KR20030093051A - Method Of Fabricating Lithium Ion Battery - Google Patents

Method Of Fabricating Lithium Ion Battery Download PDF

Info

Publication number
KR20030093051A
KR20030093051A KR1020020030929A KR20020030929A KR20030093051A KR 20030093051 A KR20030093051 A KR 20030093051A KR 1020020030929 A KR1020020030929 A KR 1020020030929A KR 20020030929 A KR20020030929 A KR 20020030929A KR 20030093051 A KR20030093051 A KR 20030093051A
Authority
KR
South Korea
Prior art keywords
lithium ion
electrolyte
ion battery
precursor
electrode layer
Prior art date
Application number
KR1020020030929A
Other languages
Korean (ko)
Other versions
KR100461876B1 (en
Inventor
김현수
신정한
김성일
최관영
문성인
김상필
김영재
Original Assignee
한국전기연구원
새한에너테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원, 새한에너테크 주식회사 filed Critical 한국전기연구원
Priority to KR10-2002-0030929A priority Critical patent/KR100461876B1/en
Publication of KR20030093051A publication Critical patent/KR20030093051A/en
Application granted granted Critical
Publication of KR100461876B1 publication Critical patent/KR100461876B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A method for preparing a lithium ion battery is provided, to obtain a lithium ion battery employing a gel electrolyte having a high voltage, a high energy, an excellent cycle characteristic and physical properties to be controlled easily. CONSTITUTION: The method comprises the steps of inserting a precursor containing an electrolyte solution into an electrode laminated structure comprising a positive electrode layer(2) and a negative electrode layer(4) which contain an active material capable inserting or taking out a lithium ion and are placed on a positive electrode current collector(1) and a negative electrode current collector(5), respectively and a separator(3) placed between the positive electrode layer and the negative electrode layer; and thermal polymerizing the precursor to prepare a gel-phase electrolyte. Preferably the electrode laminated structure is inserted into an aluminum laminate film(6), a precursor containing any one between a reactive monomer and a macromer and an electrolyte solution are inserted, and the precursor is thermally polymerized.

Description

리튬이온전지의 제조방법 {Method Of Fabricating Lithium Ion Battery}Manufacturing method of lithium ion battery {Method Of Fabricating Lithium Ion Battery}

본 발명은 리튬이온전지의 제조방법에 관한 것으로, 보다 상세하게는 겔폴리머전해질을 사용한 리튬이온전지의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a lithium ion battery, and more particularly, to a method for manufacturing a lithium ion battery using a gel polymer electrolyte.

최근, 휴대전화, 노트북 컴퓨터 등 기기의 소형화 및 경량화에 따른 전지의 고성능화가 요구되고 있다. 특히, 기기 본체의 소형화에 대응하기 위하여 전지의 소형화와 용량의 동시 확보, 즉 고에너지밀도화가 요구된다. 리튬이온전지는 고에너지밀도가 실현가능하고, 고전압을 갖고 있어서 연구개발이 활발하게 진행되어 왔다. 특히, 겔폴리머전지는 전해액의 누액이 없을 뿐만 아니라 에너지밀도도 높은 2차전지로서, 다양한 휴대기기에서 에너지원으로 사용이 가능하다.In recent years, there has been a demand for higher performance of batteries due to miniaturization and weight reduction of devices such as mobile phones and notebook computers. In particular, in order to cope with the miniaturization of the main body of the apparatus, miniaturization of the battery and securing of capacity at the same time, that is, high energy density are required. Lithium ion batteries have high energy density and have high voltage, so that research and development has been actively conducted. In particular, the gel polymer battery is a secondary battery having high energy density as well as no electrolyte leakage, and can be used as an energy source in various portable devices.

