KR20030089115A - biosensor for detecting phenolic compounds and the manufacturing method thereof - Google Patents

biosensor for detecting phenolic compounds and the manufacturing method thereof Download PDF

Info

Publication number
KR20030089115A
KR20030089115A KR1020020027161A KR20020027161A KR20030089115A KR 20030089115 A KR20030089115 A KR 20030089115A KR 1020020027161 A KR1020020027161 A KR 1020020027161A KR 20020027161 A KR20020027161 A KR 20020027161A KR 20030089115 A KR20030089115 A KR 20030089115A
Authority
KR
South Korea
Prior art keywords
gene
biosensor
phenol
phenolic compound
nucleic acid
Prior art date
Application number
KR1020020027161A
Other languages
Korean (ko)
Other versions
KR100464068B1 (en
Inventor
신혜자
박후휘
박선미
임운기
Original Assignee
학교법인 동서학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 동서학원 filed Critical 학교법인 동서학원
Priority to KR10-2002-0027161A priority Critical patent/KR100464068B1/en
Publication of KR20030089115A publication Critical patent/KR20030089115A/en
Application granted granted Critical
Publication of KR100464068B1 publication Critical patent/KR100464068B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A biosensor for detection of phenol compounds and a preparation method thereof are provided, thereby rapidly detecting phenol compounds without pretreatment regardless of time and place. CONSTITUTION: A biosensor for detection of phenol compounds comprises a first nucleic acid molecule containing the nucleotide sequence encoding a reporter molecule; a gene construct containing a phenol compound degrading enzyme regulating gene capR, a promoter gene Pr regulating the expression of the enzyme regulating gene capR and a second nucleic acid molecule with a promoter gene Po regulating the synthesis of the phenol compound degrading enzyme; and a cell containing the gene construct, wherein the first nucleic acid molecule encodes a firefly luciferase gene luc; the biosensor comprises a detection unit of the activity of luciferase when the cell is exposed to phenol; the second nucleic acid molecule is derived from Pseudomonas putida KCTC 1452; and the cell is a freeze-dried powder form.

Description

페놀계 화합물 검출용 바이오센서 및 그 제조방법{biosensor for detecting phenolic compounds and the manufacturing method thereof}Biosensor for detecting phenolic compounds and manufacturing method thereof

본 발명은 페놀계 화합물 검출용 바이오센서 및 그 제조방법에 관한 것이고, 더욱 상세하게는 유전자 재조합기술을 이용한 페놀계 화합물 검출용 바이오센서 및 그 제조방법에 관한 것이다.The present invention relates to a biosensor for detecting a phenolic compound and a method for manufacturing the same, and more particularly, to a biosensor for detecting a phenolic compound using a genetic recombination technology and a method for manufacturing the same.

낙동강의 페놀 유출 사고로 유해물질에 대한 경각심이 커져 가고 있고, 특히 공업적으로 널리 활용되고 있는 페놀과 같은 방향족 유기용매들은 환경에 유출되면 먹이사슬을 통해 인체에 유입되어 발암성물질이 되거나 환경호르몬으로 작용하고 있어 생물체에 미치는 영향이 심각하므로 선진국에서는 최우선적으로 제거해야 할 환경 독성물질로 분류되고 있다.The phenol spill accident in the Nakdong River is raising awareness of harmful substances. Especially, aromatic organic solvents such as phenol, which are widely used industrially, are introduced into the human body through the food chain to become carcinogenic substances or environmental hormones. Due to its serious impact on living organisms, it is classified as an environmental toxic substance to be removed first in developed countries.

이러한 페놀 같은 방향족 화합물을 측정하기 위해 기기 화학적 방법이 활용되고 있으나 막대한 장비로 비용이 많이 드는 점과 복잡한 처리에 의해 시간이 오래 걸리며 전문가가 아니면 활용이 용이하지 않는 점으로 경제적 기술적 효과가 크게 부각되지 않고 있는 실정이다. 또한 이들 중장비 기기는 현장에서 활용할 수 없는 불편함도 있다. 그리고, 이러한 방향족 화합물은 분석의 전처리과정에서 대부분 휘발되는 문제점도 있었다.Instrumental chemical methods are used to measure aromatic compounds such as phenols, but the economic and technical effects are not highlighted as they are expensive and expensive due to the enormous equipment, and they are not easy to use without experts. I'm not doing it. In addition, these heavy equipment equipment is inconvenient to use in the field. In addition, these aromatic compounds also had a problem that most volatilized during the pretreatment of the analysis.

그러므로 이러한 방향족 화합물을 보다 신속 간단하고 낮은 비용으로 정확하게 검출하는 기술의 개발은, 전세계적 스톡홀름 환경협약을 지켜야 하는 국가사회적 측면에서 그리고 기존 검출방법이 가지는 고비용과 현장적용 등의 문제점을 해결해야 하는 경제적 및 환경 기술적 차원에서 매우 중요하다. 또한, 상기 화합물들의 사전 유출을 방지하고 모니터링하기 위해서는 분석방법의 간단, 신속성이 더욱 요구되며, 상술한 바와 같이 전처리 과정에서 휘발되는 문제점을 해결하기 위해 전처리를 하지 않거나 최소화하는 분석방법을 필요로 한다.Therefore, the development of technology to detect these aromatic compounds more quickly and simply and at lower cost is economical to solve the problems such as the high cost and field application of the existing detection method in terms of national and social aspects that must comply with the global Stockholm Convention. And is very important at the environmental and technical level. In addition, in order to prevent and monitor the prior outflow of the compounds, simple and rapid analysis methods are required, and as described above, an analysis method that does not or does not require pretreatment to solve the problem of volatilization in the pretreatment process is required. .

한편, 슈도모나스(Pseudomonas)를 비롯하여 많은 미생물이 환경에 존재하는 난분해성 방향족 화합물과 같은 독성물질에 적응하며 이들을 생분해하여 탄소원으로 사용하는 능력을 가진다는 것이 보고되어 있다(Harayama and Timmis, 1992: Kustu et al., 1991). 이러한 미생물의 특성은 그 유전자와 관련 단백질에 기인되며 미생물은 생존을 위해 이들 독성물질을 분해하는 효소들을 가지도록 진화하고 있다. 이들 미생물은 분해해야 할 화합물이 존재할 때에만 분해효소를 생합성하기 위해 관련 유전자의 발현을 조절하고 있다.On the other hand, it has been reported that many microorganisms, including Pseudomonas , adapt to toxic substances such as hardly degradable aromatic compounds present in the environment and have the ability to biodegrade them and use them as carbon sources (Harayama and Timmis, 1992: Kustu et. al., 1991). The properties of these microorganisms are due to their genes and related proteins, and microorganisms are evolving to have enzymes that break down these toxins for survival. These microorganisms regulate the expression of related genes to biosynthesize enzymes only when there are compounds to degrade.

발현조절은 프로모터(promoter)라는 특이조절유전자와액티베이터(activator)라는 단백질의 상호작용에 의해 가능하다. 액티베이터 단백질은 분해화합물인 난분해성 방향족 화합물과 결합되어야만 구조적 변이가 유도되어 분해 효소의 생합성을 위한 전사를 시작한다.Expression control is possible by the interaction of a specific regulatory gene called a promoter with a protein called an activator. The activator protein must be combined with a hardly degradable aromatic compound to induce a structural variation to initiate transcription for biosynthesis of the degrading enzyme.

