KR101598907B1 - Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof - Google Patents

Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof Download PDF

Info

Publication number
KR101598907B1
KR101598907B1 KR1020140070684A KR20140070684A KR101598907B1 KR 101598907 B1 KR101598907 B1 KR 101598907B1 KR 1020140070684 A KR1020140070684 A KR 1020140070684A KR 20140070684 A KR20140070684 A KR 20140070684A KR 101598907 B1 KR101598907 B1 KR 101598907B1
Authority
KR
South Korea
Prior art keywords
tod
seq
gene
aromatic compound
protein
Prior art date
Application number
KR1020140070684A
Other languages
Korean (ko)
Other versions
KR20150142244A (en
Inventor
권오석
김상윤
이은경
오두병
이승구
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020140070684A priority Critical patent/KR101598907B1/en
Publication of KR20150142244A publication Critical patent/KR20150142244A/en
Application granted granted Critical
Publication of KR101598907B1 publication Critical patent/KR101598907B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/13Protein-histidine kinases (2.7.13)
    • C12Y207/13003Histidine kinase (2.7.13.3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 슈도모나스 푸티다(Pseudomonas putida) 유래 todST 유전자의 프로모터, 야생형 todS 유전자의 HK2 도메인을 PAS1 도메인과 직접 연결한 단순화된 todS* 및 todT 유전자를 포함하는 난분해성 유해 방향족 화합물 감지용 재설계 단백질 발현 벡터가 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터와 연결된 표지 단백질 발현 카세트가 숙주세포의 염색체에 삽입된 표지 단백질 발현 재조합 균주에 형질전환된 형질전환체를 포함하는 난분해성 유해 방향족 화합물 검출용 인공바이오센서는 종래 난분해성 유해 방향족 화합물의 검출 방법에 비해 간편하고 그 특이성 및 민감도가 뛰어나므로, 난분해성 유해 방향족 화합물 검출에 용이하게 사용될 수 있다.The present invention relates to a method for detecting a degradable harmful aromatic compound comprising a promoter of tod ST gene derived from Pseudomonas putida , a simplified tod S * and tod T gene in which the HK2 domain of the wild type tod S gene is directly linked to the PAS1 domain The redesigned protein expression vector is linked to the promoter of the tod X gene derived from Pseudomonas putida . The marker protein expression cassette is inserted into the chromosome of the host cell, and the recombinant strain expressing the marker protein is transformed into a recombinant strain, An artificial biosensor for detecting a harmful aromatic compound is easier than conventional methods for detecting a harmful aromatic compound and is excellent in its specificity and sensitivity, and thus can be easily used for detecting a harmful aromatic compound.

Description

재설계된 감지 단백질을 이용한 유해 방향족 화합물 검출용 인공바이오센서 및 이의 제조방법 {Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof}TECHNICAL FIELD The present invention relates to an artificial biosensor for detecting a harmful aromatic compound using a redesigned sensing protein and a method for manufacturing the same,

본 발명은 재설계된 감지 단백질을 이용한 난분해성 유해 방향족 화합물 검출용 인공바이오센서 및 이의 제조방법에 관한 것이다.
TECHNICAL FIELD The present invention relates to an artificial biosensor for detecting degradable harmful aromatic compounds using a redesigned sensing protein and a method for producing the same.

난분해성 방향족 화합물이 자연으로 배출될 경우 먹이사슬이나 다른 경로를 통해 생체로 유입되면 대개 그 구조적 유사성과 높은 반응성으로 세포 내 DNA나 단백질 등과 같은 고분자와 반응하여 발암성이 되거나 환경호르몬으로 작용한다. 그 예로, 자동차 배출가스와 쓰레기 연소 과정에서 배출되는 다이옥신을 들 수 있는 데 이는 암을 유발할 뿐만 아니라 생식 및 면역체계 이상을 초래하는 물질이다. 따라서 자연에 유입되는 난분해성 방향족 화합물은 선진국에서 최우선적으로 제거해야 할 환경 독성물질로 분류된다. 이러한 난분해성 방향족 화합물을 측정하기 위하여 기기 화학적 방법이 활용되고 있으나 막대한 장비로 비용이 높은 점과 복잡한 처리에 의해 시간이 오래 걸리며 누구나 활용이 용이하지 않는 점으로 경제적 기술적 효과가 크게 부각되지 않고 있는 실정이다. 또한 이들 중장비 기기는 현장에서 활용할 수 없는 불편함도 있다. 그러므로 난분해성 방향족 화합물을 보다 신속, 간단, 저비용으로 정확하게 검출하는 기술개발은 스톡홀름 환경협약을 이행해야 하는 국가 사회적 측면과 고비용과 현장적용에서 문제점을 해결해야 하는 경제적, 환경기술적 차원에서 중요하다(환경부, 난분해성 방향족 화합물 측정 biosensor 개발, 2004). When a degradable aromatic compound is released into the body through a food chain or other pathway, it usually reacts with a polymer such as DNA or protein in its structural similarity and high reactivity to act as a carcinogen or an environmental hormone. Examples are dioxins emitted from automobile emissions and waste burning processes, which not only cause cancer but also cause reproductive and immune system abnormalities. Therefore, refractory aromatics introduced into nature are classified as environmental toxic substances which should be removed in advanced countries. In order to measure such a degradable aromatic compound, an instrumental chemical method is utilized, but it takes a long time due to a high cost due to an enormous amount of equipment and complicated treatment, and it is not easy for anyone to utilize it. to be. Also, these heavy equipment can not be used in the field. Therefore, it is important to develop technologies to detect degradation aromatic compounds more quickly, simply, and inexpensively, in terms of the national social aspect, which requires implementation of the Stockholm environmental conventions, and the economic and environmental technological aspects of solving problems at high cost and field applications , A biodegradable aromatic compound measurement biosensor development, 2004).

VOCs(volatile organic compounds)의 대표적인 유류물질인 BTEX 화합물은 벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbenzene), 자일렌(Xylene)을 일컫는 것으로, 최근 산업활동의 급성장에 따라 상당량의 유해오염물질들이 자연환경으로 유출되고 있는데 특히 이들 BTEX 화합물의 유류저장소에서의 누출 및 사고, 산업체에서의 광범위한 사용으로 인한 환경오염 정도가 심해지고 있다. 이들에 의한 오염은 지표수원, 지하수원, 처리식수 등 공공 식수계 전반에 걸쳐 광범위하게 발견되고 있으며 대부분의 VOCs는 발암을 유발하는 유독성 유기화학물질로 판명되고 있어 전 세계적으로 음용수의 휘발성 유기물질 규제지침 및 법령제정이 강화되고 있는 추세이다. 이러한 BTEX를 측정하기 위하여, 종래에는 기기 화학적 방법으로 크로마토그래피-질량분석법(GC-MS)등이 활용되고 있었으나 이러한 방법은 비용이 많이 들고, 복잡한 처리에 의해 시간이 오래 걸리며, 전문지식이 없는 사람은 활용이 용이하지 않고 또한 중장비 기기를 필요로 해 현장에서 활용할 수 없는 사용상의 한계가 있었다(국내 출원번호 10-2003-0011554). 따라서, 유류 관련 유해 환경오염물질인 BTEX 화합물(벤젠, 톨루엔, 에틸벤젠, 자일렌)과 폭발물에서 유래하는 톨루엔계 화합물인 2,4,6-trinitrotoluene(TNT), 그리고 2,4-Dinitrotoluene(DNT) 등 난분해성 유해 방향족 화합물을 효율적으로 검출하고 제거하기 위한 기술개발 노력이 지속되고 있다.
BTEX compounds, which are representative of volatile organic compounds (VOCs), refer to benzene, toluene, ethylbenzene and xylene. Recently, due to the rapid growth of industrial activities, Substances are being released into the natural environment, especially those leaks and accidents in the oil reservoirs of BTEX compounds, and environmental pollution due to widespread use in industry. Most of the VOCs have been found to be toxic organic chemicals that cause carcinogenesis. Therefore, the pollution caused by volatile organic substances in drinking water Guidelines and legislation have been strengthened. In order to measure such BTEX, conventionally, chromatographic-mass spectrometry (GC-MS) has been utilized by an instrumental chemical method. However, such a method is costly, takes a long time due to complicated processing, Is not easy to use and requires a heavy equipment and there is a limitation in usage that can not be utilized in the field (Korean Application No. 10-2003-0011554). Therefore, it has been found that 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), which are toluene-based compounds derived from explosives and BTEX compounds (benzene, toluene, ethylbenzene, xylene) ) Efforts to develop technologies for efficiently detecting and removing harmful aromatic compounds have been continuing.

바이오센서란 특정한 물질에 대한 인식기능을 갖는 생물학적 수용체가 전기 또는 광학적 변환기(transducer)와 결합하여 생물학적 상호작용 및 인식반응을 전기적 또는 광학적 신호로 변환함으로써 분석하고자 하는 물질을 선택적으로 감지할 수 있는 소자로서 다양한 환경 내에 있는 물질들을 저 농도에서 신속하고 정확하게 감지할 수 있는 분석기술이다. 바이오센서는 크게 단백질을 기초로 한 것과 세포를 기초로 한 방법으로 나누어지며, 생물학적 응용성과 선택성, 편리성 그리고 측정 감도 등의 관점에서 세포를 기초로 한 전 세포 바이오센서(whole-cell biosensor)의 연구가 많이 이루어지고 있다. 전 세포 바이오센서는 환경 오염물질로 인한 독성에 특이적으로 반응할 수 있는 프로모터(promoter)와 베타갈락토시다아제(β-galactosidase)나 반딧불 루시퍼라제(firefly luciferase) 등의 표지 단백질 시스템으로 구성된 유전공학적으로 변형된 재조합 세포를 이용하여 강, 호수, 및 상·하수원, 토양 등의 환경오염 측정에 응용될 수 있는 첨단 바이오 모니터링 기술이다.
A biosensor is a device capable of selectively sensing a substance to be analyzed by converting a biological receptor having a recognition function for a specific substance into an electric or optical signal by combining with an electric or optical transducer to convert a biological interaction and a recognition reaction into an electric or optical signal Is an analytical technique that can quickly and accurately detect substances in a variety of environments at low concentrations. Biosensors are largely divided into protein-based and cell-based methods. Cell-based whole-cell biosensors are used in terms of biological applications, selectivity, convenience, and measurement sensitivity. A lot of research is being done. The whole-cell biosensor is composed of a promoter capable of specifically reacting with toxicities caused by environmental pollutants, a gene consisting of a labeled protein system such as beta-galactosidase or firefly luciferase, It is a state-of-the-art bio-monitoring technology that can be applied to the measurement of environmental pollution of rivers, lakes, and sewage, sewage, and soil using engineered modified recombinant cells.

한편, 슈도모나스 푸티다(Pseudomonas putida)를 비롯한 일부 미생물들이 난분해성 유해 방향족 화합물과 같은 독성물질에 적응하여 이들을 분해하여 사용하는 능력이 갖고 있음이 보고되어 있다(Ramos-Gonzalez, Olson et al. 2002). 슈도모나스 푸티다의 톨루엔 등 유해 방향족 화합물 감지에 관련된 유전자의 발현을 조절하는 신호전달계인 TodST 2개-인자 신호전달계는 TodS 감지 단백질과 TodT 조절 단백질로 구성되어 있고, 톨루엔의 감지와 그에 따른 신호전달은 복잡한 다단계의 인산기 전이반응으로 일어난다. 최종적으로 인산화된 TodT 단백질은 타겟 유전자의 프로모터(예를 들어 todX 유전자 프로모터) 에 부착하여 그 발현을 조절하게 된다. 최근 슈도모나스 푸티다(Pseudomonas putida)의 TodST 2개-인자 신호전달계를 이용하여 난분해성 유해 방향족 화합물 감지용 바이오센서가 제작된 바 있다(공개특허 10-2013-0054669). 그러나, 야생형의 TodS 감지 단백질은 o-xylene과 1,2,4-trimethylbenzene을 인지할 수 없다. 특히 o-xylene과 1,2,4-trimethylbenzene 모두 공업용으로 자주 사용되는 원료이고, 인체에 유해성을 나타낸다는 점에서 이를 검출할 수 있는 바이오센서가 요구되는 실정이었다.
In addition, some microorganisms including Pseudomonas putida have been reported to have the ability to adapt to toxic substances such as harmful aromatic compounds and decompose them (Ramos-Gonzalez, Olson et al. 2002) . The TodST 2-signaling system, a signal transduction system that regulates the expression of genes involved in the detection of toxic aromatic compounds such as Pseudomonas putida, is composed of TodS sensing protein and TodT regulatory protein. Toluene sensing and signaling Complex multiphase phosphate transfer reaction. Finally, the phosphorylated TodT protein attaches to the target gene promoter (for example, the tod X gene promoter) and regulates its expression. Recently, a biosensor for detecting degradation-resistant harmful aromatic compounds has been produced by using the TodST 2 -character signal transduction system of Pseudomonas putida (Japanese Patent Laid-Open No. 10-2013-0054669). However, the wild-type TodS detection protein can not recognize o-xylene and 1,2,4-trimethylbenzene. In particular, o-xylene and 1,2,4-trimethylbenzene are frequently used as raw materials for industrial purposes, and biosensors capable of detecting these substances are required because they exhibit toxicity to humans.

이에 본 발명자들은, TodS의 5개 도메인(PAS1, HK1, RR1, PAS2, HK2) 중 방향족 화합물을 인지하는 PAS1 도메인에 TodS에서 TodT로 인산기를 전달하는 마지막 도메인인 HK2 도메인을 직접 연결한 단순화된 TodS 감지 단백질 변이체(TodS*)를 제조하였고, TodS*를 이용하여 제작한 인공바이오센서가 야생형의 TodS 감지 단백질이 인지할 수 없었던 o-자일렌(xylene)과 1,2,4-트리메틸벤젠(trimethylbenzene)을 효과적으로 인지하고 TodT에 그 신호를 전달하여 타겟 프로모터에 연결된 표지 단백질 유전자의 발현을 현격히 유도할 수 있음을 밝힘으로써, 본 발명을 완성하였다.
Therefore, the inventors of the present invention have developed a simplified TodS (PAS1) domain that directly connects the HK2 domain, which is the last domain for transferring a phosphate group from TodS to TodT, into the PAS1 domain that recognizes an aromatic compound in five TodS domains (PAS1, HK1, RR1, PAS2 and HK2) (TodS *), and the artificial biosensor fabricated using TodS * was able to detect the presence of o-xylene and 1,2,4-trimethylbenzene ) And effectively transmits the signal to TodT to induce the expression of the marker protein gene linked to the target promoter, thereby completing the present invention.