이러한 리튬이온전지는 리튬이온을 삽입·탈삽입이 가능한 정극과 부극, 그리고 리튬염과 비수계 전해질로 구성되어 있다. 비수계 전해액질을 사용하는 이유는 리튬이 물에 대하여 반응성이 높아서 안정하게 존재할 수 없기 때문이다. 따라서, 리튬전지에는 비수계 전해액이 사용된다. 그러나, 비수계 전해액의 대부분은 유기화합물 액체로 가연성, 악취를 갖고 있는 것이 많고, 누액이나 발화의 위험성도 갖고 있다. 이 때문에 최근에는 안전성을 향상시키기 위하여 비수계 전해질을 겔상 전해질로 대체한 전지가 개발되고 있다. 겔상 전해질에서는 이온전도도 등의 전해액 특성을 유지하면서, 유동성은 현저하게 저하시켜 형상유지성이 있다. 또한, 휘발속도도 억제된다. 따라서 누액이나 발화의 위험성이 낮아진다.The lithium ion battery is composed of a positive electrode, a negative electrode, a lithium salt and a non-aqueous electrolyte capable of inserting and removing lithium ions. The reason why non-aqueous electrolyte is used is that lithium cannot be stably present because of its high reactivity with water. Therefore, a non-aqueous electrolyte is used for a lithium battery. However, most of the non-aqueous electrolytes are organic compound liquids, which are flammable and odorous, and have a risk of leakage and ignition. For this reason, in recent years, in order to improve safety, a battery in which a non-aqueous electrolyte is replaced with a gel electrolyte has been developed. In a gel electrolyte, fluidity | liquidity falls remarkably and maintains shape, maintaining electrolyte solution characteristics, such as ionic conductivity. In addition, the volatilization rate is also suppressed. Therefore, the risk of leakage or fire is lowered.

일반적으로 리튬이온전지에서 정극 또는 부극은 알루미늄 포일(Al Foil) 또는 구리 포일(Cu Foil)과 같은 집전체 위에 정극활물질 또는 부극활물질, 전해질, 도전재료 및 결합제 등을 함유하는 혼합물을 도포하여 제조한다. 겔상 전해질은 겔폴리머 필름을 제조하고 전극과 적층한 후에 액체전해액을 주입하는 방법과 전극군을 적층한 후에 반응성 모노머, 중합 개시제, 전해액을 혼합한 전구체를 주입하고 열중합시키는 방법이 주로 사용되고 있다.In general, in a lithium ion battery, a positive electrode or a negative electrode is prepared by applying a mixture containing a positive electrode active material or a negative electrode active material, an electrolyte, a conductive material, and a binder on a current collector such as aluminum foil (Al foil) or copper foil (Cu Foil). . As the gel electrolyte, a method of preparing a gel polymer film, laminating with an electrode, injecting a liquid electrolyte solution, and laminating an electrode group, and then injecting and thermally polymerizing a precursor mixed with a reactive monomer, a polymerization initiator, and an electrolyte solution are used.

그러나, 상기의 방법 중에서 겔상 전해액을 제조할 때에 반응성 모노머를 단독으로 이용할 때에는 겔의 물성조절이 용이하지 않은 것이 문제점이다.However, in the above method, when the reactive monomer is used alone when preparing the gel electrolyte, it is not easy to control the physical properties of the gel.

본 발명은 상기한 종래의 문제점을 해결하기 위해 안출된 것으로, 고전압 및 고에너지를 가지며 사이클 특성이 우수하면서도 겔의 물성조절이 용이한 겔폴리머전해질을 사용한 리튬이온전지를 제조하는 방법을 제공하고자 함에 그 목적이 있다.The present invention has been made to solve the above-described problems, to provide a method for producing a lithium ion battery using a gel polymer electrolyte having a high voltage and high energy, excellent cycle characteristics and easy control of the physical properties of the gel Its purpose is.

본 발명의 발명자들은 위에서 서술한 고전압, 고에너지밀도를 갖고, 사이클특성이 우수하고 누액 등의 문제를 최소화한 겔폴리머전해질을 이용한 리튬이온전지를 얻기 위하여 예의 검토한 결과, 반응성 모노머 또는 마크로모노머 (Macromonomer)와 반응성 개질제(reative modifier)를 이용하여 그 혼합비율을 변화시킴에 의해 다양한 물성을 얻을 수 있다는 것을 발견하였다.The inventors of the present invention intensively studied to obtain a lithium ion battery using a gel polymer electrolyte having a high voltage, a high energy density, excellent cycle characteristics, and minimizing problems such as leakage, as a result of reactive monomers or macromonomers ( It has been found that various properties can be obtained by changing the mixing ratio using a macromonomer and a reactive modifier.