이 결합에 의해 전사 액티베이터, 호스트팩터(host factor)와 RNA 중합효소(polymerase)로 이루어진 DNA 프로모터복합체(promoter complex)가 형성되어 다운스트림에 있는 분해효소 유전자를 발현시킨다(Marques and Ramos, 1993; Perez-Martin et al., 1994). XylR과 XylS를 비롯한 몇몇 액티베이터 단백질들이 발견되어 보고되고 있고 분해 유전자의 구조가 규명되고 있다. 이러한 발견과 규명에 힘입어 유기오염 독성물질들을 탐지하는 바이오센서의 개발이 가능하게 되었다.This binding results in the formation of a DNA promoter complex consisting of a transcriptional activator, host factor and RNA polymerase, which expresses the downstream enzyme gene (Marques and Ramos, 1993; Perez). Martin et al., 1994). Several activator proteins, including XylR and XylS, have been discovered and reported, and the structure of the degraded genes has been elucidated. This discovery and identification made it possible to develop biosensors that detect organic pollutants.

분해관련 프로모터를 반딧불 루시페라제(firefly luciferase)나β-갈락토시다제 등의 리포터유전자와 재조합하여 관련 분해화합물에 의해 이들 재조합유전자의 프로모터가 활성화될 때 리포터 단백질이 발현되고 이를 생화학적으로 인지할 수 있는 바이오센서의 개발이 시도되고 있다(Willardson et al., 1998; Hollis et al., 1999; Reid et al., 1998; Blouin et al., 1996; Heitzer et al., 1994).Recombinant promoters are recombined with reporter genes, such as firefly luciferase or β -galactosidase, and reporter proteins are expressed and biochemically recognized when the promoters of these recombinant genes are activated by related degradation compounds. Attempts have been made to develop biosensors (Willardson et al., 1998; Hollis et al., 1999; Reid et al., 1998; Blouin et al., 1996; Heitzer et al., 1994).

또한 스트레스유전자를 리포터유전자와 재조합하여(Belkin et al., 1996) 산소에 관한 스트레스를 측정한 연구와 열충격(heat shock) 유전자를 리포터유전자에 재조합하여(Van Dyk et al., 1994) 여러 환경스트레스에 의해 유도되는 열충격유전자의 발현으로 환경독성을 측정한 연구 및 SOS 럭스테스트(lux test)를 이용하여 환경의 제노톡신(genotoxin)을 측정한 연구(Ptitsyn et al., 1997)가 보고되고 있다. 그외 여러 화합물이나 금속을 측정하는 다양한 바이오센서에 관한 연구도 진행되고 있다(Sticher et al., 1997; Peitzsch et al., 1997; Schramm et al., 1996).In addition, stress genes were recombined with reporter genes (Belkin et al., 1996) to measure oxygen stress, and heat shock genes were recombined with reporter genes (Van Dyk et al., 1994). The study of the measurement of environmental toxicity by the expression of thermal shock genes induced by and the measurement of the genotoxin of the environment using the SOS lux test (Ptitsyn et al., 1997) has been reported. In addition, studies on various biosensors for measuring various compounds or metals have been conducted (Sticher et al., 1997; Peitzsch et al., 1997; Schramm et al., 1996).

윌라드슨(Willardson) 연구그룹에서는 벤젠, 톨루엔 및 유사화합물을 검출하는 바이오센서를 보고하였다. 슈도모나스 푸티다(Pseudomonas putida) mt-2 유래 TOL 플라스미드로부터 전사가능한 액티베이터xylR과 프로모터Pu를 리포터유전자luc와 재조합하여E.coli세포에 형질전환한 후 벤젠, 톨루엔 등에 의해 형광을 유도하여 화합물의 탐색을 연구하였다. 이 바이오센서를 이용하여 물과 토양에서 BTEX(benzene, toluene, and xylene)의 오염을 측정하였다. 정확한 농도의존 형광이 관찰되었고 3-자이렌은 39.0±3.8μM, 3-메틸벤질알콜은 2,690±160μM의 K1/2값을 나타냈다. 그러나, 높은 염과 pH에서 형광발현이 저해되는 문제가 보고된다(Willardson et al., 1998). 또한, 검출가능한 한계농도가 높은 문제점도 있다.The Willardson research group reported a biosensor that detects benzene, toluene and similar compounds. Transformation of the transcriptable activators xylR and promoter Pu from the Pseudomonas putida mt-2-derived TOL plasmid with the reporter gene luc was transformed into E. coli cells, followed by fluorescence by benzene, toluene, etc. Studied. Using this biosensor, contamination of BTEX (benzene, toluene, and xylene) in water and soil was measured. The exact concentration-dependent fluorescence was observed three-xylene was 39.0 ± 3.8 μ M, 3- methylbenzyl alcohol exhibited a K 1/2 value of 2,690 ± 160 μ M. However, problems have been reported that fluorescence is inhibited at high salts and pH (Willardson et al., 1998). There is also a problem of a high detectable limit concentration.

국내에서는 살충제(pesticides)와 결합하는 수용체(receptor)를 이용한 면역검정(immunoassay)법으로 살충제를 검출한 연구와 포도당산화효소(glucose oxidase)를 막에 고정하여 포도당을 분석한 연구가 보고되고 있으며 생물공학적으로 재조합한 여러 독성물질들에 의한 세포의 스트레스 반응연구가 보고되고 있다. 또한 제품개발에서는 생물전자이용법으로 용존산소를 측정한 BOD 미터(Meter)가 개발되고 있으며 발광미생물을 이용하여 용존산소를 측정하는 장치가 연구되었다.In Korea, studies on the detection of pesticides by immunoassay method using a receptor that binds pesticides and analysis of glucose by fixing glucose oxidase on the membrane have been reported. A study on the stress response of cells caused by engineering toxins has been reported. In the product development, a BOD meter measuring dissolved oxygen has been developed by bioelectronics, and a device for measuring dissolved oxygen using luminescent microorganisms has been studied.

그러나, 환경오염물에서 페놀계 화합물의 정성분석과 정량분석을 저렴하고 신속정확하게 행할 수 있는 페놀계 화합물 검출용 바이오센서는 개발되고 있지 않다.However, a biosensor for detecting phenolic compounds has not been developed that can perform qualitative and quantitative analysis of phenolic compounds in environmental pollutants at low cost and quickly.

본 발명은 상기 문제점들을 해결하기 위해 안출된 것으로, 본 발명의 목적은 전처리과정 없이 단시간에 현장시료를 나노수준으로 저렴하게 분석할 수 있는 페놀계 화합물 검출용 바이오센서 및 그 제조방법을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a biosensor for detecting phenolic compounds and a method for producing the same that can be analyzed inexpensively at a nano level in a short time without a pretreatment process. .

도 1은 본 발명에 의한 클로닝된 벡터맵을 나타내는 도면1 illustrates a cloned vector map according to the present invention.

도 2a 및 도 2b는 본 발명에 의한 페놀계 화합물 검출용 바이오센서의 바이오 발광 반응을 나타내는 그래프.2A and 2B are graphs showing bioluminescence reactions of a biosensor for detecting a phenolic compound according to the present invention.