Bagdasarian, M., et al., Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene, 1981. 16(1-3): 237-247.Bagdasarian, M., et al., Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene, 1981, 16 (1-3): 237-247. Vick, J.E., et al., Optimized compatible set of BioBrick vectors for metabolic pathway engineering. Appl Microbiol Biotechnol, 2011. 92(6): p. 1275-86.Vick, J. E., et al., Optimized compatible set of BioBrick vectors for metabolic pathway engineering. Appl Microbiol Biotechnol, 2011. 92 (6): p. 1275-86. Dykxhoorn, D.M., R. St Pierre, and T. Linn, A set of compatible tac promotor expression vectors. Gene, 1996. 177(1-2): 133-136.Dykxhoorn, D. M., R. St Pierre, and T. Linn, A set of compatible tac promoter expression vectors. Gene, 1996. 177 (1-2): 133-136. H. Silva-Jimenez, J.L. Ramos, T. Krell, Construction of a prototype two-component system from the phosphorelay system todS/todT. PEDS, 2012. 25: 159-169.H. Silva-Jimenez, J.L. Ramos, T. Krell, Construction of a prototype two-component system from the phosphorelay system todS / todT. PEDS, 2012. 25: 159-169.

본 발명의 목적은 슈도모나스 푸티다 유래의 신호전달 단백질 도메인을 재설계하여 조절 타겟 프로모터를 이용하여 표지단백질을 발현하는 재조합 균주에 도입한 난분해성 유해 방향족 화합물 검출용 인공바이오센서 및 이의 제조방법을 제공하는 것이다.
An object of the present invention is to provide an artificial biosensor for detecting a degradable harmful aromatic compound and a method for producing the artificial biosensor, wherein the signaling protein domain derived from Pseudomonas putida is redesigned and introduced into a recombinant strain expressing a labeled protein using a regulated target promoter .

상기 목적을 달성하기 위하여,
In order to achieve the above object,

본 발명은 슈도모나스 푸티다(Pseudomonas putida) 유래 todST 오페론의 프로모터, todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 및 todT 유전자를 포함하는 감지용 재설계 단백질 발현 벡터를 제공한다.
The present invention is the Pseudomonas footage is (Pseudomonas putida) derived tod ST operon promoter, redesigned protein for detection including a tod S * and tod T gene simplified by directly connecting the PAS1 domain and HK2 domain of tod S gene of the vector to provide.

또한, 본 발명은 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터와 연결된 표지 단백질 발현 카세트가 숙주세포의 염색체에 삽입된 표지 단백질 발현 재조합균주를 제공한다.
Also, the present invention provides a recombinant strain expressing a marker protein in which a marker protein expression cassette linked to the promoter of the tod X gene derived from Pseudomonas putida is inserted into the chromosome of the host cell.

또한, 본 발명은 상기 감지용 재설계 단백질 발현 벡터를 표지 단백질 발현 재조합균주에 형질전환시킨 난분해성 유해 방향족 화합물 검출용 인공바이오센서 균주를 제공한다.
Also, the present invention provides an artificial biosensor strain for detecting a degradable harmful aromatic compound, which is obtained by transforming a protein expression vector for detection into a recombinant strain expressing a marker protein.

아울러, 본 발명은In addition,

1) 상기 감지용 재설계 단백질 발현 벡터를 표지 단백질 발현 재조합균주에 형질전환시킨 인공바이오센서 균주를 제조하는 단계; 및1) preparing an artificial biosensor strain transformed with the redesigned protein expression vector for the detection protein recombinant strain; And

2) 피검시료가 처리된 인공바이오센서 균주의 표지 단백질의 발현수준을 측정하는 단계; 및2) measuring the expression level of the labeled protein of the artificial biosensor strain treated with the test sample; And

3) 단계 2)의 표지 단백질의 발현수준이 대조군에 비하여 증가하는 경우, 피검시료 내 난분해성 유해 방향족 화합물이 포함되었음을 판정하는 단계를 포함하는 난분해성 유해 방향족 화합물의 검출 방법을 제공한다.
3) a step of judging that a harmful aromatic compound is contained in the test sample when the expression level of the labeled protein of step 2) is increased as compared with that of the control sample.

본 발명의 슈도모나스 푸티다(Pseudomonas putida) 유래 todST 오페론의 프로모터, todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 및 todT 유전자를 포함하는 난분해성 유해 방향족 화합물 감지용 재설계 단백질 발현 벡터가 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터와 연결된 표지 단백질 발현 카세트가 숙주세포의 유전체에 삽입된 표지 단백질 발현재조합 균주에 형질전환된 균주를 포함하는 난분해성 유해 방향족 화합물 검출용 인공바이오센서는 종래 난분해성 유해 방향족 화합물의 검출 방법에 비해 간편하고 그 특이성 및 민감도가 뛰어나므로, 난분해성 유해 방향족 화합물 검출에 용이하게 사용될 수 있다.
I material for detecting decomposable harmful aromatics containing Pseudomonas footage is tod S * and tod T gene simplified one (Pseudomonas putida) direct PAS1 domain and HK2 domain of the promoter, tod S gene derived from the tod ST operon of the present invention The design protein expression vector is linked to the promoter of the tod X gene derived from Pseudomonas putida . The marker protein expression cassette is inserted into the genome of the host cell. The recombinant strain expressing the marker protein contains the transformed strain and the degradable harmful aromatic compound The artificial biosensor for detection is easier to detect than the conventional method for detecting harmful aromatic compounds, and has excellent specificity and sensitivity, so that it can be easily used for the detection of harmful aromatic compounds.

도 1a는 pBBRBB-proTodST 벡터의 모식도를 나타내는 도이다.
도 1b는 U2 벡터의 구조를 나타내는 도이다.
도 2a는 o-xylene 존재하에서 U2 벡터 또는 대조군 벡터 형질전환체의 sfGFP 형광을 측정한 것을 나타내는 도이다.
도 2b는 1,2,4-TMB 존재 하에서 U2 벡터 또는 대조군 벡터 형질전환체의 sfGFP 형광을 측정한 것을 나타내는 도이다.
FIG. 1A is a schematic diagram showing a pBBRBB-proTodST vector. FIG.
1B is a diagram showing a structure of a U2 vector.
FIG. 2A shows sfGFP fluorescence measurement of a U2 vector or a control vector transformant in the presence of o-xylene. FIG.
FIG. 2B is a diagram showing sfGFP fluorescence measurement of a U2 vector or a control vector transformant in the presence of 1,2,4-TMB.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 슈도모나스 푸티다(Pseudomonas putida) 유래 todST 오페론의 프로모터, todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 및 todT 유전자를 포함하는 재설계 단백질 발현 벡터를 제공한다.
The present invention provides Pseudomonas footage is (Pseudomonas putida) derived tod ST operon promoter, redesigned protein expression vector comprising a tod S * and tod T gene simplified by directly connecting the PAS1 domain and HK2 domain of tod S gene of .

상기 todST 오페론의 프로모터는 구체적으로 서열번호 18의 염기서열을 갖는 것이나 이에 한정되는 것은 아니다.
Specifically, the promoter of the tod ST operon is not limited to those having the nucleotide sequence of SEQ ID NO: 18.

상기 todS 유전자는 구체적으로 서열번호 19의 염기서열을 갖는 것이나 이에 한정되는 것은 아니다.
Specifically, the todS gene has a nucleotide sequence of SEQ ID NO: 19, but is not limited thereto.

상기 todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 유전자는 구체적으로 서열번호 20의 염기서열을 갖는 것이나 이에 한정되는 것은 아니다.
The tod S * gene simplified by directly connecting the PAS1 domain and HK2 domain of the S gene would tod having the nucleotide sequence of SEQ ID NO: 20 Specifically, the present invention is not limited thereto.

상기 todT 유전자는 구체적으로 서열번호 21의 염기서열을 갖는 것이나 이에 한정되는 것은 아니다.
Specifically, the tod T gene has a nucleotide sequence of SEQ ID NO: 21, but is not limited thereto.

상기 todST 오페론의 프로모터, todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 유전자, 및 todT 유전자는 각각 서열번호 18, 서열번호 20 , 및 서열번호 21의 염기서열에서 동일한 활성을 갖는 한, 하나 또는 몇 개의 염기가 첨가, 결실, 치환되는 염기서열로 구성될 수 있다.
The tod promoter of ST operon, tod S gene simplified tod S * gene is connected directly to the PAS1 domain and HK2 domain of, and tod T gene is the same in the base sequences of SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 21 As long as it has activity, one or several bases may be composed of base sequences added, deleted or substituted.

상기 todST 오페론의 프로모터, todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 유전자, 및 todT 유전자는 각각 서열번호 18, 서열번호 20 , 및 서열번호 21의 염기서열에 80% 이상의 상동성, 보다 구체적으로 90% 이상의 상동성, 가장 구체적으로 95%, 96%, 97%, 98%, 99% 또는 99.5% 이상의 상동성을 갖는 염기서열로 구성되는 것이나 이에 한정되는 것은 아니다.
The tod ST operon promoter, tod S tod the PAS1 domain and directly to a simplification of the HK2 domain of the gene of S * gene, and tod T gene are shown in SEQ ID No. 18, SEQ ID NO: 20, and the nucleotide sequence 80 of SEQ ID NO: 21 But is not limited to, a nucleotide sequence having at least 90% homology, more particularly 90% homology, and most particularly 95%, 96%, 97%, 98%, 99% or 99.5% .

상기 재설계 단백질 발현 벡터는 도 1b에 기재된 개열지도로 표시되는 발현 벡터일 수 있으나 이에 한정되는 것은 아니며 동일한 활성을 갖는 한 todT 유전자, todST 오페론의 프로모터 및 todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 유전자의 삽입 위치가 다른 모든 벡터일 수 있다.
The redesigned protein expression vector may be an expression vector represented by the cleavage map shown in FIG. 1B, but is not limited thereto. The tod T gene, the promoter of the tod ST operon, and the PAS1 domain and the HK2 domain of the tod S gene, May be all other vectors at the insertion point of the simplified tod S * gene.

상기 재설계 단백질 발현 벡터는 U2 벡터 또는 서열번호 23의 염기서열로 표시되는 발현 벡터일 수 있으나 동일한 활성을 갖는 한, 하나 또는 몇 개의 염기가 첨가, 결실, 치환되는 염기서열로 구성될 수 있고, 삽입된 todT 유전자, todST 오페론의 프로모터 및 todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 유전자의 위치가 다른 모든 벡터일 수 있다.
The redesigned protein expression vector may be a U2 vector or an expression vector represented by the nucleotide sequence of SEQ ID NO: 23, but may be composed of a base sequence in which one or several bases are added, deleted, or substituted as long as they have the same activity, is inserted tod T gene, ST tod operon promoter and the S gene of the tod PAS1 the location of the domain and the tod genes S * a simplified direct HK2 domain can be any other vector.

또한, 본 발명은 상기 재설계 단백질 발현 벡터가 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터와 연결된 표지 단백질 발현 카세트가 숙주세포의 염색체에 삽입된 표지 단백질 발현 재조합 균주에 형질전환된 난분해성 유해 방향족 화합물 검출용 인공바이오센서를 제공한다.
In addition, the present invention provides a recombinant strain expressing a marker protein, wherein the redesigned protein expression vector is linked to a promoter of a tod X gene derived from Pseudomonas putida into a chromosome of a host cell, An artificial biosensor for detecting a harmful aromatic compound is provided.

상기 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터는 구체적으로 서열번호 22의 염기서열을 갖는 것이나 이에 한정되는 것은 아니다.
The promoter of the tod X gene derived from Pseudomonas putida is specifically but not limited to those having the nucleotide sequence of SEQ ID NO: 22.

상기 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터는 서열번호 22의 염기서열에서 동일한 활성을 갖는 한, 하나 또는 몇 개의 염기가 첨가, 결실, 치환되는 염기서열로 구성될 수 있다.
The promoter of the tod X gene derived from Pseudomonas putida may be composed of a nucleotide sequence in which one or several bases are added, deleted or substituted as long as they have the same activity in the nucleotide sequence of SEQ ID NO: 22.

상기 슈도모나스 푸티다(Pseudomonas putida) 유래 todX 유전자의 프로모터는 서열번호 22의 염기서열에 80% 이상의 상동성, 보다 구체적으로 90% 이상의 상동성, 가장 구체적으로 95%, 96%, 97%, 98%, 99% 또는 99.5% 이상의 상동성을 갖는 염기서열로 구성되는 것이나 이에 한정되는 것은 아니다.
The promoter of the Pseudomonas putida- derived tod X gene has 80% or more homology, more specifically 90% or more homology, most specifically 95%, 96%, 97%, 98% or more homology to the nucleotide sequence of SEQ ID NO: , 99% or 99.5% homology with the nucleotide sequence shown in SEQ ID NO.

상기 표지 단백질은 구체적으로 형광단백질(GFP), 슈퍼폴딩 형광단백질(sfGFP), 알칼라인 포스파타제(alkaline phosphatase), 반딧불 루시페라제(firefly luciferase), 생물발광 미생물(bioluminescent microorganism)[비브리오(Vibrio), 제노르하브두스(Xenorhabdus), 포토르하브두스(Photorhabdus), 및 포토박테리움(Photobacterium) 등] 유래 발광효소, 및 베타갈락토시다아제(β-galactosidase)로 구성된 군으로부터 선택되는 것이며, 보다 구체적으로는 형광단백질(GFP), 또는 슈퍼폴딩 형광단백질(sfGFP)이나 이에 한정되는 것은 아니다.
The labeling protein specifically includes a fluorescent protein (GFP), a superfolding fluorescent protein (sfGFP), an alkaline phosphatase, a firefly luciferase, a bioluminescent microorganism ( Vibrio , Nord Havre Douce (Xenorhabdus), picture Le Havre Douce (Photorhabdus), and photo tumefaciens (Photobacterium), etc.] derived from a light emitting enzyme, and beta-galactosidase will be selected from the group consisting of (β-galactosidase), and more particularly (GFP), or superfolding fluorescent protein (sfGFP), but are not limited thereto.

상기 난분해성 유해 방향족 화합물은 BTEX계 화합물[벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbenzene), 자일렌(Xylene)]인 것이고, 구체적으로 o-자일렌(o-xylene)과 1,2,4-트리메틸벤젠(1,2,4-trimethylbenzene)이나 이에 한정되는 것은 아니다.
The recalcitrant harmful aromatic compound is a BTEX compound [benzene, toluene, ethylbenzene, xylene] and specifically includes o-xylene and 1, But is not limited to, 2,4-trimethylbenzene.

상기 숙주세포는 원핵 미생물 또는 진핵 미생물일 수 있으며, 구체적으로 상기 원핵 미생물은 대장균(E. coli) 또는 슈도모나스 푸티다(Pseudomonas putida)일 수 있으나 이에 한정되는 것은 아니다.
The host cell may be a prokaryotic microorganism or a eukaryotic microorganism. Specifically, the prokaryotic microorganism may be E. coli or Pseudomonas putida , but is not limited thereto.

또한, 본 발명은 하기와 같은 난분해성 유해 방향족 화합물 검출용 인공바이오센서의 제조방법을 제공한다. The present invention also provides a method for producing an artificial biosensor for detecting a harmful aromatic compound as described below.

i) P. putida F1의 todST 오페론의 프로모터 단편을 확보하는 단계;i) securing a promoter fragment of the todST operon of P. putida F1;

ii) 단계 i)의 확보된 PtodST 단편을 벡터에 클로닝하는 단계;ii) cloning the ensured Ptodst fragment of step i) into a vector;

iii) PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 TodS* 감지 단백질 및 TodT 조절 단백질을 번역하는 todS* 및 todT 유전자를 확보하는 단계;iii) securing the tod S * and tod T genes to translate the simplified TodS * sense protein and the TodT regulatory protein directly linked to the PAS1 domain and the HK2 domain;

iv) 단계 iii)의 확보된 todS*T 유전자를 todST 오페론 프로모터 포함 벡터에 클로닝하는 단계;iv) cloning the obtained tod S * T gene of step iii) into a vector containing tod ST operon promoter;

v) TodS*T 시스템에 의하여 그 발현이 조절되는 todX 유전자의 프로모터 서열을 확보하는 단계;v) securing the promoter sequence of the tod X gene whose expression is regulated by the TodS * T system;

vi) 단계 v)의 확보된 서열을 이용하여 표지 단백질 앞에 연결하여 표지 단백질 발현 카세트를 제작하는 단계;vi) constructing a labeled protein expression cassette by ligating to the labeled protein using the obtained sequence of step v);

vii) 단계 vi)의 표지 단백질 발현 카세트를 염색체상의 특정부위에 단일카피로 삽입하여 안정적인 표지 단백질 발현 재조합 균주를 제조하는 단계; 및 vii) inserting a labeled protein expression cassette of step vi) into a specific site on the chromosome in a single copy to prepare a stable recombinant expression vector for a labeled protein; And

viii) 단계 iv)의 난분해성 유해 방향족 화합물 감지용 재설계 단백질 발현 벡터를 단계 vii)의 표지 단백질 발현 재조합 균주에 형질전환하는 단계를 포함하는 난분해성 유해 방향족 화합물 검출용 인공바이오센서의 제조방법을 제공한다.
viii) a method for producing an artificial biosensor for detecting a malodorous aromatic compound, which comprises the step of transforming a redesigned redesigned harmful aromatic compound detection compound of step iv) into a recombinant strain expressing a labeled protein of step vii) to provide.

또한, 본 발명은In addition,

1) 피검시료가 처리된 난분해성 유해 방향족 화합물 검출용 인공바이오센서의 표지 단백질의 발현수준을 측정하는 단계; 및1) measuring the expression level of the labeled protein of the artificial biosensor for detecting the degradable harmful aromatic compound treated with the test sample; And

2) 단계 1)의 표지 단백질의 발현수준이 대조군에 비하여 증가하는 경우, 피검시료 내 난분해성 유해 방향족 화합물이 포함되었음을 판정하는 단계를 포함하는 난분해성 유해 방향족 화합물의 검출 방법을 제공한다.
2) a step of judging that a harmful aromatic compound is contained in the test sample when the level of expression of the marker protein of step 1) is increased as compared with that of the control sample.

상기 검출 방법에 있어서, 단계 1)의 피검시료는 구체적으로 환경에서 유래한 물질이나 이에 한정되는 것은 아니다.
In the above detection method, the test sample in step 1) is a substance derived specifically from the environment, but is not limited thereto.

상기 방법에 있어서, 단계 2)의 발현 수준은 구체적으로 광전자증배기(photomultipliers), 전하결합장치(charge coupled devices), 발광측정기(luminometers), 광측정기(photometers), 광섬유케이블 및 액체섬광 카운터(liquid scintillation counter)로 구성된 군으로부터 선택되는 어느 하나로 측정하는 것이나 이에 한정되는 것은 아니다.
In this method, the level of expression in step 2) is specifically determined by photomultipliers, charge coupled devices, luminometers, photometers, fiber optic cables and liquid scintillation counter scintillation counter), but the present invention is not limited thereto.

본 발명의 형질전환 미생물은 다양한 농도의 난분해성 유해 방향족 화합물이 포함된 배양 조건에서 표지 단백질의 발현을 측정한 결과, 고감도로 해당 방향족 화합물을 검출할 수 있음을 확인하였으므로, 난분해성 유해 방향족 화합물에 대해 매우 특이적이고 민감성이 높으므로, 본 발명의 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 유전자와 슈도모나스 푸티다 유래 todT 유전자가 슈도모나스 푸티다 유래 todST 오페론의 프로모터에 연결된 재설계 단백질 발현 벡터가 슈도모나스 푸티다 유래 todX 유전자의 프로모터와 연결된 표지 단백질 발현 카세트가 염색체에 삽입된 표지 단백질 발현 재조합균주에 형질전환된 형질전환체는 난분해성 유해 방향족 화합물 검출용 인공바이오센서로 유용하게 사용될 수 있다.
As a result of measuring the expression of the labeled protein in the culturing conditions containing the harmful aromatic compounds having various concentrations of the transformed microorganism of the present invention, it was confirmed that the corresponding aromatic compound can be detected with high sensitivity, The simplified tod S * gene and the Pseudomonas putida-derived tod T gene, which are directly linked to the PAS1 domain and the HK2 domain of the Pseudomonas putida- derived tod S gene of the present invention, The redesigned protein expression vector linked to the promoter of the multi-derived tod ST operon is linked to the promoter of the tod X gene derived from Pseudomonas putida. The transformant transformed into the recombinant strain expressing the tagged protein in which the cassette is inserted into the chromosome is the degradable Artificial Biosensor for Detecting Aromatic Compounds It can be effectively used.

본 발명의 구체적인 실시예에서, 대조군 벡터(pBBRBB-proTodST)를 제작하기 위해, 프라이머 쌍을 이용하여 todST 유전자의 프로모터를 PCR로 증폭하여 제한 효소로 처리한 후 동일 제한효소로 처리한 벡터와 연결(ligation) 하였다. 이 후 상기 프로모터가 삽입된 벡터(pBBRBB-PtodST)를 제한효소로 처리하고, 동일한 제한 효소로 처리한 todST 유전자와 연결하여 pBBRBB-proTodST를 제작하였다(도 1a).
In a specific embodiment of the present invention, in order to prepare a control vector (pBBRBB-proTODST), the promoter of the tod ST gene was amplified by PCR using a primer pair, treated with a restriction enzyme, and ligated with a vector treated with the same restriction enzyme lt; / RTI > Then, the vector (pBBRBB-PtodST) in which the promoter was inserted was treated with a restriction enzyme and ligated to the tod ST gene treated with the same restriction enzyme to prepare pBBRBB-proTodST (FIG. 1A).

또한 본 발명의 구체적인 실시예에서, 본 발명의 인공바이오센서 제작에 사용되는 U2 벡터를 제작하기 위해, pEXT20-TodST(공개특허 10-2013-0054669)를 주형으로 프라이머 쌍을 사용하여 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 todS* 및 todT 유전자를 포함하는 유전자 서열을 증폭하고, 제한효소를 처리하여 자가-연결(self-ligation) 하였다. 이 후 상기 구축된 벡터에 제한효소를 처리하여 todS*T(insert)유전자 부분을 분리, 정제하고, 상기 프로모터가 삽입된 벡터(pBBRBB-PtodST)를 제한 효소로 처리한 후 연결하여 U2를 제작하였다.
In a specific embodiment of the present invention, in order to produce a U2 vector used in the artificial biosensor production of the present invention, pEXT20-TodST (Patent No. 10-2013-0054669) The gene sequences containing the simplified tod S * and tod T genes directly linked to the domains were amplified and self-ligated by restriction enzyme treatment. Then, the constructed vector was treated with a restriction enzyme to isolate and purify the tod S * T (insert) gene portion. The vector (pBBRBB-PtodST) inserted with the promoter was treated with a restriction enzyme and ligated to produce U2 Respectively.

또한 본 발명의 구체적인 실시예에서, 슈도모나스 푸티다(P. putida) todX 유전자의 프로모터에 표지 단백질 유전자를 결합하기 위해, todX 프로모터 부위와 표지 단백질 유전자를 각각 PCR 증폭하여 정제한 후 다시 퓨전(fusion) PCR하여 PtodX::표지 단백질 유전자 발현 카세트를 구축하였고 염색체 삽입용 벡터에 클로닝하였다. 이 후 상기 벡터를 P. putida KT2440에 형질 전환하였다. 상기 형질전환체로부터 PtodX::표지 단백질 유전자 발현 카세트가 단일카피로 숙주세포의 염색체에 안정적으로 도입된 재조합균주 P. putida KT2440 ΔmexC::PtodX(LS)::sfgfp 균주를 선별하였다.
Also, in a specific embodiment of the present invention, in order to bind the marker protein gene to the promoter of Pseudomonas putida tod X gene, the tod X promoter region and the marker protein gene are respectively amplified by PCR amplification, fusion) PCR to construct a P tod X :: tagged gene expression cassette and cloned into a vector for chromosome insertion. The vector was then transformed into P. putida KT2440. Body from the transformed transition P tod X :: marker protein gene expression cassette in a single copy stably introduced into the chromosome of the host cell recombinant strain P. putida KT2440 Δ mex C :: P tod X (LS) :: sfgfp the strain Respectively.

또한 본 발명의 구체적인 실시예에서, 상기 클로닝된 pBBRBB-proTodST 및 U2를 PtodX::표지 단백질 유전자 발현 카세트가 염색체에 삽입된 슈도모나스 푸티다(Pseudomonas putida) KT2440 ΔmexC::PtodX(LS)::sfgfp 균주에 형질전환 한 후, 난분해성 유해 방향족 화합물에 대한 검출능력을 확인하여, U2 벡터 형질전환체에서 난분해성 유해 방향족 화합물에 대한 검출능력이 대조군에 비해 현저하게 강한 것을 관찰할 수 있었다(도 2a, 2b).
Also in a particular embodiment of the invention, the cloning of pBBRBB-proTodST and U2 P tod X :: marker protein gene expression cassette that is inserted into the chromosome of Pseudomonas footage (Pseudomonas putida) KT2440 Δ mex C :: P tod X ( LS) :: sfgfp , the detection ability of the degradable aromatic compound was confirmed, and the detection ability of the degradable aromatic compound in the U2 vector transformant was remarkably stronger than that of the control group (Figs. 2a and 2b).

이하, 본 발명을 실시예에 의해 상세히 설명한다.
Hereinafter, the present invention will be described in detail with reference to examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

<실시예 1> 벡터 구축&Lt; Example 1 >

1. pBBRBB-proTodST1. pBBRBB-proTODST

P. putida F1의 todST 오페론의 프로모터(todST 프로모터)를 pBBRBB-eGFP 벡터에 클로닝 하기 위하여, 먼저 P. putida F1의 유전체(genomic) DNA를 주형으로 <표 1>의 프라이머 쌍 PtodST-F와 PtodST-R을 이용하여 todST 유전자의 프로모터 0.5 Kb를 PCR 증폭(PCR 조건: 94℃ 30초, 55℃ 30초, 72℃ 30초, 30 cycle)하고, NsiI 및 XbaI 제한효소를 처리한 후, 겔 정제(gel purification)로 순수 정제하고 동일 제한효소로 처리한 후 겔 정제한 pBBRBB-eGFP 벡터와 연결(ligation) 하였다. 상기 벡터를 대장균 DH5α에 형질전환(transformation)을 하고, 형질전환체(transformant)에서 PCR 프라이머 쌍 PtodST-F와 PtodST-R을 이용하여 확인 PCR에 의해 양성 클론(positive clone)을 선별하여 pBBRBB-PtodST를 확보하였다. 이 후 pEXT20-todST(공개특허 10-2013-0054669)에 SacI 및 HindIII 제한효소를 처리하여 todST 오페론(3.6 kb) 단편을 겔 정제(gel purification)로 분리하여 동일한 제한효소로 처리한 pBBRBB-PtodST 벡터와 연결(ligation)하여 대장균 DH5α에 형질전환(transformation) 후, 형질전환체(transformant)에서 프라이머 쌍 PtodST-F와 todST-R을 이용하여 확인 PCR에 의해 양성 클론(positive clone)을 선별하여 pBBRBB-proTodST를 확보하였다(도 1a).
In order to clone the promoter of the todST operon of P. putida F1 ( tod ST promoter) into the pBBRBB-eGFP vector, first, the genomic DNA of P. putida F1 was used as a template and the pair of primers PtodST-F and PtodST -R, PCR amplification (PCR conditions: 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 30 seconds, 30 cycles) of the promoter of the tod ST gene was performed and the cells were treated with Nsi I and Xba I restriction enzymes , Purified pure with gel purification, treated with the same restriction enzyme, and ligated with gel-purified pBBRBB-eGFP vector. The vector was transformed into Escherichia coli DH5α and a positive clone was selected by PCR using a pair of PCR primers PtodST-F and PtodST-R in a transformant to obtain pBBRBB-PtodST Respectively. Then, the tod ST operon (3.6 kb) fragment was treated with Sac I and Hind III restriction enzymes in pEXT20-todST (Patent No. 10-2013-0054669), and purified by gel purification, and the same restriction enzyme-treated pBBRBB -PtodST vector to transform E. coli DH5α and then positive clone was selected by confirmation PCR using primer pair PtodST-F and todST-R in a transformant. To obtain pBBRBB-proTODST (Fig. 1A).

프라이머 서열(sequence)Primer sequence 프라이머primer 프라이머 서열(sequence) (5´ to 3´)The primer sequence (5'to 3') 표적Target todSe-D (서열번호 1)todSe-D (SEQ ID NO: 1) ATAAGATCTCAGCAACAACTTGTGTACGTT (BglII)
ATA AGATCT CAGCAACAACTTGTGTACGTT ( Bgl II)
pEXT20-U2pEXT20-U2
todSe-U2 (서열번호 2)todSe-U2 (SEQ ID NO: 2) ATAAGATCTCTGCTCCAATTCCTGGTTCTT (BglII)
ATA AGATCT CTGCTCCAATTCCTGGTTCTT ( Bgl II)
pEXT20-U2pEXT20-U2
PtodST-F (서열번호 3)PtodST-F (SEQ ID NO: 3) TATATGCATCTCGAGAAACGAGCCCAGTAC (NsiI)
TAT ATGCAT CTCGAGAAACGAGCCCAGTAC ( Nsi I)
P. putida F1 P. putida F1
PtodST-R (서열번호 4)PtodST-R (SEQ ID NO: 4) CCCTCTAGAAGCTTGCTATTACCTCTCTTCCACC (XbaI)
CCC TCTAGA AGCTTGCTATTACCTCTCTTCCACC ( Xba I)
P. putida F1 P. putida F1
todST-R (서열번호 5)todST-R (SEQ ID NO: 5) TATAAGCTTCTATTCCAGGCTATCCTT (HindIII)
TAT AAGCTT CTATTCCAGGCTATCCTT ( Hind III)
P. putida F1 P. putida F1

* 밑줄친 서열은 각 제한효소의 제한부위(restriction site)를 표시
* Underlined sequences indicate the restriction site of each restriction enzyme

2. U22. U2

2-1. pEXT20-U22-1. pEXT20-U2

기 구축된 pEXT20-todST(공개특허 10-2013-0054669)를 주형으로 프라이머 쌍 todSe-D와 todSe-U2 를 사용하여 TodS의 HK1, RR1, PAS2 도메인에 해당하는 서열을 제외한 나머지 서열을 PCR 증폭(PCR 조건: 94℃ 30초, 53℃ 30초, 72℃ 7분을 30 cycle)한 후 겔 정제(gel purification)하고 BglII 제한효소로 처리하여 자가-연결(self-ligation) 하였다. 이 후 대장균 DH5α에 형질전환(transformation)하여 양성 클론(positive clone)을 선별하고 염기서열 분석을 통해 TodS의 PAS1 도메인과 HK2 도메인이 직접 연결된 TodS* 변이 단백질과 TodT를 발현하는 pEXT20-U2 벡터를 확보하였다.
Except for the sequence corresponding to the HK1, RR1, and PAS2 domains of TodS using primers pDT20-todST (Patent No. 10-2013-0054669) as primers and todSe-D and todSe-U2 as primers, PCR conditions: 94 ° C. for 30 seconds, 53 ° C. for 30 seconds, and 72 ° C. for 7 minutes for 30 cycles), followed by gel purification and self-ligation with Bgl II restriction enzyme. Subsequently, a positive clone was selected by transformation into E. coli DH5α, and a pSET20-U2 vector expressing the TodS * mutant protein directly linked to the PAS1 domain and the HK2 domain of TodS through the base sequence analysis was obtained Respectively.

2-2. U2 2-2. U2

위에서 구축된 pEXT20-U2에 SacI 및 HindIII 제한효소를 처리하여 todS*T 오페론 단편을 아가로즈젤에서 분리한 후 순수정제하였다. 이렇게 확보한 DNA 단편을 SacI 및 HindIII 제한효소로 처리한 후 아가로즈젤에서 분리 정제한 pBBRBB-PtodST 벡터단편과 연결(ligation)하고, 대장균 DH5α에 형질전환(transformation)하여 양성 클론(positive clone)을 선별한 후 염기서열 분석을 통해 todST 프로모터를 이용하여 TodS* 단백질과 TodT 단백질을 발현하는 U2 벡터를 확보하였다(도 1b).
The pEXT20-U2 constructed above was treated with Sac I and Hind III restriction enzymes to separate the tod S * T operon fragment from the agarose gel and purified pure. The thus-obtained DNA fragment was treated with Sac I and Hind III restriction enzymes, ligated with pBBRBB-PtodST vector fragment isolated and purified from agarose gel, and transformed into E. coli DH5α to obtain a positive clone ). Then, U2 vector expressing TodS * protein and TodT protein was obtained using the tod ST promoter through sequencing (FIG. 1b).

<실시예 2> &Lt; Example 2 > P. putidaP. putida KT2440에서 슈퍼 폴딩 GFP(super folding GFP, sfGFP) 발현 Expression of superfolding GFP (sfGFP) in KT2440

본 발명자들은 P. putida KT2440의 염색체에 표지 단백질 발현 카세트를 삽입하고자 벡터를 구축하였다.
The present inventors constructed a vector to insert a marker protein expression cassette into the chromosome of P. putida KT2440.

구체적으로, P. putida KT2440의 mexC 유전자 위치에 표지 단백질 발현 카세트를 삽입하기 위하여 먼저 P. putida KT2440의 유전체(genomic) DNA를 주형으로 <표 2>의 프라이머 쌍 mexCn-u와 mexCn-d 그리고 mexCc-u와 mexCc-d을 사용하여 mexC 유전자의 N-말단과 C-말단 절편 0.5 kb를 각각 PCR 증폭(PCR 조건: 94℃ 30초, 55℃ 30초, 72℃ 30초, 30 cycle)하였다. PCR 산물을 정제한 후 N-말단 절편은 EcoRI 및 BamHI 제한효소로 처리하였고 c-말단 절편은 BamHI 및 SphI 제한효소로 처리한 뒤 겔 용출(gel elution) 하였다. 이 정제된 두 절편을 EcoRI 및 SphI 제한효소로 처리한 후 겔 정제한 pBR322 벡터에 삽입하여 pSYK124를 확보하였다. 그리고 퓨전(fusion) PCR을 통해 단백질 번역을 촉진하는 인공 비번역 선도서열이 포함된 PtodX(LS)::sfgfp 유전자 카세트(cassette)를 제작하였다. 즉 todX(LS) 유전자의 프로모터 부위는 <표 2>의 프라이머 쌍 NPtodX-F와 NPtodX-R을 사용하여 PCR 증폭하였으며, sfgfp 유전자는 프라이머 쌍 PXsfGFP-F과 sfGFP-rrnB-R을 사용하여 PCR 증폭하였다. 이 후 상기 PCR 산물들을 PCR purification kit을 사용하여 정제하였고 정제된 PCR 산물들을 주형으로 사용하고 프라이머 쌍 NPtodX-F와 sfGFP-rrnB-R을 사용하여 퓨전(fusion) PCR을 수행하였다. PCR 산물을 정제한 후 BglII 제한효소로 처리한 뒤 겔 용출(gel elution) 하였다. 이 PtodX(LS)::sfgfp 퓨전(fusion) 카세트(cassette)를 BamHI 제한효소 처리 후 탈인산화효소로 처리한 pSYK124 벡터에 삽입하여, pSYK138(6.538 kb) 벡터를 확보하였다. 상기 pSYK138을 주형으로 프라이머 쌍 mexC-F와 mexC-R을 사용하여 PCR로 증폭하여 mexC::PtodX(LS)::sfgfp::mexC 삽입 카세트(cassette)를 확보하였다. PCR 산물을 정제한 후, BglII 제한효소로 처리하고 겔 용출(gel elution) 하였으며, 이를 BamHI 제한효소로 처리한 후 탈인산화효소로 처리된 pK18mobsacB 벡터에 삽입하여 pSYK139(8.460 kb)를 확보하였다. 상기 pSYK139를 P. putida KT2440에 형질 전환한 후 1차 및 2차 재조합(recombination) 후 프라이머 쌍 ID_mexC-F와 N-PtodX-R 그리고 PtodX-sfGFP-F와 ID_mexC-N을 각각 사용하여 진단(diagnostic) PCR을 수행하여 표지단백질 발현카세트 PtodX(LS)::sfgfp가 염색체 mexC 유전자 위치에 삽입된 것을 확인하였다.
Specifically, the first P. putida KT2440 genome (genomic) DNA of the template in order to insert a marker protein expression cassette on mex C locus of P. putida KT2440 <Table 2> primer pairs mexCn-u and a-d and the mexCn mexCc-u and d, respectively mexCc-PCR amplify the N- terminus and the C- terminal fragment of 0.5 kb mex C gene using (PCR conditions: 94 ℃ 30 cho, 55 ℃ 30 cho, 72 ℃ 30 cho, 30 cycle) Respectively. After purification of the PCR product, the N-terminal fragment was treated with Eco RI and Bam HI restriction enzymes, and the c-terminal fragment was gel-eluted with Bam HI and Sph I restriction enzymes. These purified fragments were treated with Eco RI and Sph I restriction enzymes and inserted into gel purified pBR322 vector to obtain pSYK124. Then, a P tod X (LS) :: sfgfp gene cassette containing an artificial non-translational leader sequence promoting protein translation was prepared by fusion PCR. That is, the promoter region of the tod X (LS) gene was amplified by PCR using the primer pair NPtodX-F and NPtodX-R in Table 2. The sfgfp gene was amplified by PCR using the primer pair PXsfGFP-F and sfGFP-rrnB- Respectively. Then, the PCR products were purified using a PCR purification kit. Fusion PCR was performed using the purified PCR products as a template and primer pairs NPtodX-F and sfGFP-rrnB-R. The PCR product was purified, treated with Bgl II restriction enzyme, and then gel eluted. The P tod X (LS) :: sfgfp fusion cassette was inserted into pSYK124 vector treated with Bam HI restriction enzyme and dephosphorylated to obtain pSYK138 (6.538 kb) vector. The above pSYK138 was amplified by PCR using primer pair mexC-F and mexC-R as a template to obtain a mex C :: P tod X (LS) :: sfgfp :: mex C insertion cassette. The PCR products were purified, treated with Bgl II restriction enzyme, gel eluted, and then treated with Bam HI restriction enzyme and inserted into the deoxyphosphorylated pK18mobsacB vector to obtain pSYK139 (8.460 kb) . After pSYK139 was transformed into P. putida KT2440, the primer pairs ID_mexC-F and N-PtodX-R, and PtodX-sfGFP-F and ID_mexC-N were used as a diagnostic (diagnostic ) PCR was performed to obtain the labeled protein The expression cassette P tod X (LS) :: sfgfp was inserted into the chromosome mex C gene position.

프라이머 서열(sequence)Primer sequence 프라이머primer 프라이머 서열(sequence) (5´ to 3´)a Primer sequence (5 'to 3') a 표적Target mexCn-u
(서열번호 6)
mexCn-u
(SEQ ID NO: 6)
AAAGAATTCGCAAGACAGGTTCGATAAGGGTG (EcoRI)AAA GAATTC GCAAGACAGGTTCGATAAGGGTG ( Eco RI) P. putida KT2440 P. putida KT2440
mexCn-d
(서열번호 7)
mexCn-d
(SEQ ID NO: 7)
AAAGGATCCAATGCGCCCGGAGATCGG (BamHI)AAA GGATCC AATGCGCCCGGAGATCGG (Bam HI) P. putida KT2440 P. putida KT2440
mexCc-u
(서열번호 8)
mexCc-u
(SEQ ID NO: 8)
AAAGGATCCGATATCCAGCAACTCGACCCG (BamHI)AAA GGATCC GATATCCAGCAACTCGACCCG (Bam HI) P. putida KT2440 P. putida KT2440
mexCc-d
(서열번호 9)
mexCc-d
(SEQ ID NO: 9)
TTTGCATGCGTTTCTGCGCAGGCGCAACG (SphI)TTT GCATGC GTTTCTGCGCAGGCGCAACG ( Sph I) P. putida KT2440 P. putida KT2440
NPtodX-F
(서열번호 10)
NPtodX-F
(SEQ ID NO: 10)
GAAGATCTCAGGTTATCAACCTGCTCGTGG (BglII)GA AGATCT CAGGTTATCAACCTGCTCGTGG ( Bgl II) pEXT21-todST-PtodX-lacZpEXT21-todST-PtodX-lacZ
NPtodX-R
(서열번호 11)
NPtodX-R
(SEQ ID NO: 11)
AGCTGTTTCCTGTGTGATAAAGAAAGTTAAAATGCCAGCTGTTTCCTGTGTGATAAAGAAAGTTAAAATGCC pEXT21-todST-PtodX-lacZpEXT21-todST-PtodX-lacZ
PXsfGFP-F
(서열번호 12)
PXsfGFP-F
(SEQ ID NO: 12)
ATCACACAGGAAACAGCTATGAGCAAAGGTGAAGAACTGTTTACCATCACACAGGAAACAGCTATGAGCAAAGGTGAAGAACTGTTTACC pHCEIIB sfGFPpHCEIIB sfGFP
sfGFP-rrnB-R
(서열번호 13)
sfGFP-RRnB-R
(SEQ ID NO: 13)
GAAGATCTAGAGTTTGTAGAAACGCAAAAAGG (BglII)GA AGATCT AGAGTTTGTAGAAACGCAAAAAGG ( Bgl II) pHCEIIB sfGFPpHCEIIB sfGFP
ID_mexC-F
(서열번호 14)
ID_mexC-F
(SEQ ID NO: 14)
TTCGTTGCACGCCTTCCTGGTTCGTTGCACGCCTTCCTGG recombinant P. putida KT2440recombinant P. putida KT2440
ID_mexC-N
(서열번호 15)
ID_mexC-N
(SEQ ID NO: 15)
ACTGCTGGTAGATCACCCCCACTGCTGGTAGATCACCCCC recombinant P. putida KT2440recombinant P. putida KT2440
mexC-F
(서열번호 16)
mexC-F
(SEQ ID NO: 16)
GAAGATCTGCAAGACAGGTTCGATAAGGGTG (BglII)GA AGATCT GCAAGACAGGTTCGATAAGGGTG ( Bgl II) pSYK138pSYK138
mexC-R
(서열번호 17)
mexC-R
(SEQ ID NO: 17)
GAAGATCTGTTTCTGCGCAGGCGCAACG (BglII)GA AGATCT GTTTCTGCGCAGGCGCAACG ( Bgl II) pSYK138pSYK138

* 밑줄친 서열은 각 제한효소의 제한부위(restriction site)를 표시
* Underlined sequences indicate the restriction site of each restriction enzyme

<실시예 3> 인공바이오센서를 통한 난분해성 유해 방향족 화합물 감지Example 3 Detection of Hazardous Aromatic Compounds with Artificial Biosensors

본 발명자들은, 상기 클로닝된 pBBRBB-proTodST 및 U2를 슈도모나스 푸티다 (Pseudomonas putida) KT2440 ΔmexC::PtodX(LS)::sfgfp에 형질전환 한 후, o-자일렌(o-xylene) 또는 1,2,4-트리메틸벤젠(1,2,4-trimethylbenzene, 1,2,4-TMB)에 대한 검출능력을 확인하였다.
The present inventors have succeeded in transforming the cloned pBBRBB-proTODST and U2 into Pseudomonas putida KT2440? MexC :: P tod X (LS) :: sfgfp and then transformed into o-xylene or 1 , And 2,4-trimethylbenzene (1,2,4-TMB).

구체적으로, Luria-Bertani(LB) 배지(트립톤 10 g/L, 효모추출물 5 g/L, 염화나트륨 10 g/L)을 사용하여 30℃에서 18시간 이상 전배양한 슈도모나스 푸티다 KT2440 ΔmexC::PtodX(LS)::sfgfp 배양액을 원심분리하여 상등액을 제거한 후 배양액과 동일한 부피의 10% 글리세롤(glycerol)을 사용하여 세척하고 다시 10% 글리세롤(glycerol)에 1/100 부피로 농축하여 형질전환용 수용세포(competent cell)를 준비하였다. 상기 수용세포에 pBBRBB-proTodST 또는 U2 벡터를 전기천공법으로 형질전환한 후 50㎍/㎖ 카나마이신(Km)이 포함된 LB 평판배지에 도말하여 배양하였다. 각각의 단일 형질전환체를 분리하여 최종농도 50 ㎍/㎖ 카나마이신(Km)이 포함된 LB 액상배지에 접종하여 30℃에서 12시간 이상 전배양하고, 상기 전배양액을 100분의 1 부피 비로 다시 o-xylene 또는 1,2,4-TMB를 농도별로 첨가한 LB-Km 액상배지에 접종하여 30℃에서 6시간 동안 배양한 뒤 원심분리하여 세포를 회수하였다. 이 후, 배양액과 동일한 부피의 PBS(Phosphate buffered saline; NaCl 8 g/ℓ, KCl 0.2 g/ℓ, Na2HPO4 1.44 g/ℓ, KH2PO4 0.24 g/ℓ pH 7.4)로 세척한 후 동일 세포양이 되도록 PBS에 현탁한 후 멀티플레이트 리더기(SpectraMax i3, Molecular Devices; Sunnyvale, CA)를 이용하여 발광파장(excitation wavelength): 485 nm, 방출 파장(emission wavelength): 535 nm로 각 시료의 형광을 확인하였다.
Specifically, Luria-Bertani (LB) medium (tryptone 10 g / L, yeast extract 5 g / L, NaCl 10 g / L) before the cultured Pseudomonas footage or more in 30 ℃ 18 hours using KT2440 Δ mex C :: P tod X (LS) :: sfgfp culture was centrifuged to remove the supernatant, followed by washing with 10% glycerol in the same volume as the culture medium, and then concentrated to 10% glycerol in 1/100 volume To prepare a competent cell for transfection. The recipient cells were transformed with pBBRBB-proTODST or U2 vector by electroporation and cultured on LB plate medium containing 50 μg / ml kanamycin (Km). Each single transformant was isolated and inoculated into LB liquid medium containing 50 μg / ml kanamycin (Km) at a final concentration, pre-cultured at 30 ° C. for 12 hours or more, -xylene or 1,2,4-TMB was added to the LB-Km liquid medium, and cultured at 30 ° C for 6 hours, followed by centrifugation to recover the cells. Thereafter, the cells were washed with PBS (phosphate buffered saline; NaCl 8 g / l, KCl 0.2 g / l, Na 2 HPO 4 1.44 g / l, KH 2 PO 4 0.24 g / l pH 7.4) The cells were suspended in PBS so as to have the same cell amount and then excited with an excitation wavelength of 485 nm and an emission wavelength of 535 nm using a multiplate reader (SpectraMax i3, Molecular Devices; Sunnyvale, CA) Fluorescence was confirmed.

그 결과, U2 벡터 형질전환체에서 o-xylene 및 1,2,4-TMB 첨가 시 대조군에 비해 형광 세기가 현저하게 강해진 것을 관찰할 수 있었다(도 2a, 2b).As a result, it was observed that fluorescence intensity of o-xylene and 1,2,4-TMB added to the U2 vector transformant was remarkably stronger than that of the control (Figs. 2a and 2b).

<110> Korea Research Institute of Bioscience and Biotechnology <120> Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof <130> 2014p-05-010 <160> 23 <170> KopatentIn 2.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> todSe-D <400> 1 ataagatctc agcaacaact tgtgtacgtt 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> todSe-U2 <400> 2 ataagatctc tgctccaatt cctggttctt 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PtodST-F <400> 3 tatatgcatc tcgagaaacg agcccagtac 30 <210> 4 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PtodST-R <400> 4 ccctctagaa gcttgctatt acctctcttc cacc 34 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> todST-R <400> 5 tataagcttc tattccaggc tatcctt 27 <210> 6 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> mexCn-u <400> 6 aaagaattcg caagacaggt tcgataaggg tg 32 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mexCn-d <400> 7 aaaggatcca atgcgcccgg agatcgg 27 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mexCc-u <400> 8 aaaggatccg atatccagca actcgacccg 30 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mexCc-d <400> 9 tttgcatgcg tttctgcgca ggcgcaacg 29 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> NPtodX-F <400> 10 gaagatctca ggttatcaac ctgctcgtgg 30 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> NPtodX-R <400> 11 agctgtttcc tgtgtgataa agaaagttaa aatgcc 36 <210> 12 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PXsfGFP-F <400> 12 atcacacagg aaacagctat gagcaaaggt gaagaactgt ttacc 45 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> sfGFP-rrnB-R <400> 13 gaagatctag agtttgtaga aacgcaaaaa gg 32 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ID_mexC-F <400> 14 ttcgttgcac gccttcctgg 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ID_mexC-N <400> 15 actgctggta gatcaccccc 20 <210> 16 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> mexC-F <400> 16 gaagatctgc aagacaggtt cgataagggt g 31 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mexC-R <400> 17 gaagatctgt ttctgcgcag gcgcaacg 28 <210> 18 <211> 124 <212> DNA <213> todST promoter <400> 18 ctcgagaaac gagcccagta ctatttcagg tcgtccgtag ttgctcatca aaaaagtatt 60 ctcaggatga tacgagggcg tatgatctat aatgaatccg tcagaatctt gtgagtcatt 120 aaag 124 <210> 19 <211> 2937 <212> DNA <213> todS <400> 19 atgagctcct tggatagaaa aaagcctcaa aatagatcga aaaataatta ttataatatc 60 tgcctcaagg agaaaggatc tgaagagctg acgtgtgaag aacatgcacg catcatattt 120 gatgggctct acgagtttgt gggccttctt gatgctcatg gaaatgtgct tgaagtgaac 180 caggtcgcat tggagggggg cgggattact ctggaagaaa tacgagggaa gccattctgg 240 aaggcgcgtt ggtggcaaat ttcaaaaaaa accgaggcga cccaaaagcg acttgttgaa 300 actgcatcat ccggtgaatt tgttcgctgt gatgttgaga ttcttggaaa atcaggtgga 360 agagaggtaa tagccgtcga tttttcattg ctgccaattt gcaatgaaga agggagcatt 420 gtttaccttc ttgcggaagg gcgcaatatt accgataaga agaaagccga ggccatgctg 480 gcgttgaaga accaggaatt ggagcagtcg gttgagtgta tccgaaaact cgataatgcg 540 aagagtgatt tctttgccaa ggtgagccat gagttgcgca ctccgctgtc tttgattcta 600 gggccactgg aagccgttat ggcggcagag gctgggcgtg aatcgccgta ttggaagcag 660 tttgaggtca ttcagcgtaa tgcaatgacc ctgttgaaac aggttaacac gctgcttgac 720 ttggcgaaaa tggacgcccg gcagatgggg ctttcctatc ggcgagccaa tcttagtcag 780 ctcacccgta ctattagctc gaattttgaa ggaatagccc agcaaaaatc aataacgttc 840 gatacaaaac tgcctgtaca gatggtcgct gaggtggatt gtgagaaata cgaacgcatt 900 atccttaact tgctttccaa tgcgtttaaa ttcacccctg acggggggct tatccgttgc 960 tgtcttagtt tgagtcgacc aaattatgcc ttggttactg tatctgatag cgggccgggt 1020 attcctcctg cactgcgtaa agaaatattt gaacgtttcc accagctaag ccaggaaggt 1080 caacaagcta cgcggggtac aggcttgggg ctttccattg tgaaagaatt cgttgaattg 1140 caccgtggaa caatttctgt aagtgatgcc ccgggcgggg gggcgctttt tcaggtaaag 1200 ctgccgctga atgctcctga aggtgcttat gttgcgagta acaccgcgcc gcgaagagat 1260 aatcctcagg tcgtggatac ggatgagtac cttttgctgg cgcccaatgc ggaaaatgaa 1320 gccgaggtgc ttccatttca atccgaccag cctcgggtgc taatcgttga agataaccct 1380 gatatgcgtg gttttataaa ggactgtctc agtagcgact atcaagttta tgttgcaccc 1440 gacggtgcaa aggcattgga gttgatgtca aacatgccgc cagacctgtt gattacagac 1500 ctgataatgc ctgttatgag cggcgatatg ctggttcacc aagtgcgtaa gaaaaatgaa 1560 ctttcacata tcccgatcat ggtgctgtcg gccaagtcag acgcagaact gcgtgtgaaa 1620 ttgctctccg agtcggtgca ggactttctt cttaagccat tttctgctca tgagctacga 1680 gcgcgtgtaa gcaatctggt atccatgaag gtggcaggcg atgcgttgcg taaggagctt 1740 tccgatcagg gggatgatat tgcgatactt actcaccgtc tgatcaaaag tcgccatcgt 1800 cttcagcaga gtaacatcgc attatccgcc tcggaagcgc gttggaaagc agtgtatgaa 1860 aactctgcgg ccggtattgt actgaccgac ccggaaaacc gaatactcaa cgccaatcct 1920 gcatttcaac gcattaccgg atatggggaa aaggatttgg agggactttc catggagcaa 1980 ttgactccat ctgacgaaag cccacagata aagcagcgtc tggccaattt gcttcagggt 2040 gggggagcgg aatacagtgt ggagcgctcc tatctatgca aaaatggttc tacgatttgg 2100 gccaatgcga gtgtctcgct gatgcctcaa cgtgtcggtg aatctccagt tatactgcag 2160 atcatcgatg acatcactga gaagaaacaa gcacaggaaa atcttaacca attgcagcaa 2220 caacttgtgt acgtttcccg atcagctacg atgggtgaat ttgcagccta tattgcacac 2280 gagataaacc aaccgctctc ggcgatcatg accaatgcca atgctggcac acgttggtta 2340 ggtaatgagc catctaacat cccagaggct aaagaggcac tggctcgcat tatccgagat 2400 tccgaccgcg ctgcagaaat tatccgtatg gtacgctcct tcctgaagcg tcaagaaacg 2460 gtgctgaaac cgattgatct aaaagcactg gtaactgata caagcctgat acttaaggcc 2520 cctagtcaga ataacagtgt caatttggat gttgttgcgg atgatgaact ccctgagata 2580 tggggggatg gtgtacagat ccagcagttg ataataaatc tggctatgaa cgctattgaa 2640 gcgatcagcc aagccgactg tgaaaccagg cagctaaccc tgtcattctc aggcaatgat 2700 acaggtgatg cgcttgttat ctcagtgaaa gatacaggtc caggtatttc agagaggcag 2760 atggcgcagt tgttcaacgc attctacacc acaaaaaaag aagggcttgg tatgggattg 2820 gcaatctgtc ttacaatcac ggaagtgcat aacggtaaaa tatgggttga gtgcccgccc 2880 gctgggggtg cttgtttcct ggtaagtatc cctgccagac agggctccgg cacatga 2937 <210> 20 <211> 1236 <212> DNA <213> Artificial Sequence <220> <223> todS* <400> 20 atgagctcct tggatagaaa aaagcctcaa aatagatcga aaaataatta ttataatatc 60 tgcctcaagg agaaaggatc tgaagagctg acgtgtgaag aacatgcacg catcatattt 120 gatgggctct acgagtttgt gggccttctt gatgctcatg gaaatgtgct tgaagtgaac 180 caggtcgcat tggagggggg cgggattact ctggaagaaa tacgagggaa gccattctgg 240 aaggcgcgtt ggtggcaaat ttcaaaaaaa accgaggcga cccaaaagcg acttgttgaa 300 actgcatcat ccggtgaatt tgttcgctgt gatgttgaga ttcttggaaa atcaggtgga 360 agagaggtaa tagccgtcga tttttcattg ctgccaattt gcaatgaaga agggagcatt 420 gtttaccttc ttgcggaagg gcgcaatatt accgataaga agaaagccga ggccatgctg 480 gcgttgaaga accaggaatt ggagcagaga tctcagcaac aacttgtgta cgtttcccga 540 tcagctacga tgggtgaatt tgcagcctat attgcacacg agataaacca accgctctcg 600 gcgatcatga ccaatgccaa tgctggcaca cgttggttag gtaatgagcc atctaacatc 660 ccagaggcta aagaggcact ggctcgcatt atccgagatt ccgaccgcgc tgcagaaatt 720 atccgtatgg tacgctcctt cctgaagcgt caagaaacgg tgctgaaacc gattgatcta 780 aaagcactgg taactgatac aagcctgata cttaaggccc ctagtcagaa taacagtgtc 840 aatttggatg ttgttgcgga tgatgaactc cctgagatat ggggggatgg tgtacagatc 900 cagcagttga taataaatct ggctatgaac gctattgaag cgatcagcca agccgactgt 960 gaaaccaggc agctaaccct gtcattctca ggcaatgata caggtgatgc gcttgttatc 1020 tcagtgaaag atacaggtcc aggtatttca gagaggcaga tggcgcagtt gttcaacgca 1080 ttctacacca caaaaaaaga agggcttggt atgggattgg caatctgtct tacaatcacg 1140 gaagtgcata acggtaaaat atgggttgag tgcccgcccg ctgggggtgc ttgtttcctg 1200 gtaagtatcc ctgccagaca gggctccggc acatga 1236 <210> 21 <211> 621 <212> DNA <213> todT <400> 21 atgagtgatc gggcatctgt tatctatatc ctcgatgacg acaatgcagt actggaagca 60 ctgagcagct tggtgcgttc aatcggcctg agtgtcgagt gtttttcatc cgctagcgta 120 ttcctgaacg atgtcaatcg ctctgcctgt ggctgtctaa ttttggatgt ccgtatgccc 180 gagatgagcg ggttggatgt gcaacgacaa ctgaaagagc ttggcgagca aatccccatt 240 atttttatca gcggccacgg tgatattccg atggcagtca aagcgatcaa ggcgggtgcg 300 gtagacttct tcactaaacc ttttcgagaa gaggagctgc ttggcgctat tcgcgccgcg 360 ctgaagttgg cgccccagca gagatcaaac gctccccgag tcagcgagct taaagagaat 420 tacgaaagcc tcagcaaacg cgagcaacag gtgcttaagt tcgtcttgcg aggatatcta 480 aacaagcaga cggctctaga gcttgatata tcggaagcaa cagtgaaagt gcaccgccat 540 aatatcatga ggaaaatgaa agtatcttca atccaggatc tggttcgagt aactgagcgg 600 ctcaaggata gcctggaata g 621 <210> 22 <211> 366 <212> DNA <213> todX promoter <400> 22 ccgggatcaa cgcattgagc gccaccagca tgttcaggtc tgaggttttc atcgacatca 60 ggttatcaac ctgctcgtgg acctgaggga aactgccgtg gcggcgacgg ggcttgcgcg 120 taagcccccg ctatacgacc agcctgttcg aaagccgcaa agtgcttagg tttgggtgca 180 tatccatcag aagcggcata aaccatcgtt tatcacagtt aaactttggt tttctaagtt 240 gcgatagcca tataaaccca taagccaaaa aacaatattt cccagggcgt gattgtaata 300 ctgtgcgtgc tctaaggcgg tgtttgccta cttcacttta taaaaaaaat aagatgtgga 360 aggaga 366 <210> 23 <211> 5972 <212> DNA <213> Artificial Sequence <220> <223> U2 <400> 23 atgcatctcg agaaacgagc ccagtactat ttcaggtcgt ccgtagttgc tcatcaaaaa 60 agtattctca ggatgatacg agggcgtatg atctataatg aatccgtcag aatcttgtga 120 gtcattaaag atgagctcct tggatagaaa aaagcctcaa aatagatcga aaaataatta 180 ttataatatc tgcctcaagg agaaaggatc tgaagagctg acgtgtgaag aacatgcacg 240 catcatattt gatgggctct acgagtttgt gggccttctt gatgctcatg gaaatgtgct 300 tgaagtgaac caggtcgcat tggagggggg cgggattact ctggaagaaa tacgagggaa 360 gccattctgg aaggcgcgtt ggtggcaaat ttcaaaaaaa accgaggcga cccaaaagcg 420 acttgttgaa actgcatcat ccggtgaatt tgttcgctgt gatgttgaga ttcttggaaa 480 atcaggtgga agagaggtaa tagccgtcga tttttcattg ctgccaattt gcaatgaaga 540 agggagcatt gtttaccttc ttgcggaagg gcgcaatatt accgataaga agaaagccga 600 ggccatgctg gcgttgaaga accaggaatt ggagcagaga tctcagcaac aacttgtgta 660 cgtttcccga tcagctacga tgggtgaatt tgcagcctat attgcacacg agataaacca 720 accgctctcg gcgatcatga ccaatgccaa tgctggcaca cgttggttag gtaatgagcc 780 atctaacatc ccagaggcta aagaggcact ggctcgcatt atccgagatt ccgaccgcgc 840 tgcagaaatt atccgtatgg tacgctcctt cctgaagcgt caagaaacgg tgctgaaacc 900 gattgatcta aaagcactgg taactgatac aagcctgata cttaaggccc ctagtcagaa 960 taacagtgtc aatttggatg ttgttgcgga tgatgaactc cctgagatat ggggggatgg 1020 tgtacagatc cagcagttga taataaatct ggctatgaac gctattgaag cgatcagcca 1080 agccgactgt gaaaccaggc agctaaccct gtcattctca ggcaatgata caggtgatgc 1140 gcttgttatc tcagtgaaag atacaggtcc aggtatttca gagaggcaga tggcgcagtt 1200 gttcaacgca ttctacacca caaaaaaaga agggcttggt atgggattgg caatctgtct 1260 tacaatcacg gaagtgcata acggtaaaat atgggttgag tgcccgcccg ctgggggtgc 1320 ttgtttcctg gtaagtatcc ctgccagaca gggctccggc acatgagtga tcgggcatct 1380 gttatctata tcctcgatga cgacaatgca gtactggaag cactgagcag cttggtgcgt 1440 tcaatcggcc tgagtgtcga gtgtttttca tccgctagcg tattcctgaa cgatgtcaat 1500 cgctctgcct gtggctgtct aattttggat gtccgtatgc ccgagatgag cgggttggat 1560 gtgcaacgac aactgaaaga gcttggcgag caaatcccca ttatttttat cagcggccac 1620 ggtgatattc cgatggcagt caaagcgatc aaggcgggtg cggtagactt cttcactaaa 1680 ccttttcgag aagaggagct gcttggcgct attcgcgccg cgctgaagtt ggcgccccag 1740 cagagatcaa acgctccccg agtcagcgag cttaaagaga attacgaaag cctcagcaaa 1800 cgcgagcaac aggtgcttaa gttcgtcttg cgaggatatc taaacaagca gacggctcta 1860 gagcttgata tatcggaagc aacagtgaaa gtgcaccgcc ataatatcat gaggaaaatg 1920 aaagtatctt caatccagga tctggttcga gtaactgagc ggctcaagga tagcctggaa 1980 tagaagcttc tagataagtt caggatgaat tctctagtcc aacctttcat agaaggcggc 2040 ggtggaatcg aaatctcgtg atggcaggtt gggcgtcgct tggtcggtca tttcgaaccc 2100 cagagtcccg ctcagaagaa ctcgtcaaga aggcgataga aggcgatgcg ctgcgaatcg 2160 ggagcggcga taccgtaaag cacgaggaag cggtcagccc attcgccgcc aagctcttca 2220 gcaatatcac gggtagccaa cgctatgtcc tgatagcggt ccgccacacc cagccggcca 2280 cagtcgatga atccagaaaa gcggccattt tccaccatga tattcggcaa gcaggcatcg 2340 ccatgggtca cgacgagatc ctcgccgtcg ggcatgcgcg ccttgagcct ggcgaacagt 2400 tcggctggcg cgagcccctg atgctcttcg tccagatcat cctgatcgac aagaccggct 2460 tccatccgag tacgtgctcg ctcgatgcga tgtttcgctt ggtggtcgaa tgggcaggta 2520 gccggatcaa gcgtatgcag ccgccgcatt gcatcagcca tgatggatac tttctcggca 2580 ggagcaaggt gagatgacag gagatcctgc cccggcactt cgcccaatag cagccagtcc 2640 cttcccgctt cagtgacaac gtcgagcaca gctgcgcaag gaacgcccgt cgtggccagc 2700 cacgatagcc gcgctgcctc gtcctgtagt tcattcaggg caccggacag gtcggtcttg 2760 acaaaaagaa ccgggcgccc ctgcgctgac agccggaaca cggcggcatc agagcagccg 2820 attgtctgtt gtgcccagtc atagccgaat agcctctcca cccaagcggc cggagaacct 2880 gcgtgcaatc catcttgttc aatcatgcga aacgatcctc atcctgtctc ttgatcaaat 2940 cttgatcccc tgcgccatca gatccttggc ggcaagaaag ccatccagtt tactttgcag 3000 ggcttcccaa ccttaccaga gggcgcccca gctggcaatt ccggttcgct tgctgtccat 3060 aaaaccgccc agtctagcta tcgccatgta agcccactgc aagctacctg ctttctcttt 3120 gcgcttgcgt tttcccttgt ccagatagcc cagtagctga cattcatccc aggtggcact 3180 tttcggggaa atgtgcgcgc ccgcgttcct gctggcgctg ggcctgtttc tggcgctgga 3240 cttcccgctg ttccgtcagc agcttttcgc ccacggcctt gatgatcgcg gcggccttgg 3300 cctgcatatc ccgattcaac ggccccaggg cgtccagaac gggcttcagg cgctcccgaa 3360 ggtctcgggc cgtctcttgg gcttgatcgg ccttcttgcg catctcacgc gctcctgcgg 3420 cggcctgtag ggcaggctca tacccctgcc gaaccgcttt tgtcagccgg tcggccacgg 3480 cttccggcgt ctcaacgcgc tttgagattc ccagcttttc ggccaatccc tgcggtgcat 3540 aggcgcgtgg ctcgaccgct tgcgggctga tggtgacgtg gcccactggt ggccgctcca 3600 gggcctcgta gaacgcctga atgcgcgtgt gacgtgcctt gctgccctcg atgccccgtt 3660 gcagccctag atcggccaca gcagccgcaa acgtggtctg gtcgcgggtc atctgcgctt 3720 tgttgccgat gaactccttg gccgacagcc tgccgtcctg cgtcagcggc accacgaacg 3780 cggtcatgtg cgggctggtt tcgtcacggt ggatgctggc cgtcacgatg cgatccgccc 3840 cgtacttgtc cgccagccac ttgtgcgcct tctcgaagaa cgccgcctgc tgttcttggc 3900 tggccgactt ccaccattcc gggctggccg tcatgacgta ctcgaccgcc aacacagcgt 3960 ccttgcgccg cttctctggc agcaactcgc gcagtcggcc catcgcttca tcggtgctgc 4020 tggccgccca gtgctcgttc tctggcgtcc tgctggcgtc agcgttgggc gtctcgcgct 4080 cgcggtaggc gtgcttgaga ctggccgcca cgttgcccat tttcgccagc ttcttgcatc 4140 gcatgatcgc gtatgccgcc atgcctgccc ctcccttttg gtgtccaacc ggctcgacgg 4200 gggcagcgca aggcggtgcc tccggcgggc cactcaatgc ttgagtatac tcactagact 4260 ttgcttcgca aagtcgtgac cgcctacggc ggctgcggcg ccctacgggc ttgctctccg 4320 ggcttcgccc tgcgcggtcg ctgcgctccc ttgccagccc gtggatatgt ggacgatggc 4380 cgcgagcggc caccggctgg ctcgcttcgc tcggcccgtg gacaaccctg ctggacaagc 4440 tgatggacag gctgcgcctg cccacgagct tgaccacagg gattgcccac cggctaccca 4500 gccttcgacc acatacccac cggctccaac tgcgcggcct gcggccttgc cccatcaatt 4560 tttttaattt tctctgggga aaagcctccg gcctgcggcc tgcgcgcttc gcttgccggt 4620 tggacaccaa gtggaaggcg ggtcaaggct cgcgcagcga ccgcgcagcg gcttggcctt 4680 gacgcgcctg gaacgaccca agcctatgcg agtgggggca gtcgaaggcg aagcccgccc 4740 gcctgccccc cgagcctcac ggcggcgagt gcgggggttc caagggggca gcgccacctt 4800 gggcaaggcc gaaggccgcg cagtcgatca acaagccccg gaggggccac tttttgccgg 4860 agggggagcc gcgccgaagg cgtgggggaa ccccgcaggg gtgcccttct ttgggcacca 4920 aagaactaga tatagggcga aatgcgaaag acttaaaaat caacaactta aaaaaggggg 4980 gtacgcaaca gctcattgcg gcaccccccg caatagctca ttgcgtaggt taaagaaaat 5040 ctgtaattga ctgccacttt tacgcaacgc ataattgttg tcgcgctgcc gaaaagttgc 5100 agctgattgc gcatggtgcc gcaaccgtgc ggcaccctac cgcatggaga taagcatggc 5160 cacgcagtcc agagaaatcg gcattcaagc caagaacaag cccggtcact gggtgcaaac 5220 ggaacgcaaa gcgcatgagg cgtgggccgg gcttattgcg aggaaaccca cggcggcaat 5280 gctgctgcat cacctcgtgg cgcagatggg ccaccagaac gccgtggtgg tcagccagaa 5340 gacactttcc aagctcatcg gacgttcttt gcggacggtc caatacgcag tcaaggactt 5400 ggtggccgag cgctggatct ccgtcgtgaa gctcaacggc cccggcaccg tgtcggccta 5460 cgtggtcaat gaccgcgtgg cgtggggcca gccccgcgac cagttgcgcc tgtcggtgtt 5520 cagtgccgcc gtggtggttg atcacgacga ccaggacgaa tcgctgttgg ggcatggcga 5580 cctgcgccgc atcccgaccc tgtatccggg cgagcagcaa ctaccgaccg gccccggcga 5640 ggagccgccc agccagcccg gcattccggg catggaacca gacctgccag ccttgaccga 5700 aacggaggaa tgggaacggc gcgggcagca gcgcctgccg atgcccgatg agccgtgttt 5760 tctggacgat ggcgagccgt tggagccgcc gacacgggtc acgctgccgc gccggtagca 5820 cttgggttgc gcagcaaccc gtaagtgcgc tgttccagac tatactagac tgcaggtcct 5880 gaagttaact agtacatgcg gtgtgaaata ccgcacagat gcgtaaggag aatcagtgat 5940 ggtgatggtg atgctcgagg cggccgccat gg 5972 <110> Korea Research Institute of Bioscience and Biotechnology <120> Artificial biosensor for non-degradable harmful aromatic compound          detection using remodeled sensing protein and manufacturing          method thereof <130> 2014p-05-010 <160> 23 <170> Kopatentin 2.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> todSe-D <400> 1 ataagatctc agcaacaact tgtgtacgtt 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> todSe-U2 <400> 2 ataagatctc tgctccaatt cctggttctt 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PtodST-F <400> 3 tatatgcatc tcgagaaacg agcccagtac 30 <210> 4 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PtodST-R <400> 4 ccctctagaa gcttgctatt acctctcttc cacc 34 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> todST-R <400> 5 tataagcttc tattccaggc tatcctt 27 <210> 6 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> mexCn-u <400> 6 aaagaattcg caagacaggt tcgataaggg tg 32 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mexCn-d <400> 7 aaaggatcca atgcgcccgg agatcgg 27 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mexCc-u <400> 8 aaaggatccg atatccagca actcgacccg 30 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mexCc-d <400> 9 tttgcatgcg tttctgcgca ggcgcaacg 29 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> NPtodX-F <400> 10 gaagatctca ggttatcaac ctgctcgtgg 30 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> NPtodX-R <400> 11 agctgtttcc tgtgtgataa agaaagttaa aatgcc 36 <210> 12 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PXsfGFP-F <400> 12 atacacacagg aaacagctat gagcaaaggt gaagaactgt ttacc 45 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> sfGFP-rrnB-R <400> 13 gaagatctag agtttgtaga aacgcaaaaa gg 32 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > ID_mexC-F <400> 14 ttcgttgcac gccttcctgg 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ID_mexC-N <400> 15 actgctggta gatcaccccc 20 <210> 16 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> mexC-F <400> 16 gaagatctgc aagacaggtt cgataagggt g 31 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mexC-R <400> 17 gaagatctgt ttctgcgcag gcgcaacg 28 <210> 18 <211> 124 <212> DNA <213> todST promoter <400> 18 ctcgagaaac gagcccagta ctatttcagg tcgtccgtag ttgctcatca aaaaagtatt 60 ctcaggatga tacgagggcg tatgatctat aatgaatccg tcagaatctt gtgagtcatt 120 aaag 124 <210> 19 <211> 2937 <212> DNA <213> todS <400> 19 atgagctcct tggatagaaa aaagcctcaa aatagatcga aaaataatta ttataatatc 60 tgcctcaagg agaaaggatc tgaagagctg acgtgtgaag aacatgcacg catcatattt 120 gatgggctct acgagtttgt gggccttctt gatgctcatg gaaatgtgct tgaagtgaac 180 caggtcgcat tggagggggg cgggattact ctggaagaaa tacgagggaa gccattctgg 240 aaggcgcgtt ggtggcaaat ttcaaaaaaa accgaggcga cccaaaagcg acttgttgaa 300 actgcatcat ccggtgaatt tgttcgctgt gatgttgaga ttcttggaaa atcaggtgga 360 agagaggtaa tagccgtcga tttttcattg ctgccaattt gcaatgaaga agggagcatt 420 gtttaccttc ttgcggaagg gcgcaatatt accgataaga agaaagccga ggccatgctg 480 gcgttgaaga accaggaatt ggagcagtcg gttgagtgta tccgaaaact cgataatgcg 540 aagagtgatt tctttgccaa ggtgagccat gagttgcgca ctccgctgtc tttgattcta 600 gggccactgg aagccgttat ggcggcagag gctgggcgtg aatcgccgta ttggaagcag 660 tttgaggtca ttcagcgtaa tgcaatgacc ctgttgaaac aggttaacac gctgcttgac 720 ttggcgaaaa tggacgcccg gcagatgggg ctttcctatc ggcgagccaa tcttagtcag 780 ctcacccgta ctattagctc gaattttgaa ggaatagccc agcaaaaatc aataacgttc 840 gatacaaaac tgcctgtaca gatggtcgct gaggtggatt gtgagaaata cgaacgcatt 900 atccttaact tgctttccaa tgcgtttaaa ttcacccctg acggggggct tatccgttgc 960 tgtcttagtt tgagtcgacc aaattatgcc ttggttactg tatctgatag cgggccgggt 1020 attcctcctg cactgcgtaa agaaatattt gaacgtttcc accagctaag ccaggaaggt 1080 caacaagcta cgcggggtac aggcttgggg ctttccattg tgaaagaatt cgttgaattg 1140 caccgtggaa caatttctgt aagtgatgcc ccgggcgggg gggcgctttt tcaggtaaag 1200 ctgccgctga atgctcctga aggtgcttat gttgcgagta acaccgcgcc gcgaagagat 1260 aatcctcagg tcgtggatac ggatgagtac cttttgctgg cgcccaatgc ggaaaatgaa 1320 gccgaggtgc ttccatttca atccgaccag cctcgggtgc taatcgttga agataaccct 1380 gatatgcgtg gttttataaa ggactgtctc agtagcgact atcaagttta tgttgcaccc 1440 gacggtgcaa aggcattgga gttgatgtca aacatgccgc cagacctgtt gattacagac 1500 ctgataatgc ctgttatgag cggcgatatg ctggttcacc aagtgcgtaa gaaaaatgaa 1560 ctttcacata tcccgatcat ggtgctgtcg gccaagtcag acgcagaact gcgtgtgaaa 1620 ttgctctccg agtcggtgca ggactttctt cttaagccat tttctgctca tgagctacga 1680 gcgcgtgtaa gcaatctggt atccatgaag gtggcaggcg atgcgttgcg taaggagctt 1740 tccgatcagg gggatgatat tgcgatactt actcaccgtc tgatcaaaag tcgccatcgt 1800 cttcagcaga gtaacatcgc attatccgcc tcggaagcgc gttggaaagc agtgtatgaa 1860 aactctgcgg ccggtattgt actgaccgac ccggaaaacc gaatactcaa cgccaatcct 1920 gcatttcaac gcattaccgg atatggggaa aaggatttgg agggactttc catggagcaa 1980 ttgactccat ctgacgaaag cccacagata aagcagcgtc tggccaattt gcttcagggt 2040 gggggagcgg aatacagtgt ggagcgctcc tatctatgca aaaatggttc tacgatttgg 2100 gccaatgcga gtgtctcgct gatgcctcaa cgtgtcggtg aatctccagt tatactgcag 2160 atcatcgatg acatcactga gaagaaacaa gcacaggaaa atcttaacca attgcagcaa 2220 caacttgtgt acgtttcccg atcagctacg atgggtgaat ttgcagccta tattgcacac 2280 gagataaacc aaccgctctc ggcgatcatg accaatgcca atgctggcac acgttggtta 2340 ggtaatgagc catctaacat cccagaggct aaagaggcac tggctcgcat tatccgagat 2400 tccgaccgcg ctgcagaaat tatccgtatg gtacgctcct tcctgaagcg tcaagaaacg 2460 gtgctgaaac cgattgatct aaaagcactg gtaactgata caagcctgat acttaaggcc 2520 cctagtcaga ataacagtgt caatttggat gttgttgcgg atgatgaact ccctgagata 2580 tggggggatg gtgtacagat ccagcagttg ataataaatc tggctatgaa cgctattgaa 2640 gcgatcagcc aagccgactg tgaaaccagg cagctaaccc tgtcattctc aggcaatgat 2700 acaggtgatg cgcttgttat ctcagtgaaa gatacaggtc caggtatttc agagaggcag 2760 atggcgcagt tgttcaacgc attctacacc acaaaaaaag aagggcttgg tatgggattg 2820 gcaatctgtc ttacaatcac ggaagtgcat aacggtaaaa tatgggttga gtgcccgccc 2880 gctgggggtg cttgtttcct ggtaagtatc cctgccagac agggctccgg cacatga 2937 <210> 20 <211> 1236 <212> DNA <213> Artificial Sequence <220> <223> todS * <400> 20 atgagctcct tggatagaaa aaagcctcaa aatagatcga aaaataatta ttataatatc 60 tgcctcaagg agaaaggatc tgaagagctg acgtgtgaag aacatgcacg catcatattt 120 gatgggctct acgagtttgt gggccttctt gatgctcatg gaaatgtgct tgaagtgaac 180 caggtcgcat tggagggggg cgggattact ctggaagaaa tacgagggaa gccattctgg 240 aaggcgcgtt ggtggcaaat ttcaaaaaaa accgaggcga cccaaaagcg acttgttgaa 300 actgcatcat ccggtgaatt tgttcgctgt gatgttgaga ttcttggaaa atcaggtgga 360 agagaggtaa tagccgtcga tttttcattg ctgccaattt gcaatgaaga agggagcatt 420 gtttaccttc ttgcggaagg gcgcaatatt accgataaga agaaagccga ggccatgctg 480 gcgttgaaga accaggaatt ggagcagaga tctcagcaac aacttgtgta cgtttcccga 540 tcagctacga tgggtgaatt tgcagcctat attgcacacg agataaacca accgctctcg 600 gcgatcatga ccaatgccaa tgctggcaca cgttggttag gtaatgagcc atctaacatc 660 ccagaggcta aagaggcact ggctcgcatt atccgagatt ccgaccgcgc tgcagaaatt 720 atccgtatgg tacgctcctt cctgaagcgt caagaaacgg tgctgaaacc gattgatcta 780 aaagcactgg taactgatac aagcctgata cttaaggccc ctagtcagaa taacagtgtc 840 aatttggatg ttgttgcgga tgatgaactc cctgagatat ggggggatgg tgtacagatc 900 cagcagttga taataaatct ggctatgaac gctattgaag cgatcagcca agccgactgt 960 gaaaccaggc agctaaccct gtcattctca ggcaatgata caggtgatgc gcttgttatc 1020 tcagtgaaag atacaggtcc aggtatttca gagaggcaga tggcgcagtt gttcaacgca 1080 ttctacacca caaaaaaaga agggcttggt atgggattgg caatctgtct tacaatcacg 1140 gaagtgcata acggtaaaat atgggttgag tgcccgcccg ctgggggtgc ttgtttcctg 1200 gtaagtatcc ctgccagaca gggctccggc acatga 1236 <210> 21 <211> 621 <212> DNA <213> todT <400> 21 atgagtgatc gggcatctgt tatctatatc ctcgatgacg acaatgcagt actggaagca 60 ctgagcagct tggtgcgttc aatcggcctg agtgtcgagt gtttttcatc cgctagcgta 120 ttcctgaacg atgtcaatcg ctctgcctgt ggctgtctaa ttttggatgt ccgtatgccc 180 gagatgagcg ggttggatgt gcaacgacaa ctgaaagagc ttggcgagca aatccccatt 240 atttttatca gcggccacgg tgatattccg atggcagtca aagcgatcaa ggcgggtgcg 300 gtagacttct tcactaaacc ttttcgagaa gaggagctgc ttggcgctat tcgcgccgcg 360 ctgaagttgg cgccccagca gagatcaaac gctccccgag tcagcgagct taaagagaat 420 tacgaaagcc tcagcaaacg cgagcaacag gtgcttaagt tcgtcttgcg aggatatcta 480 aacaagcaga cggctctaga gcttgatata tcggaagcaa cagtgaaagt gcaccgccat 540 aatatcatga ggaaaatgaa agtatcttca atccaggatc tggttcgagt aactgagcgg 600 ctcaaggata gcctggaata g 621 <210> 22 <211> 366 <212> DNA <213> todX promoter <400> 22 ccgggatcaa cgcattgagc gccaccagca tgttcaggtc tgaggttttc atcgacatca 60 ggttatcaac ctgctcgtgg acctgaggga aactgccgtg gcggcgacgg ggcttgcgcg 120 taagcccccg ctatacgacc agcctgttcg aaagccgcaa agtgcttagg tttgggtgca 180 tatccatcag aagcggcata aaccatcgtt tatcacagtt aaactttggt tttctaagtt 240 gcgatagcca tataaaccca taagccaaaa aacaatattt cccagggcgt gattgtaata 300 ctgtgcgtgc tctaaggcgg tgtttgccta cttcacttta taaaaaaaat aagatgtgga 360 aggaga 366 <210> 23 <211> 5972 <212> DNA <213> Artificial Sequence <220> <223> U2 <400> 23 atgcatctcg agaaacgagc ccagtactat ttcaggtcgt ccgtagttgc tcatcaaaaa 60 agtattctca ggatgatacg agggcgtatg atctataatg aatccgtcag aatcttgtga 120 gtcattaaag atgagctcct tggatagaaa aaagcctcaa aatagatcga aaaataatta 180 ttataatatc tgcctcaagg agaaaggatc tgaagagctg acgtgtgaag aacatgcacg 240 catcatattt gatgggctct acgagtttgt gggccttctt gatgctcatg gaaatgtgct 300 tgaagtgaac caggtcgcat tggagggggg cgggattact ctggaagaaa tacgagggaa 360 gccattctgg aaggcgcgtt ggtggcaaat ttcaaaaaaa accgaggcga cccaaaagcg 420 acttgttgaa actgcatcat ccggtgaatt tgttcgctgt gatgttgaga ttcttggaaa 480 atcaggtgga agagaggtaa tagccgtcga tttttcattg ctgccaattt gcaatgaaga 540 agggagcatt gtttaccttc ttgcggaagg gcgcaatatt accgataaga agaaagccga 600 ggccatgctg gcgttgaaga accaggaatt ggagcagaga tctcagcaac aacttgtgta 660 cgtttcccga tcagctacga tgggtgaatt tgcagcctat attgcacacg agataaacca 720 accgctctcg gcgatcatga ccaatgccaa tgctggcaca cgttggttag gtaatgagcc 780 atctaacatc ccagaggcta aagaggcact ggctcgcatt atccgagatt ccgaccgcgc 840 tgcagaaatt atccgtatgg tacgctcctt cctgaagcgt caagaaacgg tgctgaaacc 900 gattgatcta aaagcactgg taactgatac aagcctgata cttaaggccc ctagtcagaa 960 taacagtgtc aatttggatg ttgttgcgga tgatgaactc cctgagatat ggggggatgg 1020 tgtacagatc cagcagttga taataaatct ggctatgaac gctattgaag cgatcagcca 1080 agccgactgt gaaaccaggc agctaaccct gtcattctca ggcaatgata caggtgatgc 1140 gcttgttatc tcagtgaaag atacaggtcc aggtatttca gagaggcaga tggcgcagtt 1200 gttcaacgca ttctacacca caaaaaaaga agggcttggt atgggattgg caatctgtct 1260 tacaatcacg gaagtgcata acggtaaaat atgggttgag tgcccgcccg ctgggggtgc 1320 ttgtttcctg gtaagtatcc ctgccagaca gggctccggc acatgagtga tcgggcatct 1380 gttatctata tcctcgatga cgacaatgca gtactggaag cactgagcag cttggtgcgt 1440 tcaatcggcc tgagtgtcga gtgtttttca tccgctagcg tattcctgaa cgatgtcaat 1500 cgctctgcct gtggctgtct aattttggat gtccgtatgc ccgagatgag cgggttggat 1560 gtgcaacgac aactgaaaga gcttggcgag caaatcccca ttatttttat cagcggccac 1620 ggtgatattc cgatggcagt caaagcgatc aaggcgggtg cggtagactt cttcactaaa 1680 ccttttcgag aagaggagct gcttggcgct attcgcgccg cgctgaagtt ggcgccccag 1740 cagagatcaa acgctccccg agtcagcgag cttaaagaga attacgaaag cctcagcaaa 1800 cgcgagcaac aggtgcttaa gttcgtcttg cgaggatatc taaacaagca gacggctcta 1860 gagcttgata tatcggaagc aacagtgaaa gtgcaccgcc ataatatcat gaggaaaatg 1920 aaagtatctt caatccagga tctggttcga gtaactgagc ggctcaagga tagcctggaa 1980 tagaagcttc tagataagtt caggatgaat tctctagtcc aacctttcat agaaggcggc 2040 ggtggaatcg aaatctcgtg atggcaggtt gggcgtcgct tggtcggtca tttcgaaccc 2100 cagagtcccg ctcagaagaa ctcgtcaaga aggcgataga aggcgatgcg ctgcgaatcg 2160 ggagcggcga taccgtaaag cacgaggaag cggtcagccc attcgccgcc aagctcttca 2220 gcaatatcac gggtagccaa cgctatgtcc tgatagcggt ccgccacacc cagccggcca 2280 cagtcgatga atccagaaaa gcggccattt tccaccatga tattcggcaa gcaggcatcg 2340 ccatgggtca cgacgagatc ctcgccgtcg ggcatgcgcg ccttgagcct ggcgaacagt 2400 tcggctggcg cgagcccctg atgctcttcg tccagatcat cctgatcgac aagaccggct 2460 tccatccgag tacgtgctcg ctcgatgcga tgtttcgctt ggtggtcgaa tgggcaggta 2520 gccggatcaa gcgtatgcag ccgccgcatt gcatcagcca tgatggatac tttctcggca 2580 ggagcaaggt gagatgacag gagatcctgc cccggcactt cgcccaatag cagccagtcc 2640 cttcccgctt cagtgacaac gtcgagcaca gctgcgcaag gaacgcccgt cgtggccagc 2700 cacgatagcc gcgctgcctc gtcctgtagt tcattcaggg caccggacag gtcggtcttg 2760 acaaaaagaa ccgggcgccc ctgcgctgac agccggaaca cggcggcatc agagcagccg 2820 attgtctgtt gtgcccagtc atagccgaat agcctctcca cccaagcggc cggagaacct 2880 gcgtgcaatc catcttgttc aatcatgcga aacgatcctc atcctgtctc ttgatcaaat 2940 cttgatcccc tgcgccatca gatccttggc ggcaagaaag ccatccagtt tactttgcag 3000 ggcttcccaa ccttaccaga gggcgcccca gctggcaatt ccggttcgct tgctgtccat 3060 aaaaccgccc agtctagcta tcgccatgta agcccactgc aagctacctg ctttctcttt 3120 gcgcttgcgt tttcccttgt ccagatagcc cagtagctga cattcatccc aggtggcact 3180 tttcggggaa atgtgcgcgc ccgcgttcct gctggcgctg ggcctgtttc tggcgctgga 3240 cttcccgctg ttccgtcagc agcttttcgc ccacggcctt gatgatcgcg gcggccttgg 3300 cctgcatatc ccgattcaac ggccccaggg cgtccagaac gggcttcagg cgctcccgaa 3360 ggtctcgggc cgtctcttgg gcttgatcgg ccttcttgcg catctcacgc gctcctgcgg 3420 cggcctgtag ggcaggctca tacccctgcc gaaccgcttt tgtcagccgg tcggccacgg 3480 cttccggcgt ctcaacgcgc tttgagattc ccagcttttc ggccaatccc tgcggtgcat 3540 aggcgcgtgg ctcgaccgct tgcgggctga tggtgacgtg gcccactggt ggccgctcca 3600 gggcctcgta gaacgcctga atgcgcgtgt gacgtgcctt gctgccctcg atgccccgtt 3660 gcagccctag atcggccaca gcagccgcaa acgtggtctg gtcgcgggtc atctgcgctt 3720 tgttgccgat gaactccttg gccgacagcc tgccgtcctg cgtcagcggc accacgaacg 3780 cggtcatgtg cgggctggtt tcgtcacggt ggatgctggc cgtcacgatg cgatccgccc 3840 cgtacttgtc cgccagccac ttgtgcgcct tctcgaagaa cgccgcctgc tgttcttggc 3900 tggccgactt ccaccattcc gggctggccg tcatgacgta ctcgaccgcc aacacagcgt 3960 ccttgcgccg cttctctggc agcaactcgc gcagtcggcc catcgcttca tcggtgctgc 4020 tggccgccca gtgctcgttc tctggcgtcc tgctggcgtc agcgttgggc gtctcgcgct 4080 cgcggtaggc gtgcttgaga ctggccgcca cgttgcccat tttcgccagc ttcttgcatc 4140 gcatgatcgc gtatgccgcc atgcctgccc ctcccttttg gtgtccaacc ggctcgacgg 4200 gggcagcgca aggcggtgcc tccggcgggc cactcaatgc ttgagtatac tcactagact 4260 ttgcttcgca aagtcgtgac cgcctacggc ggctgcggcg ccctacgggc ttgctctccg 4320 ggcttcgccc tgcgcggtcg ctgcgctccc ttgccagccc gtggatatgt ggacgatggc 4380 cgcgagcggc caccggctgg ctcgcttcgc tcggcccgtg gacaaccctg ctggacaagc 4440 tgatggacag gctgcgcctg cccacgagct tgaccacagg gattgcccac cggctaccca 4500 gccttcgacc acatacccac cggctccaac tgcgcggcct gcggccttgc cccatcaatt 4560 tttttaattt tctctgggga aaagcctccg gcctgcggcc tgcgcgcttc gcttgccggt 4620 tggacaccaa gtggaaggcg ggtcaaggct cgcgcagcga ccgcgcagcg gcttggcctt 4680 gacgcgcctg gaacgaccca agcctatgcg agtgggggca gtcgaaggcg aagcccgccc 4740 gcctgccccc cgagcctcac ggcggcgagt gcgggggttc caagggggca gcgccacctt 4800 gggcaaggcc gaaggccgcg cagtcgatca acaagccccg gaggggccac tttttgccgg 4860 agggggagcc gcgccgaagg cgtgggggaa ccccgcaggg gtgcccttct ttgggcacca 4920 aagaactaga tatagggcga aatgcgaaag acttaaaaat caacaactta aaaaaggggg 4980 gtacgcaaca gctcattgcg gcaccccccg caatagctca ttgcgtaggt taaagaaaat 5040 ctgtaattga ctgccacttt tacgcaacgc ataattgttg tcgcgctgcc gaaaagttgc 5100 agctgattgc gcatggtgcc gcaaccgtgc ggcaccctac cgcatggaga taagcatggc 5160 cacgcagtcc agagaaatcg gcattcaagc caagaacaag cccggtcact gggtgcaaac 5220 ggaacgcaaa gcgcatgagg cgtgggccgg gcttattgcg aggaaaccca cggcggcaat 5280 gctgctgcat cacctcgtgg cgcagatggg ccaccagaac gccgtggtgg tcagccagaa 5340 gacactttcc aagctcatcg gacgttcttt gcggacggtc caatacgcag tcaaggactt 5400 ggtggccgag cgctggatct ccgtcgtgaa gctcaacggc cccggcaccg tgtcggccta 5460 cgtggtcaat gaccgcgtgg cgtggggcca gccccgcgac cagttgcgcc tgtcggtgtt 5520 cagtgccgcc gtggtggttg atcacgacga ccaggacgaa tcgctgttgg ggcatggcga 5580 cctgcgccgc atcccgaccc tgtatccggg cgagcagcaa ctaccgaccg gccccggcga 5640 ggagccgccc agccagcccg gcattccggg catggaacca gacctgccag ccttgaccga 5700 aacggaggaa tgggaacggc gcgggcagca gcgcctgccg atgcccgatg agccgtgttt 5760 tctggacgat ggcgagccgt tggagccgcc gacacgggtc acgctgccgc gccggtagca 5820 cttgggttgc gcagcaaccc gtaagtgcgc tgttccagac tatactagac tgcaggtcct 5880 gaagttaact agtacatgcg gtgtgaaata ccgcacagat gcgtaaggag aatcagtgat 5940 ggtgatggtg atgctcgagg cggccgccat gg 5972

Claims (12)

슈도모나스 푸티다(Pseudomonas putida) 유래 서열번호 18로 구성되는 todST 오페론의 프로모터, 서열번호 19로 구성되는 todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 서열번호 20으로 구성되는 todS* 및 서열번호 21로 구성되는 todT 유전자를 포함하는 재설계 단백질 발현 벡터.
The tod S operon consisting of the Pseudomonas putida- derived SEQ ID NO: 18, the tod S * construct consisting of the simplified SEQ ID NO: 20 directly linked to the PAS1 domain of the tod S gene consisting of SEQ ID NO: 19 and the HK2 domain, And a tod T gene consisting of SEQ ID NO: 21.
삭제delete 제 1항에 있어서, 상기 발현 벡터는 도 1b에 기재된 개열지도로 표시되는 발현 벡터.
2. The expression vector according to claim 1, wherein the expression vector is represented by the cleavage map as shown in Fig.
제 1항에 있어서, 상기 발현 벡터는 서열번호 23의 염기서열로 표시되는 발현 벡터.
The expression vector according to claim 1, wherein the expression vector is represented by the nucleotide sequence of SEQ ID NO: 23.
제 1항, 제 3항 또는 제 4항 중 어느 한 항의 발현 벡터가 슈도모나스 푸티다(Pseudomonas putida) 유래 서열번호 22로 구성되는 todX 유전자의 프로모터와 연결된 표지 단백질 발현카세트가 숙주세포의 염색체에 삽입된 표지 단백질 발현 재조합 균주에 형질전환된 형질전환체를 포함하는 난분해성 유해 방향족 화합물 검출용 인공바이오센서.
The method of any one of claims 1 to 4, wherein the marker protein expression cassette linked to the promoter of the tod X gene consisting of Pseudomonas putida- derived SEQ ID NO: 22 is inserted into the chromosome of the host cell An artificial biosensor for detecting a degradable harmful aromatic compound containing a transformant transformed into a recombinant expression vector for a marker protein.
제 5항에 있어서, 상기 표지 단백질은 형광단백질(GFP), sfGFP, 알칼라인 포스파타제(alkaline phosphatase), 반딧불 루시페라제(firefly luciferase) 및 베타갈락토시다아제(β-galactosidase)로 구성된 군으로부터 선택되는 것을 특징으로 하는 인공바이오센서.
6. The method of claim 5, wherein the labeled protein is selected from the group consisting of a fluorescent protein (GFP), sfGFP, alkaline phosphatase, firefly luciferase, and beta-galactosidase Wherein the biosensor is a biosensor.
제 5항에 있어서, 상기 난분해성 유해 방향족 화합물은 BTEX 화합물[벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbenzene), 자일렌(Xylene)]인 것을 특징으로 하는 난분해성 유해 방향족 화합물 검출용 인공바이오센서.
The method according to claim 5, wherein the refractory harmful aromatic compound is a BTEX compound [benzene, toluene, ethylbenzene, xylene] Artificial biosensor.
제 7항에 있어서, 상기 BTEX 화합물은 o-자일렌(o-xylene), 또는 1,2,4-트리메틸벤젠(1,2,4-trimethylbenzene)인 것을 특징으로 하는 인공바이오센서.
The artificial biosensor according to claim 7, wherein the BTEX compound is o-xylene or 1,2,4-trimethylbenzene.
제 5항에 있어서, 상기 숙주세포는 원핵 미생물 또는 진핵 미생물인 것을 특징으로 하는 인공바이오센서.
The artificial biosensor according to claim 5, wherein the host cell is a prokaryotic microorganism or a eukaryotic microorganism.
제 9항에 있어서, 상기 원핵 미생물은 대장균(E. coli) 또는 슈도모나스 푸티다(Pseudomonas putida)인 것을 특징으로 하는 인공바이오센서.
The artificial biosensor according to claim 9, wherein the prokaryotic microorganism is E. coli or Pseudomonas putida .
슈도모나스 푸티다(Pseudomonas putida) 유래 서열번호 18로 구성되는 todST 오페론의 프로모터, 서열번호 19로 구성되는 todS 유전자의 PAS1 도메인과 HK2 도메인을 직접 연결한 단순화된 서열번호 20으로 구성되는 todS* 및 서열번호 21로 구성되는 todT 유전자를 포함하는 난분해성 유해 방향족 화합물 감지용 재설계 단백질 발현 벡터를 슈도모나스 푸티다(Pseudomonas putida) 유래 서열번호 22로 구성되는 todX 유전자의 프로모터와 연결된 표지 단백질 발현 카세트가 숙주세포의 염색체에 삽입된 표지 단백질 발현 재조합 균주에 형질전환하여 형질전환체를 제조하는 단계를 포함하는 난분해성 유해 방향족 화합물 검출용 인공바이오센서 제조 방법.
The todST operon consisting of the Pseudomonas putida-derived SEQ ID NO: 18, the todS * consisting of the simplified SEQ ID NO: 20 directly linked to the PAS1 domain and the HK2 domain of the todS gene consisting of SEQ ID NO: 19, No. 21 A recombinant protein expression vector for detecting a degradable harmful aromatic compound containing a todT gene comprising a todX gene consisting of Pseudomonas putida and a todX gene consisting of SEQ ID NO: Wherein the transformant is transformed into a recombinant strain expressing a marker protein inserted into the chromosome of the chromosome of the transformant.
1) 피검시료가 처리된 제 5항의 난분해성 유해 방향족 화합물 검출용 인공바이오센서의 표지 단백질의 발현수준을 측정하는 단계; 및
2) 단계 1)의 표지 단백질의 발현수준이 대조군에 비하여 증가하는 경우, 피검시료 내 난분해성 유해 방향족 화합물이 포함되었음을 판정하는 단계를 포함하는 난분해성 유해 방향족 화합물의 검출 방법.

1) measuring the expression level of the marker protein of the artificial biosensor for detecting the degradable harmful aromatic compound according to the fifth aspect, wherein the test sample is treated; And
2) A method for detecting a poorly decomposable harmful aromatic compound, comprising the step of judging that a poorly decomposable harmful aromatic compound is included in the test sample when the expression level of the labeled protein of step 1) is increased as compared with the control.

KR1020140070684A 2014-06-11 2014-06-11 Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof KR101598907B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140070684A KR101598907B1 (en) 2014-06-11 2014-06-11 Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140070684A KR101598907B1 (en) 2014-06-11 2014-06-11 Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20150142244A KR20150142244A (en) 2015-12-22
KR101598907B1 true KR101598907B1 (en) 2016-03-14

Family

ID=55081581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140070684A KR101598907B1 (en) 2014-06-11 2014-06-11 Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101598907B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
이승구 등. 농촌진흥청 완결과제 최종보고서. 과제번호 PJ00817005. 농생명 합성생물학 기반 Phyto-Sensor 기술개발 (2013)*

Also Published As

Publication number Publication date
KR20150142244A (en) 2015-12-22

Similar Documents

Publication Publication Date Title
Huang et al. Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate
Stachyra et al. Fluorescence detection-based functional assay for high-throughput screening for MraY
Sun et al. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site
AU779263B2 (en) Luciferase expression cassettes and methods of use
Hentschel et al. Destabilized eYFP variants for dynamic gene expression studies in C orynebacterium glutamicum
CN1678624B (en) Benzoate- and anthranilate-inducible promoters
EP0922106A1 (en) Light emitting biosensor
WO2008127496A2 (en) Heavy metal biosensor
Hogenkamp et al. Effect of photocaged isopropyl β‐d‐1‐thiogalactopyranoside solubility on the light responsiveness of LacI‐controlled expression systems in different bacteria
Yoon et al. Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis
US6737245B1 (en) Luciferase expression cassettes and methods of use
Mongkolsuk et al. The repressor for an organic peroxide‐inducible operon is uniquely regulated at multiple levels
Kirti et al. Differential regulation of ssb genes in the nitrogen‐fixing cyanobacterium, Anabaena sp. strain PCC71201
KR101598907B1 (en) Artificial biosensor for non-degradable harmful aromatic compound detection using remodeled sensing protein and manufacturing method thereof
CN101605888A (en) Use the Baily acinetobacter calcoaceticus ADP1 that transforms to detect the method for toluene and dimethylbenzene as biosensor
Mitchell et al. Construction and evaluation of nagR-nagAa:: lux fusion strains in biosensing for salicylic acid derivatives
Fiebig et al. Regulation of the Erythrobacter litoralis DSM 8509 general stress response by visible light
Sivakumar et al. Surface display of roGFP for monitoring redox status of extracellular microenvironments in Shewanella oneidensis biofilms
KR100464068B1 (en) biosensor for detecting phenolic compounds and the manufacturing method thereof
US20080044829A1 (en) Biosensor Utilizing Pigment-Synthesizing Gene Of A Purple Non-Sulfur Bacterium And A Method For Preparing Such A Biosensor
KR101430685B1 (en) Artificial biosensor for non-degradable harmful aromatic compound detection and manufacturing method thereof
CN113528563A (en) Preparation method and application of visual biosensor synthesized by using explosive molecule degradation genes
Jaubert et al. Control of peripheral light-harvesting complex synthesis by a bacteriophytochrome in the aerobic photosynthetic bacterium Bradyrhizobium strain BTAi1
Tropel et al. Identification and physical characterization of the HbpR binding sites of the hbpC and hbpD promoters
CN112481278A (en) Biosensor based on AIP induction and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 5