구체적으로는 정극 및 부극이 리튬이온의 삽입·탈삽입이 가능한 활물질을 함유하는 층을 집접체 위에 도포·압착되고, 양극, 분리막, 음극 순으로 적층한 후에 알루미늄 라미네이트 필름(Al laminate film)에 삽입한다. 그 후에는 액체 전해액, 반응성 모노머 또는 매크로모노머, 반응성 개질제, 중합 개시제 등을 혼합한 전구체를 주입하고 진공 봉입한다. 그 후에 60-80℃의 항온 챔버에서 최대 1시간 30분 정도까지 유지하여 중합시켜 겔폴리머전해질을 제조한다.Specifically, the positive electrode and the negative electrode are coated and pressed on the collector with a layer containing an active material capable of inserting and removing lithium ions, and laminated in the order of the positive electrode, the separator, and the negative electrode, and then inserted into an aluminum laminate film. do. Thereafter, a precursor mixed with a liquid electrolyte solution, a reactive monomer or macromonomer, a reactive modifier, a polymerization initiator, and the like is injected and vacuum-sealed. Thereafter, the gel polymer electrolyte is prepared by maintaining the polymerization in a constant temperature chamber at 60-80 ° C. for up to 1 hour 30 minutes.

도 1a~도 1c는 본 발명에 따른 리튬이온전지의 제조공정을 설명하기 위한 공정 단면도,1A to 1C are cross-sectional views illustrating a manufacturing process of a lithium ion battery according to the present invention;

도 2는 도 1c의 적층구조를 알루미늄 라미네이트 필름에 삽입한 상태를 도시한 도면,2 is a view showing a state in which the laminated structure of Figure 1c is inserted into an aluminum laminate film,

도 3은 폴리우레탄아크릴레이트(Polyurethaneacrylate)계 겔폴리머전해질의 사이클 전압전류도(cyclic voltammogram)를 도시한 도면,3 is a diagram illustrating a cyclic voltammogram of a polyurethane acrylate gel polymer electrolyte,

도 4는 겔폴리머전해질의 온도에 따른 이온전도도 변화를 측정한 도면,4 is a view measuring the change in ion conductivity according to the temperature of the gel polymer electrolyte,

도 5는 반응성 개질제의 첨가량에 따른 이온전도도의 변화를 측정한 도면,5 is a view measuring the change in the ionic conductivity according to the addition amount of the reactive modifier,

도 6은 겔폴리머전해질을 사용한 리튬이온전지의 방전율별 용량을 측정한 도면,6 is a view measuring the capacity of each discharge rate of a lithium ion battery using a gel polymer electrolyte,

도 7은 겔폴리머전해질을 사용한 리윰이온전지의 온도에 따른 용량을 측정한 도면이다.7 is a view of measuring the capacity according to the temperature of the lithium ion battery using the gel polymer electrolyte.

※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing

1 : 양극집전체 2 : 양극1: positive electrode current collector 2: positive electrode

3 : 분리막 4 : 음극3: separator 4: cathode

5 : 음극집전체 6 : 외장재(알루미늄라미네이트 필름)5: negative electrode current collector 6: exterior material (aluminum laminate film)

이하, 본 발명의 실시예에 따른 리튬이온전지 및 그 제조방법에 대하여 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, a lithium ion battery according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the accompanying drawings.

먼저, 도 1a에 도시한 바와 같이, 양극활물질로는 LiCoO2, 도전재로는 Super P black, 분산제로는 PVdF를 91 : 6 : 3 (wt%) 비율로 혼합하여, 알루미늄 포일(Al foil) 또는 구리 포일(Cu foil) 집전체(1) 위에 도포한 후에 건조, 압착하여 양극(2)을 제조하였다. 상기 양극활물질은 리튬이온의 삽입·탈삽입이 가능한 천이금속산화물, 리튬과 천이금속의 복합산화물 등을 사용할 수 있다.First, as illustrated in FIG. 1A, LiCoO 2 as a cathode active material, Super P black as a conductive material, and PVdF as a dispersant are mixed at a ratio of 91: 6: 3 (wt%) to form an aluminum foil. Or after coating on a copper foil (Cu foil) collector (1), and dried, compressed to prepare a positive electrode (2). The positive electrode active material may be a transition metal oxide capable of inserting and deintercalating lithium ions, a composite oxide of lithium and a transition metal, and the like.