상기 목적을 달성하기 위해, 본 발명에 의한 제1양태의 페놀계 화합물 검출용 바이오센서는 검출 보고 역할을 갖는 리포터 분자를 암호화하는 서열을 포함하는 제1핵산분자와, 페놀계 화합물 분해효소 조절유전자capR, 상기 유전자의 발현을 조절하는 프로모터 유전자Pr및 페놀계 화합물 분해효소 합성을 조절하는 프로모터 유전자Po을 갖는 제2핵산분자를 포함하여 구성되는 유전자 구조체; 및 상기 유전자 구조체를 갖는 세포를 포함하는 것을 특징으로 한다.In order to achieve the above object, the biosensor for detecting a phenolic compound of the first aspect of the present invention comprises a first nucleic acid molecule comprising a sequence encoding a reporter molecule having a detection report role, and a phenolic compound degrading enzyme regulatory gene. capR , a gene construct including a second nucleic acid molecule having a promoter gene Pr for regulating expression of the gene and a promoter gene Po for regulating phenolic compound degrading enzyme synthesis; And a cell having the gene construct.

상기 구성의 페놀계 화합물 검출용 바이오센서에 의하면, 페놀계 화합물 존재시 리포터유전자 발현정도에 따라 누구나 페놀계 화합물 분석을 신속, 정확하게 저비용으로 행할 수 있는 이점이 있다.According to the biosensor for detecting a phenolic compound having the above-described structure, there is an advantage that anyone can perform phenolic compound analysis quickly and accurately at low cost according to the expression level of the reporter gene in the presence of the phenolic compound.

본 발명의 구체적인 실시예에 의하면, 페놀계 화합물 검출용 바이오센서는 제1핵산분자인 반딧불 루시페라제 유전자,luc이 제2핵산분자와 페놀계 화합물에 의해 암호화하여 합성됨으로 형광을 발현하는 것을 특징으로 한다.According to a specific embodiment of the present invention, the biosensor for detecting a phenolic compound is characterized by expressing fluorescence as the firefly luciferase gene, luc, which is the first nucleic acid molecule is encoded by synthesizing the second nucleic acid molecule and the phenolic compound. It is done.

상기한 구성에 의하면, 환경오염물에서 페놀의 농도를 0.05ppm까지 정량분석할 수 있는 이점이 있으며, 이는 다른 방법(스트레스 유전자를 이용한)으로 제조된 바이오센서보다 100배 정도 높은 감도에 해당한다.According to the above configuration, there is an advantage that the concentration of phenol in environmental pollutants can be quantitatively analyzed to 0.05 ppm, which corresponds to a sensitivity 100 times higher than that of a biosensor manufactured by another method (using a stress gene).

본 발명의 다른 구체적인 실시예에 의하면, 상기 세포가 페놀계 화합물에 노출되었을 때 세포내 루시페라제의 활성을 측정하는 수단을 포함하여 이루어지는 것을 특징으로 한다.According to another specific embodiment of the present invention, the cell comprises a means for measuring the activity of intracellular luciferase when exposed to the phenolic compound.

상기한 구성에 의하면, 전처리과정 없이 단시간에 현장시료를 나노수준으로 저렴하게 분석할 수 있는 이점이 있다.According to the above configuration, there is an advantage that in-situ samples can be analyzed at a low cost in a short time without a pretreatment process.

상기 세포는 특별한 제한이 있는 것은 아니나, 대장균이 바람직하다.The cell is not particularly limited, but E. coli is preferred.

상기 루시페라제의 활성을 측정하는 수단은 모든 광측정기구를 사용할 수 있으며, 운반용 루미노미터(luminometer)가 현장에서 바람직하다.Means for measuring the activity of the luciferase may use any photometer, and a transport luminometer is preferred in the field.

본 발명의 구체적인 실시예에 의하면, 상기 세포는 동결건조기(lyophilizer)를 이용하여 분말화한 형태로서, 필요한 때 어디서나 시료용액과 혼합하여 난분해성 방향족 화합물의 유무를 시험관안에서 확인가능한 키트로 개발할 수 있는 이점이 있다.According to a specific embodiment of the present invention, the cells are powdered using a lyophilizer, and can be mixed with the sample solution wherever needed to develop a kit capable of confirming the presence of a hardly degradable aromatic compound in vitro. There is an advantage.

본 발명의 제2양태에 의하면, 페놀계 화합물 검출용 바이오센서의 제조방법은, 페놀계 화합물 분해효소 조절유전자capR(본 발명에 의한 고유의 명칭임), 상기 유전자의 발현을 조절하는 프로모터 유전자Pr, 및 분해효소 합성을 조절하는 프로모터 유전자Po을 포함하는 삽입유전자를 증폭시키는 단계; 상기 증폭된 삽입유전자들을 제한효소 Kpn I로 자르는 단계; 반딧불 루시페라제 유전자를 포함하는발현벡터를 상기 제한효소로 자르는 단계; 및 상기 삽입유전자와 발현벡터를 클로닝하여 컴피턴트셀에 형질전환시키는 단계를 포함하는 것을 특징으로 한다.According to the second aspect of the present invention, a method for producing a biosensor for detecting a phenolic compound includes a phenolic compound degrading enzyme regulatory gene capR (proprietary name according to the present invention) and a promoter gene Pr for regulating expression of the gene. Amplifying an insert gene comprising a promoter gene Po for regulating degrading enzyme synthesis; Cutting the amplified transgene with restriction enzyme Kpn I; Cutting an expression vector comprising a firefly luciferase gene with the restriction enzyme; And converting the insert gene and the expression vector into competent cells.

상기한 구성에 의하면, 전처리과정 없이 단시간에 현장시료를 나노수준으로 저렴하게 분석할 수 있는 페놀계 화합물 검출용 바이오센서를 단순한 공정에 의해 용이하게 제조할 수 있는 이점이 있다.According to the above configuration, there is an advantage that the biosensor for phenolic compound detection can be easily manufactured by a simple process, which can inexpensively analyze field samples at a nano level in a short time without a pretreatment process.

이하, 첨부된 도면을 참조하면서 본 발명의 페놀계 화합물 검출용 바이오센서 및 그 제조방법에 대하여 구체적으로 설명한다.Hereinafter, a biosensor for detecting a phenolic compound of the present invention and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.

먼저 페놀과 특이적으로 반응하는 유전자를 규명하고 얻기 위하여 페놀분해미생물 중 가장 탁월한 분해능을 가진 미생물의 유전자를 분리한 다음 중합효소 연쇄반응을 이용하여 분해 관련 유전자 부위를 증폭시켜 클로닝하였다.First, in order to identify and obtain genes that specifically react with phenol, the genes of microorganisms having the highest resolution among phenol-degrading microorganisms were isolated and then cloned by amplifying degradation-related gene sites using polymerase chain reaction.

이때 사용된 프라이머는 기존에 알려진 페놀분해 관련 유전자의 염기서열 중 진화적으로 매우 보존성이 높은 부위의 서열로 정하여 제작하였다. 제작된 프라이머를 이용하여 중합효소 연쇄반응을 실행함으로써 페놀분해 관련 조절유전자capR(본 발명에 의한 고유의 명칭)과 이의 발현을 조절하는 프로모터 유전자Pr과 페놀분해효소 합성을 조절하는 프로모터 유전자Po를 함께 증폭시킨다.At this time, the primer used was produced by designating a sequence of a highly conserved region of evolutionary nucleotide sequence of a known phenol degradation gene. Phenolase- related regulatory gene capR (proprietary name according to the present invention), a promoter gene Pr for regulating its expression, and a promoter gene Po for regulating phenolase synthesis are carried out by carrying out a polymerase chain reaction using the prepared primers. Amplify.

이를 전기영동으로 확인한 후 제한효소 Kpn I으로 양쪽끝을 자른 다음 이 단편을 정제한 후, 도 1에 나타난 바와 같이 동일한 제한효소로 잘라진 발현벡터인 pGL3-베이직벡터(Promega회사)에 클로닝한다. 그런 다음 삽입유전자를 포함하는 발현벡터를 대장균(DH5α)에 형질전환하였다. 정확한 클로닝의 여부는 염기서열을 통해 확인하였으며 다른 분해 미생물과 98% 유사염기서열을 가지고 있다. 조절 유전자capR은 기존 알려진 페놀 분해관련 유전자와 13개 이상의 다른 아미노산을 가지므로 고유의 서열로 본 발명에서capR이라 명한다. 상기 CapR 단백질의 아미노산 서열(563개)은 다음과 같다.After confirming this by electrophoresis, both ends were cut with the restriction enzyme Kpn I, and the fragment was purified, and then cloned into pGL3-basic vector (Promega company), which is an expression vector cut with the same restriction enzyme as shown in FIG. 1. Then, the expression vector containing the transgene was transformed into E. coli (DH5α). Accurate cloning was confirmed by sequencing and had 98% similar bases with other degraded microorganisms. Since the regulatory gene capR has 13 or more different amino acids from a known phenol degradation gene, it is called capR in the present invention as a unique sequence. The amino acid sequence (563) of the said CapR protein is as follows.

MPIKYKPEIQ HSDFKDLTNL IHFQSTEGKI WLGEQRMLLL QVSAMASFRRMPIKYKPEIQ HSDFKDLTNL IHFQSTEGKI WLGEQRMLLL QVSAMASFRR

EMVNTLGIER AKGFFLRQGY QSGLKDAELA RKLRPNASEY DMFLAGPQLHEMVNTLGIER AKGFFLRQGY QSGLKDAELA RKLRPNASEY DMFLAGPQLH

SLKGLVKVRP TEVDIDKECG RFYAEMEWID SFEVEICQTD LGQMQDPVCWSLKGLVKVRP TEVDIDKECG RFYAEMEWID SFEVEICQTD LGQMQDPVCW

TLLGYACAYS SAFMGREIIF KEVSCRGCGG DKCRVIGKPA EEWDDVASFKTLLGYACAYS SAFMGREIIF KEVSCRGCGG DKCRVIGKPA EEWDDVASFK

QYFKNDPIIE ELYELQSQLV SLRTNLDKQE GQYYGIGQTP AYQTVRNMMDQYFKNDPIIE ELYELQSQLV SLRTNLDKQE GQYYGIGQTP AYQTVRNMMD

KAAQGKVSVL LLGETGVGKE VIARSVHLRS KRAAEPFVAV NCAAIPPDLIKAAQGKVSVL LLGETGVGKE VIARSVHLRS KRAAEPFVAV NCAAIPPDLI

ESELFGVEKG AFTGATQSRM GRFERADKGT IFLDEVIELS PRAQASLLRVESELFGVEKG AFTGATQSRM GRFERADKGT IFLDEVIELS PRAQASLLRV

LQEGELERVG DNRTRKIDVR VIAATHEDLA EAVKAGRFRA DLYYRLNVFPLQEGELERVG DNRTRKIDVR VIAATHEDLA EAVKAGRFRA DLYYRLNVFP

VAIPALRERR EDIPLLVEHF LQRFHQEYGK RTLGLSDKAL EACLHYSWPGVAIPALRERR EDIPLLVEHF LQRFHQEYGK RTLGLSDKAL EACLHYSWPG

NIRELENVIE RGIILTDPNE SISVQALFPR APEEPQTASE RVSSDGVLIQNIRELENVIE RGIILTDPNE SISVQALFPR APEEPQTASE RVSSDGVLIQ

PGNGQGSWIS QLLSSGLSLD EIEESLMREA MQQANQNVSG AARLLGLSRPPGNGQGSWIS QLLSSGLSLD EIEESLMREA MQQANQNVSG AARLLGLSRP

ALAYRLKKIG IEGALAYRLKKIG IEG

도 2a 및 도 2b는 본 발명에 의한 페놀계 화합물 검출용 바이오센서로 측정된 페놀농도 및 배양시간에 따른 형광값(bioluminescence)를 나타내는 그래프로서, 도 2a는 형광값을 log값으로 나타낸 그래프이다. 도 2a 및 도 2b에 나타난 바와 같이, 페놀 0.05ppm(500nM)에서 3ppm정도까지 농도에 의존하여 형광값이 증가하고 페놀 주입 후 시간별 측정에서도 시간에 따라 형광값이 증가하였다.2A and 2B are graphs showing fluorescence values (bioluminescence) according to phenol concentration and incubation time measured by a biosensor for detecting phenolic compounds according to the present invention, and FIG. 2A is a graph showing fluorescence values as log values. As shown in Figure 2a and 2b, the fluorescence value increased depending on the concentration from 0.05ppm (500nM) of phenol to about 3ppm, and the fluorescence value increased with time even in the hourly measurement after phenol injection.

이하, 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, preferred embodiments of the present invention will be described.

실시예 1. 게놈 DNA의 분리Example 1. Isolation of Genomic DNA

유전자 은행으로부터 페놀류를 분해하는 것으로 알려진 슈도모나스 푸티다(Pseudomonas putida) KCTC1452를 분양받아 트립틱 소이 브로스(typtic soy broth) 3ml에 접종하여 200rpm, 25℃에서 18-20시간 진탕배양한 후 6000rpm에서 3분간 원심분리하여 세포를 모았다. Pseudomonas putida KCTC1452, known to decompose phenols from the gene bank, was inoculated in 3 ml of tryptic soy broth, shaken at 200 rpm for 18-20 hours at 25 ° C, and then for 3 minutes at 6000 rpm. Cells were collected by centrifugation.

모아진 세포에 0.567ml의 10mM Tris-HCl/1mM EDTA(pH 8.0)을 넣어 부유시킨 후 10% SDS 30㎕와 20mg/ml 프로테이나제K 3㎕를 넣어 조심스럽게 섞은 후 37℃에서 1시간 동안 방치하였다.0.567ml of 10mM Tris-HCl / 1mM EDTA (pH 8.0) was added to the collected cells and suspended. Then, 30µl of 10% SDS and 3µl of 20mg / ml proteinase K were mixed carefully and mixed for 1 hour at 37 ° C. It was left.

여기에 80㎕의 5M NaCl을 넣어 조심스럽게 잘 섞고, 100㎕의 10% CTAB/0.7%NaCl 용액을 넣어 섞은 다음 65℃에서 10분간 가열하였다.80 μl of 5M NaCl was added thereto and carefully mixed, 100 μl of 10% CTAB / 0.7% NaCl solution was mixed and heated at 65 ° C. for 10 minutes.

이 용액에 동량의 클로로포름/이소아밀알콜을 첨가하여 인버팅(inverting)에 의해 잘 섞어 원심분리하여 상층액을 취하여 새 튜브에 옮기고, pH 5.2의 3M 초산나트륨을 10분의 1양만큼 넣은 후 0.6배의 이소프로판올을 넣어 잘 섞었다.Add the same amount of chloroform / isoamyl alcohol to the solution, mix well by inverting, centrifuge, take the supernatant, transfer to a new tube, add 1/10 of 3M sodium acetate pH 5.2, and add 0.6 Pear isopropanol was added and mixed well.

게놈 DNA가 염에 의해 침전이 되면서 하얀 실모양의 DNA가 보이면 멸균된 파스퇴르 파이펫의 끝부분을 잘 봉한 후 건져내고, 이를 마르지 않도록 바로 70% 에탄올 1ml에 담그기를 반복하여 염을 제거하고, 지나치게 건조되지 않도록 살짝 말린 후 10mM 트리스-HCl/1mM EDTA(pH 8.0) 100㎕에 넣어 풀리도록 10분 이상 방치하였다.When genomic DNA is precipitated by salt, white thread-shaped DNA is seen. Seal the end of the sterile Pasteur pipette well and remove it. Repeat the immersion in 1 ml of 70% ethanol to remove the salt. After lightly drying, the mixture was placed in 100 µl of 10 mM Tris-HCl / 1 mM EDTA (pH 8.0) and left for at least 10 minutes to be released.

게놈 DNA가 파스퇴르 파이펫에서 녹아나오면 4℃에 하룻밤 정도 두어서 게놈DNA가 버퍼내에 균일하게 퍼지도록 하여 이를 0.7% 아가로오즈겔에 걸어 게놈 DNA임을 확인하였다.When genomic DNA melted in the Pasteur pipette, it was placed at 4 ° C. overnight to allow the genomic DNA to spread evenly in the buffer, which was confirmed to be genomic DNA by hanging on 0.7% agarose gel.

실시예 2. 페놀 분해 조절관련 유전자의 검색Example 2 Search for Genes Related to Phenol Degradation Regulation

문헌조사를 통해 페놀분해에 관여하는 주요 조절단백질(Regulatory protein)인DmpR이 페놀의 분해메카니즘에서 페놀 인지 및 분해에 중요한 유전자임을 확인하고, 이에 해당하는 유전자 클러스터(cluster)인dmp오페론 부분을 검색하였다. 이 검색에는 NIH내의 NCBI검색사이트를 이용하였다. 검색을 통해dmpR및 이것의 프로모터 부분인Pr, 그리고 DmpR 조절단백질에 의해 조절받는dmp오페론의 프로모터인Po부분의 염기서열을 조사하였다.Literature research confirmed that DmpR , a major regulatory protein involved in phenol degradation, is an important gene for phenol recognition and degradation in the phenol degradation mechanism, and searched for the corresponding gene cluster, dmp operon. . The NCBI search site in NIH was used for this search. The nucleotide sequence of the dmpR and its promoter portion, Pr , and the Po portion, a promoter of the dmp operon regulated by the DmpR regulatory protein, were investigated.

실시예 3. 프라이머 제작Example 3. Primer Preparation

유전자뱅크에서 검색된 유사단백질의 DNA 염기서열을 바탕으로 아래와 같이 관련 유전자의 시작과 끝에 해당하는 프라이머를 제노텍에 주문 제작하였다.Based on the DNA sequence of the pseudoprotein found in the gene bank, primers corresponding to the beginning and end of related genes were customized to Genotech as follows.

Forward; 5'-CGGGGTACCAAGCTTATCCTAGCCTTCGATGCCGAT-3'(서열번호 2)Forward; 5'-CGGGGTACCAAGCTTATCCTAGCCTTCGATGCCGAT-3 '(SEQ ID NO: 2)

Reverse; 5'-CGGGGTACCAAGCTTTAACGAGTGAGCTGATGGAAA-3'(서열번호 3)Reverse; 5'-CGGGGTACCAAGCTTTAACGAGTGAGCTGATGGAAA-3 '(SEQ ID NO: 3)

실시예 4. PCR(Polymerase Chain Reaction)에 의한 증폭Example 4. Amplification by Polymerase Chain Reaction (PCR)

확인된 균주의 게놈 DNA로부터 상기 프라이머를 사용하여 전체 반응양을 50㎕되도록 하였다. 주형 DNA로 사용될 게놈 DNA의 농도는 100ng으로 하고 제작된 프라이머는 최종농도 1.0μM이 되도록 하였다. dNTPs(dATP, dCTP, dGTP, dTTP)의 농도는 각각 2.5mM이 되도록 하였다. Taq 중합효소는 1.25units이 되도록 하여 PCR 반응을 진행시켰다.From the genomic DNA of the identified strain, the primer was used to make 50 µl of the total reaction amount. The concentration of genomic DNA to be used as template DNA was 100 ng, and the prepared primer was made to have a final concentration of 1.0 μM. The concentrations of dNTPs (dATP, dCTP, dGTP, dTTP) were set to 2.5 mM, respectively. Taq polymerase was 1.25 units and the PCR reaction was performed.

먼저 95℃에서 10분 동안 전-변성(pre-denaturation)한 후, 95℃ 1분, 50℃ 1분, 72℃ 2분으로 30싸이클을 수행하고 72℃에서 10분 동안 반응을 시켜 DmpR 관련 유전자를 증폭시키고, 이를 0.7% 아가로즈겔에 DNA 마커와 함께 0.5X TAE 버퍼에 전기영동하여 PCR산물을 확인하였다.First, pre-denaturation at 95 ° C. for 10 minutes, followed by 30 cycles at 95 ° C. for 1 minute, 50 ° C. for 1 minute, and 72 ° C. for 2 minutes, followed by reaction at 72 ° C. for 10 minutes, results in DmpR-related genes. Was amplified and electrophoresed in 0.5X TAE buffer with DNA marker on 0.7% agarose gel to confirm PCR product.

실시예 5. 클로닝 및 리게이션(Cloning and Ligation)Example 5. Cloning and Ligation

확인된 PCR 산물 1㎍에 대해 제한효소인 KpnI(Takara사) 1U을 37℃에서 2시간 처리하였다. PCR산물을 1.2% 아가로오즈겔에 전기영동한 후 5㎍/ml의 EtBr용액에 10분간 착색(staining)하고 증류수에 15분간 탈색(destaining)하여 UV일루미네이터(UV illuminators)에서 약 2.2kb인 DNA절편을 DNA분자마커를 사용하여 확인하고 이를 포함한 부위를 조심스럽게 자른다.Restriction enzyme KpnI (Takara Co., Ltd.) 1U was treated for 2 hours at 37 ° C for the identified PCR product. The PCR product was electrophoresed in 1.2% agarose gel, stained with 5 µg / ml EtBr solution for 10 minutes and destained in distilled water for 15 minutes, and then the DNA was about 2.2 kb in UV illuminators. Check the sections using DNA molecule markers and carefully cut the sites containing them.

자른 아가로오즈겔의 무게를 재어서 3배의 부피로 NaI용액을 넣은 후 65℃에서 5분간 겔을 녹인 후에 그 속에 녹아있는 DNA가 바인딩될 수 있도록 5㎕의 글래스밀크(glassmilk)를 넣고 실온에서 5분간 둔 후 원심분리하여 펠릿만을 얻어 세척용액을 넣고 원심분리하는 과정을 3번 반복하였다.Weigh the cut agarose gel, add NaI solution in three times the volume, melt the gel at 65 ° C for 5 minutes, and add 5 μl glassmilk to bind the dissolved DNA. After 5 minutes in centrifugation to obtain only the pellet was added to the washing solution and centrifuged three times.

그런 다음, 글래스밀크-DNA를 실온에서 말린 후 20㎕의 TE버퍼를 넣고 삽입DNA를 추출하였다. 그리고, 루시페라제 유전자를 가진 pGL3 베이직벡터(Basic vector, Promega사)도 동일하게 Kpn I으로 잘랐다.Then, the glass milk-DNA was dried at room temperature, 20 µl of TE buffer was added thereto, and the inserted DNA was extracted. In addition, pGL3 basic vector (Basic Vector, Promega) having luciferase gene was also cut to Kpn I in the same manner.

이렇게 얻어진 삽입유전자와 루시페라제유전자를 가진 pGL3 베이직벡터를 삽입DNA : 벡터DNA의 5:1 비율로 첨가하고 1U의 T4 DNA 리가제(TAKARA사)를 이용하여 16℃에서 16시간 리게이션반응을 하여 이를 DH5α컴피턴트셀(competent cell)에CaCl2에 의한 형질전환방법으로 형질전환시켜 이를 50㎍/ml 암피실린이 함유된 LB플레이트에 플레이트한 후 37℃ 배양기에서 16시간 배양하였다.The pGL3 basic vector having the inserted gene and the luciferase gene thus obtained was added at a 5: 1 ratio of the inserted DNA: vector DNA and subjected to ligation reaction at 16 ° C. for 16 hours using a 1 U T4 DNA ligase (TAKARA). This was transformed into a DH5α competent cell (CaCl2) by a transformation method with CaCl2, and plated on an LB plate containing 50 μg / ml ampicillin, followed by incubation for 16 hours in a 37 ° C. incubator.

플레이트에서 잘 분리된 콜로니를 멸균된 이쑤시개를 사용해 50㎍/ml 암피실린이 함유된 LB 배지에 접종배양하여 16시간 진탕배양한 후 플라스미드 DNA를 퀴아프렙 스핀 미니프렙 키트(QIAprep Spin Miniprep kit,QIAGEN사)를 이용하여 분리하였다.The colonies isolated from the plate were inoculated and cultured in LB medium containing 50 µg / ml ampicillin using a sterile toothpick for 16 hours shaking to incubate the plasmid DNA with a QIAprep Spin Miniprep kit (QIAGEN). )).

먼저, 세포를 1.5ml E-튜브에 모은 다음에 P1 버퍼 250㎕를 넣어 펠릿을 부유시키고, P2 버퍼를 250㎕ 넣어 5번 부드럽게 흔들어주며 세포를 용해시킨 후, N3 버퍼를 350㎕ 넣고 부드럽게 5번 흔들어주어 용해된 것을 중성화시켰다.First, the cells were collected in a 1.5 ml E-tube, and then 250 μl of P1 buffer was added to float the pellet. 250 μl of P2 buffer was added to shake the cells gently, and the cells were lysed five times. Shake to neutralize the dissolved.

10분 동안 상온에서 원심분리하여 상층액을 조심스럽게 따라 내어 2ml 퀴아프렙 스핀 칼럼(QIAprep spin column)에 옮긴 다음에 PB 버퍼를 500㎕ 넣어 1분 동안 원심분리하였다. PE버퍼 750㎕를 넣어 스핀컬럼을 1분간 원심분리하여 씻어준 후에 걸러진 것을 버리고 1분간 한번 더 원심분리하여 남은 버퍼용액을 제거하고, 퀴아프렙 스핀 컬럼을 1.5ml E-튜브에 옮긴 후에 EB 버퍼(10mM Tris-HCl, pH 8.5) 50㎕을 넣어 1분간 둔 후에 1분간 원심분리하여서 플라스미드 DNA를 분리하였다. 분리된 DNA는 0.7% 아가로오즈겔에 전기영동을 하여 Kpn I를 사용하여 클로닝된 것을 확인하였다.After centrifugation at room temperature for 10 minutes, the supernatant was carefully poured into a 2 ml QIAprep spin column, and then 500 µl of PB buffer was added and centrifuged for 1 minute. Centrifuge the spin column for 1 minute by washing with 750 μl PE buffer, discard the filtered matter, and centrifuge once more to remove the remaining buffer solution. Transfer the Quiaprep spin column to 1.5 ml E-tube, and then EB buffer. 50 μl (10 mM Tris-HCl, pH 8.5) was added thereto, followed by 1 minute, followed by centrifugation for 1 minute to separate plasmid DNA. The separated DNA was electrophoresed on 0.7% agarose gel and confirmed to have been cloned using Kpn I.

실시예 6. 시퀀싱 및 호모로그의 비교Example 6 Comparison of Sequencing and Homologs

클론된 유전자의 서열은 생거의 디데옥시 종결법에 근거한 DNA 시퀀싱키트(ABI 377, PE Applied Biosystems)을 사용하여 자동시퀀싱을 수행하였다.The sequence of the cloned gene was subjected to auto sequencing using a DNA sequencing kit (ABI 377, PE Applied Biosystems) based on Sanger's dideoxy termination method.

먼저 클로닝된 유전자 500ng와 프라이머 1.6pmole과, 빅다이(Bigdye)를 이용하여 전체 반응액을 10㎕로 하여서 PCR반응을 진행시킨다. 시퀀싱에 사용된 프라이머는 pGL3 베이직벡터의 멀티플 클로닝사이트(multiple cloning site)에 삽입된 유전자의 서열을 파악하기 위해서 다음과 같은 프라이머를 이용하였다.First, 500 ng of the cloned gene, 1.6 pmole of primer and Bigdye (Bigdye) were used to proceed with the PCR reaction using 10 µl of the total reaction solution. As primers used for sequencing, the following primers were used to identify the sequence of the gene inserted into the multiple cloning site of the pGL3 basic vector.

의미가닥 : 5'-CTA GCA AAA TAG GCT GTC CC-3'(서열번호 4)Meaning strand: 5'-CTA GCA AAA TAG GCT GTC CC-3 '(SEQ ID NO: 4)

역의미가닥 : 5'-CTT TAT GTT TTT GGC GTC TTC CA-3'(서열번호 5)Reverse strand: 5'-CTT TAT GTT TTT GGC GTC TTC CA-3 '(SEQ ID NO: 5)

95℃에서 10분동안 전-변성(pre-denaturation)한 후, 96℃에서 10초, 50℃에서 5초, 60℃에서 4분으로 25사이클 반응시킨 후에, 72℃에서 10분 반응시켰다. 얻어진 PCR산물은 1.5ml E-튜브에 옮겨서 에탄올에 침전하여 증폭된 DNA만을 정제하였다.After 10 minutes of pre-denaturation at 95 ° C, the reaction was carried out for 25 cycles of 10 seconds at 96 ° C, 5 seconds at 50 ° C, and 4 minutes at 60 ° C, followed by 10 minutes at 72 ° C. The obtained PCR product was transferred to 1.5 ml E-tube and precipitated in ethanol to purify only amplified DNA.

pH4.6의 3M 초산나트륨을 1㎕을 넣고 25㎕의 100% 에탄올을 첨가하여 25분 얼음에 둔 후 15000rpm에서 4℃로 15분 동안 원심분리한 다음 상층액을 따라낸 후 70% 에탄올을 첨가하여 다시 10분간 원심분리하여 상층액은 버리고 펠릿만을 남긴다.Add 1 µl of 3M sodium acetate pH4.6, add 25 µl of 100% ethanol, place on ice for 25 minutes, centrifuge at 15000 rpm for 4 minutes at 4 ° C, drain the supernatant, and add 70% ethanol. After centrifugation for another 10 minutes, the supernatant is discarded, leaving only the pellets.

그런 후 충분히 말린 후 로딩다이(loading dye)를 넣어 95℃에서 2분 동안 변성시킨 후 2㎕만 따라내서 로딩을 수행하였다. 자동서열기에 의한 시퀀싱을 진행하고 서열만을 텍스트파일로 받는다. 이를 NCBI의 블라스트 데이터베이스(BLAST database)와 비교검색하여, 그 결과 일부 서열이dmpR유전자와 DmpR에 의해 작동되는Po프로모터와 약 98% 유사성을 보임을 확인하였다. 그러므로 본 발명에 의한 조절 유전자를capR로 명명하고 그 서열은 서열목록에서 서열번호 1로 나타낸다.Then, after sufficiently drying, the loading dye (loading dye) was added, denatured at 95 ℃ for 2 minutes, and loading was carried out by following only 2μl. Sequencing by automatic sequencer and receiving only sequence as text file. This was compared with NCBI's BLAST database and found that some sequences showed about 98% similarity to the dmpR gene and the Po promoter driven by DmpR. Therefore, the regulatory gene according to the present invention is named capR , and the sequence thereof is represented by SEQ ID NO: 1 in the sequence listing.

또한 아미노산의 서열도 약 97%의 상동성을 보이나, 기존에 보고된 바 없는 새로운 단백질이며, 페놀외에도 카테콜(Catechol), 2-클로르페놀(2-Chlorphenol), 2-메틸페놀(2-Methylphenol), 2,5-디메틸페놀(2,5-dimethylphenol)도 검출가능하였다.In addition, the amino acid sequence has about 97% homology, but it is a new protein that has not been reported before. In addition to phenol, catechol, 2-chlorophenol, and 2-methylphenol ), 2,5-dimethylphenol (2,5-dimethylphenol) was also detectable.

실시예 7. 형광발현에 의한 페놀검출Example 7 Phenol Detection by Fluorescence

상술한 대로 만들어진 미생물 유래 바이오센서의 페놀검출능력을 페놀주입시 나타나는 형광발현으로 확인하였다. 페놀이 바이오센서 세포(OD600 값 = 0.4 정도)에 주입되었을 때 페놀과 특이하게 반응하는 조절단백질인 CapR이 생성되어 반응한 후 이 복합체가 형광발현 유전자인 루시페라제 유전자 바로 앞에 있는Po프로모터에 결합하여 형광발현효소들을 생합성하며 주입된 기질을 분해하여 형광을 낼 때 이를 루미노미터로 측정하여 확인하였다.The phenol detection capability of the microorganism-derived biosensor made as described above was confirmed by fluorescence expression upon phenol injection. When phenol is injected into a biosensor cell (OD600 = 0.4), CapR, a regulatory protein that specifically reacts with phenol, is produced and reacted, and the complex then binds to the Po promoter in front of the luciferase gene, a fluorescent gene. The biosynthesis of fluorescent expression enzymes was performed, and when the injected substrate was decomposed to fluoresce, it was confirmed by measuring with a luminometer.

각각의 다른 농도의 페놀과 배양시간에 따른 형광의 발현(도 2a 및 2b 참조)에서 페놀검출용 바이오센서가 500nM의 나노수준의 페놀을 측정할 수 있음을 보여주었고 조건에 따라 감도는 더욱 증가할 수 있음을 기초실험으로 나타내었다.At different concentrations of phenol and the expression of fluorescence at different incubation times (see FIGS. 2A and 2B), the biosensor for phenol detection was able to measure 500 nM nano-level phenol, and the sensitivity could be further increased depending on the conditions. It can be shown as a basic experiment.

상술한 구성의 본 발명의 페놀계 화합물 검출용 바이오센서에 의하면, 전처리과정 없이 단시간에 현장시료를 나노수준으로 저비용으로 분석할 수 있는 효과를 도모할 수 있다. 따라서, 본 발명에 의한 바이오센서는 환경분야 이외에, 의학,식품 등의 다양한 분야에서 페놀계 화합물을 측정하기 위해 활용될 수 있다.According to the biosensor for detecting a phenolic compound of the present invention having the above-described configuration, it is possible to achieve an effect of analyzing a field sample at a nano level at a low cost in a short time without a pretreatment process. Therefore, the biosensor according to the present invention can be utilized to measure phenolic compounds in various fields, such as medicine and food, in addition to the environmental field.

한편, 본 발명의 페놀계 화합물 검출용 바이오센서의 제조방법에 따르면, 상기 특징의 페놀계 화합물 검출용 바이오센서를 단순한 공정에 의해 제조할 수 있는 효과도 도모할 수 있다.On the other hand, according to the manufacturing method of the phenolic compound detection biosensor of the present invention, the effect that the biosensor for phenolic compound detection of the above characteristics can be manufactured by a simple process can also be achieved.

Claims (7)

검출 보고 역할을 갖는 리포터 분자를 암호화하는 서열을 포함하는 제1핵산분자와, 페놀계 화합물 분해효소 조절유전자capR, 상기 유전자의 발현을 조절하는 프로모터 유전자Pr및 페놀계 화합물 분해효소 합성을 조절하는 프로모터 유전자Po을 갖는 제2핵산분자를 포함하여 구성되는 유전자 구조체; 및A first nucleic acid molecule comprising a sequence encoding a reporter molecule having a role of detection report, a phenolic compound degrading enzyme regulatory gene capR , a promoter gene regulating expression of the gene Pr and a promoter regulating phenolic compound degrading enzyme synthesis A gene construct comprising a second nucleic acid molecule having a gene Po ; And 상기 유전자 구조체를 갖는 세포를 포함하는 페놀계 화합물 검출용 바이오센서.Biosensor for detecting a phenolic compound comprising a cell having the gene structure. 제1항에 있어서, 제1핵산분자가 반딧불 루시페라제 유전자luc를 암호화하는 것을 특징으로 하는 페놀계 화합물 검출용 바이오센서.The biosensor for detecting a phenolic compound according to claim 1, wherein the first nucleic acid molecule encodes the firefly luciferase gene luc . 제2항에 있어서, 상기 세포가 페놀에 노출되었을 때 루시페라제의 활성을 측정하는 수단을 포함하여 이루어지는 페놀계 화합물 검출용 바이오센서.The biosensor for detecting a phenolic compound according to claim 2, comprising means for measuring the activity of luciferase when the cells are exposed to phenol. 제1항 또는 제2항에 있어서, 상기 제2핵산분자는Pseudomonas putidaKCTC1452에서 유래한 것임을 특징으로 하는 바이오센서.The biosensor of claim 1 or 2, wherein the second nucleic acid molecule is derived from Pseudomonas putida KCTC1452. 제1항 또는 제2항에 있어서, 상기 세포는 동결건조된 분말형태인 것을 특징으로 하는 바이오센서.The biosensor according to claim 1 or 2, wherein the cells are in the form of lyophilized powder. 페놀계 화합물 분해효소 조절유전자capR, 상기 유전자의 발현을 조절하는 프로모터 유전자Pr, 및 페놀계 화합물 분해효소 합성을 조절하는 프로모터 유전자Po을 포함하는 삽입유전자를 증폭시키는 단계; Amplifying an insert gene comprising a phenolic compound degrading enzyme capR , a promoter gene Pr for regulating expression of the gene, and a promoter gene Po for regulating phenolic compound degrading enzyme synthesis; 상기 증폭된 삽입유전자들을 제한효소 Kpn I로 자르는 단계;Cutting the amplified transgene with restriction enzyme Kpn I; 반딧불 루시페라제 유전자를 갖는 발현벡터를 상기 제한효소로 자르는 단계;Cutting an expression vector having a firefly luciferase gene with the restriction enzyme; 상기 삽입유전자와 발현벡터를 클로닝하여 컴피턴트셀에 형질전환시키는 단계를 포함하는 페놀계 화합물 검출용 바이오센서의 제조방법.Cloning the insertion gene and the expression vector to transform into a competent cell manufacturing method of a biosensor for detecting a phenol-based compound. 제6항에 있어서, 상기 컴피던트셀이 대장균 DH5α인 것을 특징으로 하는 페놀계 화합물 검출용 바이오센서의 제조방법.The method of claim 6, wherein the cell is E. coli DH5α manufacturing method of the biosensor for detecting a phenol-based compound.
KR10-2002-0027161A 2002-05-16 2002-05-16 biosensor for detecting phenolic compounds and the manufacturing method thereof KR100464068B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027161A KR100464068B1 (en) 2002-05-16 2002-05-16 biosensor for detecting phenolic compounds and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027161A KR100464068B1 (en) 2002-05-16 2002-05-16 biosensor for detecting phenolic compounds and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20030089115A true KR20030089115A (en) 2003-11-21
KR100464068B1 KR100464068B1 (en) 2005-01-03

Family

ID=32383181

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0027161A KR100464068B1 (en) 2002-05-16 2002-05-16 biosensor for detecting phenolic compounds and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100464068B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222056B1 (en) * 2009-06-08 2013-01-14 한국생명공학연구원 Novel Method for Detecting and Quantitating Target Enzyme Activity Using Artificial Genetic Circuitry
KR20150056072A (en) * 2013-11-14 2015-05-22 한국생명공학연구원 METHOD FOR DETECTION AND QUANTITATION OF ε-CAPROLACTAM USING ARTIFICIAL GENETIC CIRCUITS
KR20200062070A (en) * 2018-11-26 2020-06-03 한국생명공학연구원 Mutated Artificial Genetic Circuit, and Method for Detection and Quantification of Phenolic Compounds Based on Communities of the Circuit and Machine Learning Algorithms

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783859B2 (en) 2009-06-08 2017-10-10 Korea Research Institute Of Bioscience And Biotechnology Method of screening and quantifying various enzymatic activities using artificial genetic circuits
KR20160005605A (en) 2014-07-07 2016-01-15 전남대학교산학협력단 Red Fluorescence Protein Variant and Biosensor for detecting phenol-based compounds using thereof
KR101937180B1 (en) 2015-07-13 2019-01-11 한국생명공학연구원 Microbe Prototyping Genetic Circuit based Novel Microbe Screening System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854010A (en) * 1997-03-10 1998-12-29 Denison; Michael S. Bioassay for detecting 2,3,7,8-tetrachlorodibenzo-para-dioxin and TCDD-like compounds and novel recombinant cell line useful therefor
US6110661A (en) * 1997-05-01 2000-08-29 Eastman Chemical Company Bioluminescent reporter bacterium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222056B1 (en) * 2009-06-08 2013-01-14 한국생명공학연구원 Novel Method for Detecting and Quantitating Target Enzyme Activity Using Artificial Genetic Circuitry
KR20150056072A (en) * 2013-11-14 2015-05-22 한국생명공학연구원 METHOD FOR DETECTION AND QUANTITATION OF ε-CAPROLACTAM USING ARTIFICIAL GENETIC CIRCUITS
KR20200062070A (en) * 2018-11-26 2020-06-03 한국생명공학연구원 Mutated Artificial Genetic Circuit, and Method for Detection and Quantification of Phenolic Compounds Based on Communities of the Circuit and Machine Learning Algorithms

Also Published As

Publication number Publication date
KR100464068B1 (en) 2005-01-03

Similar Documents

Publication Publication Date Title
Manefield et al. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny
Foulds et al. Quantification of microcystin‐producing cyanobacteria and E. coli in water by 5′‐nuclease PCR
Amaro et al. Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects
Beyer et al. Polymerase chain reaction‐ELISA to detect Bacillus anthracis from soil samples—limitations of present published primers
EP0793729B1 (en) Lyophilized bioluminescent bacterial reagent for the detection of toxicants
KR100469588B1 (en) Biosensors
AU779263B2 (en) Luciferase expression cassettes and methods of use
CN105925699B (en) A method of detection kanamycins
KR100464068B1 (en) biosensor for detecting phenolic compounds and the manufacturing method thereof
CN104178463B (en) A kind of method for preparing enhanced monomer bacterial luciferase luxAB
KR100655792B1 (en) Genetic construct for detection oxidative stress and biosensor using the same
KR100539142B1 (en) biosensor for detecting BTEX and the manufacturing method thereof
KR100464067B1 (en) biosensor for detecting salicylic acid and the manufacturing method thereof
Byrne et al. Chimerism analysis in sex-mismatched murine transplantation using quantitative real-time PCR
US20080044829A1 (en) Biosensor Utilizing Pigment-Synthesizing Gene Of A Purple Non-Sulfur Bacterium And A Method For Preparing Such A Biosensor
US6265162B1 (en) Method of identifying, detecting and monitoring microorganisms by an aromatic ring hydroxylase dioxygenase gene
Yu et al. Occurrence of two resin acid-degrading bacteria and a gene encoding resin acid biodegradation in pulp and paper mill effluent biotreatment systems assayed by PCR
KR100436741B1 (en) Genes for detecting bacteria and detection method by using the same
JP2941210B2 (en) Microbial identification, detection and monitoring method using aromatic hydroxylase dioxygenase gene
CN112375836B (en) Real-time fluorescence PCR detection method for vibrio fluvialis and application
EP1104489B1 (en) Method for separating and characterising functions potentially present in a biological sample containing nucleic acids
Nagoba et al. Molecular methods for identification of Clostridium tetani by targeting neurotoxin
KR101598907B1 (en) Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof
US6143500A (en) Nucleic acids and methods for detecting pathogenic xanthomonas campestris using the same
WO2001061035A1 (en) Method for detecting a mycobacterium tuberculosis specific intein and use in diagnosis of tuberculosis

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150623

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee