て絶縁性型枠に交互に配列した。次いで、図3(c)に
示すように、熱電素子とアルミニウム電極の密着強度を
向上させるためプラズマ溶射により厚み80μmのモリ
ブデン下地層17を形成した後、その上にアルミニウム
溶射電極16を2mm程度形成した。この時、アルミニ
ウム溶射電極を構成するアルミニウム溶射層は、図2に
示すように緻密な構造をしていた。裏面のモリブデン下
地層とアルミニウム溶射電極の形成も同様にして行っ
た。ただし、素子スペーサーは裏面の溶射時には必要な
い。Next, the p-type thermoelectric element 14 and the n-type thermoelectric element 1
5 after sandblasting to roughen the surface.
As shown in (b), element spacers 18 and 19 were used to alternately arrange in an insulating mold. Next, as shown in FIG. 3C, a molybdenum base layer 17 having a thickness of 80 μm is formed by plasma spraying to improve the adhesion strength between the thermoelectric element and the aluminum electrode, and an aluminum sprayed electrode 16 is formed thereon by about 2 mm. did. At this time, the aluminum sprayed layer constituting the aluminum sprayed electrode had a dense structure as shown in FIG. The formation of the backside molybdenum underlayer and the aluminum sprayed electrode was performed in the same manner. However, the element spacer is not required at the time of thermal spraying of the back surface.
【0034】次に、図3(d)に示すように、絶縁性型
枠11の両面に形成されたアルミニウム溶射電極16を
平面研削盤を用いて不要な部分を研削し、熱電変換モジ
ュール10を作製した。この時、電極面の平面性を確保
するために、絶縁性型枠も僅かに削り込んだ。Next, as shown in FIG. 3D, unnecessary portions of the aluminum sprayed electrodes 16 formed on both surfaces of the insulating mold 11 are ground using a surface grinder, and the thermoelectric conversion module 10 is mounted. Produced. At this time, the insulating mold was slightly cut to secure the flatness of the electrode surface.
【0035】以上のようにして作製した熱電変換モジュ
ール(素子数79対、モジュール寸法150×300×
10mm)を電気ヒータと水冷板で挟み込み、低温面を
30℃、高温面を230℃に設定することにより200
℃の温度差を印加し、発電特性の評価を行った。測定に
は電子負荷装置を使用し、負荷抵抗は0.15Ωで測定
を行った。この時、1つの熱電変換モジュールで62.
1Wの最大電気出力を発生することができ、大規模な熱
源に対応した熱電変換モジュールを作製することができ
る。また、上述の条件で3ヵ月の連続試験を行ったが、
発電性能の低下は認められず信頼性においても優れたも
のであることが確認された。また、熱電変換モジュール
を5基作製した場合、内部抵抗の増加はなく、5基の熱
電変換モジュールの作製に成功し、歩留りが向上した。The thermoelectric conversion module fabricated as described above (79 pairs of elements, module size 150 × 300 ×
10 mm) is sandwiched between an electric heater and a water-cooled plate, and the low-temperature side is set at 30 ° C. and the high-temperature side is set at 230 ° C.
A temperature difference of ° C. was applied to evaluate power generation characteristics. An electronic load was used for the measurement, and the load resistance was measured at 0.15Ω. At this time, one thermoelectric conversion module performs 62.
A maximum electric output of 1 W can be generated, and a thermoelectric conversion module corresponding to a large-scale heat source can be manufactured. In addition, a three-month continuous test was conducted under the above conditions.
No reduction in power generation performance was observed, and it was confirmed that the reliability was excellent. In addition, when five thermoelectric conversion modules were manufactured, there was no increase in internal resistance, and five thermoelectric conversion modules were successfully manufactured, and the yield was improved.
【0036】実施例2 プラズマ溶射によりモリブデン下地層を形成する時、溶
射装置と被溶射物との間に網状のフィルターを用いて、
下地層を50〜150μm厚の斑状の構造(被覆率90
%)とする以外は実施例1と同様の方法で、熱電変換モ
ジュールを作製した。このようにして作製した熱電変換
モジュールは、1つで61Wの最大電気出力を発生する
ことができ、信頼性、歩留りにおいても実施例1の熱電
変換モジュールと同様に優れたものであった。Embodiment 2 When forming a molybdenum underlayer by plasma spraying, a mesh filter is used between the spraying apparatus and the object to be sprayed.
The underlayer is formed as a patchy structure having a thickness of 50 to 150 μm (coverage 90
%), Except that the thermoelectric conversion module was manufactured in the same manner as in Example 1. The thermoelectric conversion module manufactured in this manner was able to generate a maximum electric output of 61 W by itself, and was excellent in reliability and yield as in the thermoelectric conversion module of Example 1.
【0037】[0037]
【発明の効果】本発明の熱電変換モジュールは、従来よ
りはるかに空隙が少なく緻密で優れた電気伝導性を保持
した電極構造でありながら、熱電素子に発生する応力が
小さく、熱電素子が破壊されることがないため、製造上
歩留りが高く、且つ信頼性及び変換効率が高く、大型化
が容易な電極構造を有するものである。The thermoelectric conversion module of the present invention has an electrode structure with much smaller voids and a dense and excellent electrical conductivity, but the stress generated in the thermoelectric element is small and the thermoelectric element is destroyed. Therefore, the electrode structure has a high production yield, high reliability and high conversion efficiency, and can be easily enlarged.
【図1】図1は、本発明の熱電変換モジュールの一例を
示す断面図である。FIG. 1 is a sectional view showing an example of a thermoelectric conversion module of the present invention.
【図2】図2は、本発明の熱電変換モジュールの電極部
断面組織を示す電子顕微鏡写真である。FIG. 2 is an electron micrograph showing a cross-sectional structure of an electrode part of the thermoelectric conversion module of the present invention.
【図3】図3(a)、(b)、(c)及び(d)は、本
発明の熱電変換モジュールの製造方法の一例を示す工程
図である。3 (a), 3 (b), 3 (c) and 3 (d) are process diagrams showing an example of a method for manufacturing a thermoelectric conversion module according to the present invention.
【図4】図4(a)は、本発明の実施例で用いた絶縁性
型枠の低温面側の平面図であり、図4(b)は、そのA
−A’線断面図であり、図4(c)は、そのB−B’線
断面図である。FIG. 4A is a plan view of a low-temperature side of an insulating mold used in an embodiment of the present invention, and FIG.
FIG. 4C is a cross-sectional view taken along line BB ′ of FIG.
【図5】図5(a)は、図4に示す絶縁性型枠の高温面
側の平面図であり、図5(b)は、そのA−A’線断面
図であり、図5(c)は、そのB−B’線断面図であ
る。5 (a) is a plan view of the insulating mold shown in FIG. 4 on the high-temperature side, and FIG. 5 (b) is a cross-sectional view taken along the line AA 'of FIG. (c) is a sectional view taken along the line BB '.
【図6】図6は、有限要素法で用いた解析モデル図であ
る。FIG. 6 is an analysis model diagram used in the finite element method.
【図7】図7は、温度変化量−200℃の時の熱電素子
の応力分布図である。FIG. 7 is a stress distribution diagram of a thermoelectric element when a temperature change amount is −200 ° C.
【図8】図8は、最大主応力のアルミニウム溶射電極層
の厚みによる変化を示すグラフである。FIG. 8 is a graph showing a change in maximum principal stress depending on the thickness of an aluminum sprayed electrode layer.
【図9】図9は、最大主応力のモリブデン下地層の厚み
による変化を示すグラフである。FIG. 9 is a graph showing a change in maximum principal stress depending on the thickness of a molybdenum base layer.
【図10】図10は、モリブデン下地層を4メッシュ毎
に1メッシュの空隙を設けた場合の熱電素子の応力分布
図である。FIG. 10 is a stress distribution diagram of a thermoelectric element when a molybdenum base layer is provided with voids of one mesh for every four meshes.
【図11】図11は、モリブデン下地層を1メッシュ毎
に1メッシュの空隙を設けた場合の熱電素子の応力分布
図である。FIG. 11 is a stress distribution diagram of a thermoelectric element when a molybdenum underlayer is provided with a void of one mesh per mesh.
10 熱電変換モジュール 11 絶縁性型枠 12 貫通孔 13 電極用溝 14 p型熱電素子 15 n型熱電素子 16 アルミニウム溶射電極 17 モリブデン下地層 Reference Signs List 10 thermoelectric conversion module 11 insulating mold 12 through hole 13 electrode groove 14 p-type thermoelectric element 15 n-type thermoelectric element 16 aluminum sprayed electrode 17 molybdenum base layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長尾 圭吾 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 (72)発明者 長井 淳 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 (72)発明者 藤井 一宏 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 (72)発明者 井上 亨 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 鎌倉 宏樹 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 桜田 敏生 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keigo Nagao 5 Ube, Ube City, Yamaguchi Prefecture, 1978 Kogushi, Ube Research Institute (72) Inventor Atsushi Nagai 5 Ube Kobe, 1978 Ogushi, Ube City, Yamaguchi Prefecture, 5 Ube Industries Inside Ube Research Institute Co., Ltd. (72) Inventor Kazuhiro Fujii 1978 Kogushi, Obe, Ube City, Yamaguchi Prefecture Ube Industries, Ltd. Inside Ube Research Laboratories Co., Ltd. No. Kyushu Electric Power Co., Inc. (72) Inventor Hiroki Kamakura 2-1-2 Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka Prefecture Inside Kyushu Electric Power Co., Ltd. No. 82 Kyushu Electric Power Co., Inc.
Claims (5)
複数の電極用溝が設けられた電気的且つ熱的絶縁性型枠
に、p型熱電素子とn型熱電素子とを上記貫通孔に交互
に配列し、これらのp型熱電素子とn型熱電素子とを交
互に電気的に直列に接続する溶射電極を上記電極用溝に
埋設した熱電変換モジュールであって、上記溶射電極が
アルミニウム溶射電極であり、上記p型及びn型熱電素
子と上記溶射電極との界面に、下地層として30〜80
μmの厚みを有するモリブデンからなる溶射層を有する
ことを特徴とする熱電変換モジュール。A p-type thermoelectric element and an n-type thermoelectric element are penetrated through an electrically and thermally insulating form provided with a plurality of through-holes and a plurality of electrode grooves connecting between the through-holes. A thermoelectric conversion module in which the sprayed electrodes that are alternately arranged in the holes and that electrically connect the p-type thermoelectric elements and the n-type thermoelectric elements alternately and electrically in series are embedded in the electrode grooves. An aluminum sprayed electrode, at the interface between the p-type and n-type thermoelectric elements and the sprayed electrode, 30 to 80
A thermoelectric conversion module comprising a sprayed layer of molybdenum having a thickness of μm.
複数の電極用溝が設けられた電気的且つ熱的絶縁性型枠
に、p型熱電素子とn型熱電素子とを上記貫通孔に交互
に配列し、これらのp型熱電素子とn型熱電素子とを交
互に電気的に直列に接続する溶射電極を上記電極用溝に
埋設した熱電変換モジュールであって、上記溶射電極が
アルミニウム溶射電極であり、上記p型及びn型熱電素
子と上記溶射電極との界面に、下地層として上記p型及
びn型熱電素子上への被覆率が50〜95%となるモリ
ブデンからなる溶射層を有することを特徴とする熱電変
換モジュール。2. An electric and thermally insulating form provided with a plurality of through holes and a plurality of electrode grooves connecting between the through holes, penetrating the p-type thermoelectric element and the n-type thermoelectric element through the through hole. A thermoelectric conversion module in which the sprayed electrodes that are alternately arranged in the holes and that electrically connect the p-type thermoelectric elements and the n-type thermoelectric elements alternately and electrically in series are embedded in the electrode grooves. A thermal spraying of an aluminum sprayed electrode comprising molybdenum having a coverage of 50 to 95% on the p-type and n-type thermoelectric elements as an underlayer at an interface between the p-type and n-type thermoelectric elements and the sprayed electrode. A thermoelectric conversion module comprising a layer.
0%以下のアルミニウム溶射層からなる請求項1又は2
記載の熱電変換モジュール。3. An aluminum sprayed electrode having a porosity of 1
3. An aluminum sprayed layer of 0% or less.
The thermoelectric conversion module as described.
0.36cm2 以上のものである請求項1〜3の何れか
に記載の熱電変換モジュール。4. The thermoelectric conversion module according to claim 1, wherein the p-type and n-type thermoelectric elements have a cross-sectional area of 0.36 cm 2 or more.
数の貫通孔及び該貫通孔間を連結する複数の電極用溝が
設けられた電気的且つ熱的絶縁性型枠を作製する工程
と、上記型枠の上記貫通孔にp型熱電素子とn型熱電素
子とを交互に配列する工程と、上記の熱電素子を配列し
た型枠の両面に下地層として、30〜80μmの厚みを
有するモリブデンからなる溶射層又は上記の熱電素子上
への被覆率が50〜95%となるモリブデンからなる溶
射層を形成する工程と、該下地層の上にアルミニウム溶
射電極を形成する工程と、上記型枠の上記電極用溝以外
に形成された不要なアルミニウム溶射電極を除去する工
程とを含む熱電変換モジュールの製造方法。5. An electrically and thermally insulating formwork having a plurality of through-holes and a plurality of electrode grooves connecting between the through-holes, using an electrically and thermally insulating material. A step of alternately arranging p-type thermoelectric elements and n-type thermoelectric elements in the through-holes of the mold, and a thickness of 30 to 80 μm as a base layer on both surfaces of the mold in which the thermoelectric elements are arranged. A step of forming a sprayed layer of molybdenum or a sprayed layer of molybdenum having a coverage of 50 to 95% on the thermoelectric element, and a step of forming an aluminum sprayed electrode on the underlayer. Removing unnecessary aluminum sprayed electrodes formed in portions other than the electrode grooves of the formwork.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000038324A JP2001230457A (en) | 2000-02-16 | 2000-02-16 | Thermoelectric conversion module and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000038324A JP2001230457A (en) | 2000-02-16 | 2000-02-16 | Thermoelectric conversion module and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001230457A true JP2001230457A (en) | 2001-08-24 |
Family
ID=18562082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000038324A Pending JP2001230457A (en) | 2000-02-16 | 2000-02-16 | Thermoelectric conversion module and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001230457A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040021720A (en) * | 2002-08-29 | 2004-03-11 | 강장호 | Thermoelectric module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09243201A (en) * | 1996-03-08 | 1997-09-19 | Ngk Insulators Ltd | Thermoelectric converter and its manufacture |
JPH1041553A (en) * | 1996-07-26 | 1998-02-13 | Technova:Kk | Thermoelectric semiconductor and its manufacture |
JPH10209510A (en) * | 1997-01-24 | 1998-08-07 | Ngk Insulators Ltd | Method for manufacturing thermoelectric transducer and thermoelectic transducer |
JPH10209509A (en) * | 1997-01-24 | 1998-08-07 | Ngk Insulators Ltd | Thermoelectric transducer and its manufacture |
JPH11340526A (en) * | 1998-05-22 | 1999-12-10 | Ube Ind Ltd | Thermoelectric conversion module and its manufacture |
-
2000
- 2000-02-16 JP JP2000038324A patent/JP2001230457A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09243201A (en) * | 1996-03-08 | 1997-09-19 | Ngk Insulators Ltd | Thermoelectric converter and its manufacture |
JPH1041553A (en) * | 1996-07-26 | 1998-02-13 | Technova:Kk | Thermoelectric semiconductor and its manufacture |
JPH10209510A (en) * | 1997-01-24 | 1998-08-07 | Ngk Insulators Ltd | Method for manufacturing thermoelectric transducer and thermoelectic transducer |
JPH10209509A (en) * | 1997-01-24 | 1998-08-07 | Ngk Insulators Ltd | Thermoelectric transducer and its manufacture |
JPH11340526A (en) * | 1998-05-22 | 1999-12-10 | Ube Ind Ltd | Thermoelectric conversion module and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040021720A (en) * | 2002-08-29 | 2004-03-11 | 강장호 | Thermoelectric module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Thermoelectric devices for power generation: recent progress and future challenges | |
JP5499317B2 (en) | Thermoelectric conversion element and thermoelectric conversion module | |
US7321157B2 (en) | CoSb3-based thermoelectric device fabrication method | |
EP1835551A1 (en) | Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system | |
JP5212937B2 (en) | Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element | |
CN202651208U (en) | Flexible miniature thermoelectric generator | |
US20100193001A1 (en) | Thermoelectric conversion module, and heat exchanger, thermoelectric temperature control device and thermoelectric generator employing the same | |
JP5598152B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP2006156993A (en) | Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system | |
JP2007103580A (en) | Thermoelectric transducer and method of manufacturing same | |
JP2003133600A (en) | Thermoelectric conversion member and manufacturing method therefor | |
CN102832332A (en) | Flexible micro thermoelectric generator and manufacturing method thereof | |
JP2012064913A (en) | Asymmetric thermoelectric module and manufacturing method of the same | |
Park et al. | Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer | |
JPH0555640A (en) | Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same | |
JP4110811B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP2009170438A (en) | Manufacturing method of thermoelectric conversion unit | |
JP2004193209A (en) | Thermoelectric conversion module and method of manufacturing the same | |
JP2009081178A (en) | Method of manufacturing thermoelectric conversion module | |
JP4225662B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP2001230457A (en) | Thermoelectric conversion module and its manufacturing method | |
KR20130073554A (en) | Thermoelectric module and manufacturing method for theremoelectric module | |
JP2016157843A (en) | Thermoelectric conversion device | |
JP4056129B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP2011134940A (en) | Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081104 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090310 |