또, 도 1b에 도시한 바와 같이, 음극활물질로는 MCF(Milled Carbon Fiber), 도전재로는 Super P black, 분산제로는 PVdF를 90 : 2 : 8 (wt%) 비율로 혼합하여,구리 포일(Cu foil) 집전체(5) 위에 도포한 후에 건조, 압착하여 음극(4)을 제조하였다. 상기 음극활물질은 리튬이온의 삽입·탈삽입이 가능한 흑연이나 탄소계를 사용한다.In addition, as shown in Figure 1b, by mixing MCF (Milled Carbon Fiber) as a negative electrode active material, Super P black as a conductive material, PVdF as a dispersant in a ratio of 90: 2: 8 (wt%), copper foil (Cu foil) After coating on the current collector (5), and dried, compressed to prepare a negative electrode (4). As the negative electrode active material, graphite or carbon-based material capable of inserting and removing lithium ions is used.

그후, 상기 제조한 양극 집전체(1)와 양극(2)의 양극부와, 상기 제조한 음극 집전체(5)와 양극(4)의 음극부를, 도 1c에 도시한 바와 같이 양극(2)과 음극(4)이 마주보게 위치시키고 그 사이에 분리막(Polyethylene 또는 Polypropylene)(3)을 개재시키는 방식으로 적층한 후에, 도 2에 도시한 바와 같이 상기 적층구조를 전지의 외장재로서 알루미늄 라미네이트 필름(Al laminate film)(6)에 삽입한다. 여기서, 알루미늄 라미네이트 필름(6)은 PET 및 Nylon 등으로 된 플라스틱층과 알루미늄층 및 접착제층으로 이루어져 있다.After that, the positive electrode portions of the positive electrode current collector 1 and the positive electrode 2 prepared above, and the negative electrode portions of the negative electrode current collector 5 and the positive electrode 4 prepared above, are shown in FIG. 1C. After the cathode 4 and the cathode 4 face each other and are laminated in such a manner as to sandwich a separator (Polyethylene or Polypropylene) 3 therebetween, the laminated structure is used as an exterior material of a battery as shown in FIG. 2. Al laminate film) (6). Here, the aluminum laminate film 6 is composed of a plastic layer made of PET, Nylon, and the like, an aluminum layer, and an adhesive layer.

겔폴리머전해질을 제조하기 위한 전구체로는 액체전해액, 반응성 매크로머, 반응성 개질제, 중합 개시제로 구성되었다. 구체적으로 전해액으로는 1M LiPF6/ EC+DEC (5 + 5 vol%), 매크로머로는 3관능기를 갖는 우레탄아크릴레이트 (Urethaneacrylate), 반응성 개질제로는 HDDA(Hexanediol diacrylate), 중합 개시제로는 BPO(Benzoyl Peroxide)를 사용하였다. 전구체에서 액체전해액과 경화성 혼합물(매크로머 + 반응성 개질제 + 중합 개시제)의 혼합비율은 95:5 (vol%)로 하였다.Precursors for preparing a gel polymer electrolyte consisted of a liquid electrolyte, a reactive macromer, a reactive modifier, and a polymerization initiator. Specifically, 1M LiPF 6 / EC + DEC (5 + 5 vol%) as an electrolyte, urethaneacrylate having a trifunctional group as a macromer, HDDA (Hexanediol diacrylate) as a reactive modifier, and BPO (as polymerization initiator). Benzoyl Peroxide) was used. The mixing ratio of the liquid electrolyte and the curable mixture (macromer + reactive modifier + polymerization initiator) in the precursor was set to 95: 5 (vol%).

전구체를 전극이 삽입된 알루미늄 라미네이트 필름(6) 내부로 일정액 주입한 후에 진공상태에서 상기 알루미늄 라미네이트 필름(6)의 밀봉부(7)에 일정 압력과 열을 가하여 봉입한다. 그 후에 약 3일간 상온에서 보관하여 전구체가 분리막과 전극내부로 충분히 함침된 후에 중합을 실시한다. 중합은 온도가 일정하게 유지되는 항온 챔버를 이용하였고, 온도는 80℃에서 60분간 실시하였다.After the precursor is injected into the aluminum laminate film 6 into which the electrode is inserted, a predetermined pressure and heat are applied to the sealing portion 7 of the aluminum laminate film 6 under vacuum. After that, the mixture is stored at room temperature for about 3 days, and the polymerization is performed after the precursor is sufficiently impregnated into the separator and the electrode. The polymerization was performed using a constant temperature chamber in which the temperature was kept constant, and the temperature was performed at 80 ° C. for 60 minutes.

도 3에는 폴리우레탄아크릴레이트(polyurethaneacrylate)와 HDDA의 함량을 1:1 vol%로 하고, 이를 액체전해액에 5 vol% 첨가한 겔폴리머전해질의 사이클 전압전류측정분석(Cyclic voltammetry)의 결과를 나타내고 있다. 동 도면에서 알 수 있듯이 약 1 V에서 4.5 V vs. Li/Li+까지의 전압범위에서 전류피크가 관찰되지 않고 있다. 이는 전기화학적으로 안정함을 나타내는 것이다.FIG. 3 shows the results of Cyclic Voltammetry of a Gel Polymer Electrolyte in which the content of polyurethane acrylate and HDDA is 1: 1 vol% and 5 vol% is added to the liquid electrolyte. . As can be seen from the figure, 4.5 V vs. No current peak is observed in the voltage range up to Li / Li + . This indicates that it is electrochemically stable.

도 4에는 겔폴리머전해질의 온도에 따른 이온전도도를 나타낸 것이다. 액체전해액의 경우 상온에서의 이온전도도는 약 8×10-3S/cm이고, 폴리우레탄아크릴레이트계 겔폴리머전해질에서는 약 4×10-3S/cm을 나타낸다. 이는 종래의 겔폴리머전해질보다 이온전도도가 높은 값으로, 고온 및 저온에서의 방전특성이 우수할 것이 예상된다.4 shows the ion conductivity according to the temperature of the gel polymer electrolyte. In the case of the liquid electrolyte, the ion conductivity at room temperature is about 8 × 10 −3 S / cm, and in the polyurethane acrylate gel polymer electrolyte, it is about 4 × 10 −3 S / cm. This value is higher than the conventional gel polymer electrolyte, and is expected to have excellent discharge characteristics at high and low temperatures.

도 5에는 겔폴리머전해질에서 HDDA의 함량을 변화시켰을 때의 상온 이온전도도를 나타낸 것이다. HDDA의 함량이 높으면 기계적강도는 더 증가할 것으로 예상된다. HDDA의 함량이 200phr까지는 이온전도도가 증가하다가, 300phr에서는 오히려 약간 감소하였다.Figure 5 shows the room temperature ion conductivity when the content of HDDA in the gel polymer electrolyte. If the HDDA content is high, the mechanical strength is expected to increase further. The ion conductivity increased up to 200 phr of HDDA, but slightly decreased at 300 phr.

도 6에는 겔폴리머전해질을 이용한 리튬이온전지의 방전율에 따른 용량특성을 나타낸 것이다. 약 5vol%의 반응성 혼합물을 함유한 리튬이온전지의 0.2C에서의 용량은 약 70mAh이다. 이를 기준으로 했을 때 1.0C 방전율에서의 용량은 약 55mAh로 약 80%를 나타내었다.Figure 6 shows the capacity characteristics according to the discharge rate of the lithium ion battery using a gel polymer electrolyte. The capacity at 0.2 C of a lithium ion battery containing about 5 vol% of a reactive mixture is about 70 mAh. Based on this, the capacity at the 1.0C discharge rate was about 55 mAh, representing about 80%.

도 7에는 겔폴리머전해질을 이용한 리튬이온전지의 방전율에 따른 용량특성을 나타낸 것이다. 약 5vol%의 반응성 혼합물을 함유한 리튬2차전지의 20℃에서의 용량은 약 650mAh이다. 이를 기준으로 했을 때 -10℃에서의 용량은 약 550mAh로 약 85%를 나타내었다.Figure 7 shows the capacity characteristics according to the discharge rate of a lithium ion battery using a gel polymer electrolyte. The capacity at 20 ° C. of a lithium secondary battery containing about 5 vol% of a reactive mixture is about 650 mAh. Based on this, the capacity at -10 ° C was about 550mAh, representing about 85%.

한편, 본 발명은 전술한 전형적인 바람직한 실시예들에만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 개량, 변경, 대체 또는 부가하여 실시할 수 있는 것임은 당해 기술분야에 통상의 지식을 가진 자라면 용이하게 이해할 수 있을 것이다. 이러한 개량, 변경, 대체 또는 부가에 의한 실시가 이하의 첨부된 특허청구범위의 범주에 속하는 것이라면 그 기술사상 역시 본 발명에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the above-described typical preferred embodiments, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions are common in the art Those who have knowledge will easily understand. If the implementation by such improvement, change, replacement or addition falls within the scope of the appended claims, the technical idea should also be regarded as belonging to the present invention.

이상 상세히 설명한 바와 같이 본 발명에 따르면, 겔폴리머전해질의 이온전도도는 약 10-3S/cm 대로 높으며, 전해액이 겔상으로 이루어져 누액의 염려가 없다는 특징을 갖는다. 또한, 반응성 마크로머와 반응성 개질제의 혼합비를 조절함으로써, 이온전도도나 기계적 특성 등의 물성을 변화시킬 수 있다. 뿐만 아니라 생산공정의 단순화로 생산성이 높다는 효과도 있다.As described in detail above, according to the present invention, the ion conductivity of the gel polymer electrolyte is as high as about 10 −3 S / cm, and the electrolyte solution is formed in a gel form, so that there is no fear of leakage. In addition, by adjusting the mixing ratio of the reactive macromer and the reactive modifier, physical properties such as ion conductivity and mechanical properties can be changed. In addition, the productivity is high due to the simplification of the production process.

Claims (6)

리튬이온을 삽입·탈삽입할 수 있는 활물질을 함유하는 양극층 및 음극층이 각각 양극집전체 및 음극집전체 위에 놓여 있고 상기 양극층과 음극층 사이에 분리막이 개재되어 있는 전극 적층구조에, 전해액을 포함하는 전구체를 주입한 후에 열중합시켜 겔상 전해질로 만드는 것을 특징으로 하는 리튬이온전지의 제조방법.An electrolyte solution in an electrode laminated structure in which a positive electrode layer and a negative electrode layer containing an active material capable of inserting and removing lithium ions are placed on a positive electrode current collector and a negative electrode current collector, respectively, and a separator is interposed between the positive electrode layer and the negative electrode layer. Method of producing a lithium ion battery, characterized in that the precursor is injected into a gel electrolyte after thermal polymerization. 제 1항에 있어서,The method of claim 1, 상기 전극 적층구조를 알루미늄 라미네이트 필름에 삽입하고, 반응성 모노머 와 매크로머 중의 어느 하나와 전해액를 포함한 전구체를 주입한 후, 가열하고 중합시켜 고분자화하여 겔폴리머전해질을 만드는 것을 특징으로 하는 리튬이온전지의 제조방법.The electrode laminated structure is inserted into an aluminum laminate film, and any one of a reactive monomer, a macromer, and a precursor including an electrolyte solution are injected, followed by heating, polymerization to polymerize to produce a gel polymer electrolyte. Way. 제 2항에 있어서,The method of claim 2, 상기 전구체에는 반응성 모노머 또는 매크로머, 그리고 반응성 개질제를 첨가하여, 이들의 조성비를 변화시켜 상기 겔폴리머전해질의 물성을 변화시키는 것을 특징으로 하는 리튬이온전지의 제조방법.Reactive monomers or macromers, and reactive modifiers are added to the precursor to change the composition ratio thereof to change the physical properties of the gel polymer electrolyte. 제 3항에 있어서,The method of claim 3, 상기 매크로머로는 이중결합의 수가 2개 이상인 폴리우레탄아크릴레이트(Polyurethaneacrylate)를 사용하며, 상기 반응성 개질제로는 HDDA(Hexanediol diacrylate)와 트리에틸렌글리콜디메타크릴레이트(Triethyleneglycoldimehta- crylate), 테트라에틸렌글리콜디아크릴레이트(Tetraethyleneglycoldiacrylate) 중의 어느 하나를 사용하는 것을 특징으로 하는 리튬이온전지의 제조방법.The macromer is a polyurethane acrylate (Polyurethaneacrylate) having two or more double bonds, and the reactive modifiers are HDDA (Hexanediol diacrylate) and triethylene glycol dimethacrylate (Triethyleneglycoldimehta-crylate), tetraethylene glycol di Method for producing a lithium ion battery, characterized in that using any one of acrylate (Tetraethyleneglycoldiacrylate). 제 3항에 있어서,The method of claim 3, 상기 전구체는 액체전해액과 경화성 혼합물로 이루어지며, 그 비율이 85:15 (vol%)에서 97:3 (vol%)까지의 범위에 있는 것을 특징으로 하는 리튬이온전지의 제조방법.The precursor is composed of a liquid electrolyte and a curable mixture, the ratio of the lithium ion battery, characterized in that the ratio is in the range from 85:15 (vol%) to 97: 3 (vol%). 제 5항에 있어서,The method of claim 5, 상기 경화성 혼합물은 매크로머와 반응성 개질제 및 중합 개시제를 포함하는 것을 특징으로 하는 리튬이온전지의 제조방법.The curable mixture comprises a macromer, a reactive modifier and a polymerization initiator.
KR10-2002-0030929A 2002-06-01 2002-06-01 Method Of Fabricating Lithium Ion Battery KR100461876B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0030929A KR100461876B1 (en) 2002-06-01 2002-06-01 Method Of Fabricating Lithium Ion Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0030929A KR100461876B1 (en) 2002-06-01 2002-06-01 Method Of Fabricating Lithium Ion Battery

Publications (2)

Publication Number Publication Date
KR20030093051A true KR20030093051A (en) 2003-12-06
KR100461876B1 KR100461876B1 (en) 2004-12-14

Family

ID=32385565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0030929A KR100461876B1 (en) 2002-06-01 2002-06-01 Method Of Fabricating Lithium Ion Battery

Country Status (1)

Country Link
KR (1) KR100461876B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101005319B1 (en) * 2008-07-10 2011-01-05 변종걸 Water leakage panel device for ground protection of earths wall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954682B2 (en) * 1997-02-27 2007-08-08 三洋電機株式会社 Method for producing polymer solid electrolyte battery
US6277514B1 (en) * 1998-12-17 2001-08-21 Moltech Corporation Protective coating for separators for electrochemical cells
JP2001273929A (en) * 2000-03-27 2001-10-05 Sanyo Electric Co Ltd Polymer battery and its manufacturing method
JP2001332302A (en) * 2000-05-22 2001-11-30 Toshiba Battery Co Ltd Gel electrolyte precursor, nonaqueous secondary cell and method of manufacturing nonaqueous secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101005319B1 (en) * 2008-07-10 2011-01-05 변종걸 Water leakage panel device for ground protection of earths wall

Also Published As

Publication number Publication date
KR100461876B1 (en) 2004-12-14

Similar Documents

Publication Publication Date Title
CN110380111B (en) Dual in-situ polymerization preparation method of solid-state battery containing solid-state electrolyte
US7883554B2 (en) Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
KR100833808B1 (en) Polymer electrolyte battery and method of producing same
JP5262175B2 (en) Negative electrode and secondary battery
JP4193481B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US7387852B2 (en) Polymer electrolyte and lithium battery using the same
CN109873208B (en) Gel polymer electrolyte secondary battery and preparation thereof
CN114335716A (en) In-situ polymerization solid-state battery with electrolyte of multilayer structure and preparation method thereof
KR100525278B1 (en) Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
CN114292484B (en) Interpenetrating network structure layer, in-situ preparation method and application thereof
CN113130979A (en) Solid electrolyte, preparation method thereof and solid battery
JP4507345B2 (en) Method for producing lithium polymer secondary battery
CN110611120A (en) Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same
KR20080052175A (en) Coating composition for electrode and lithium ion battery obtained from the same
JP2001023695A (en) Battery
KR100461876B1 (en) Method Of Fabricating Lithium Ion Battery
CN115986205A (en) Functional quasi-solid polymer electrolyte and preparation method and application thereof
JP2023512820A (en) Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
CN114512718A (en) Composite solid electrolyte, preparation method thereof and high-performance all-solid-state battery
KR20230018141A (en) Composition for solid electrolyte and methods for manufacturing all-solid state secondary battery using the same
JPH11214038A (en) Gel high polymer solid electrolyte battery and manufacture thereof
JP2004095333A (en) Laminate film for battery and non-aqueous electrolyte secondary battery
KR100382069B1 (en) Manufacturing method for lithium secondary battery
KR100424256B1 (en) Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process
KR100467695B1 (en) Electrolyte matrix composition comprising activator for polymerizing monomer based on acrylate having multifunctionality and lithium battery employing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141208

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee