KR20030073867A - Method for manufacturing mos transistor - Google Patents

Method for manufacturing mos transistor Download PDF

Info

Publication number
KR20030073867A
KR20030073867A KR1020020013621A KR20020013621A KR20030073867A KR 20030073867 A KR20030073867 A KR 20030073867A KR 1020020013621 A KR1020020013621 A KR 1020020013621A KR 20020013621 A KR20020013621 A KR 20020013621A KR 20030073867 A KR20030073867 A KR 20030073867A
Authority
KR
South Korea
Prior art keywords
ion implantation
transistor formation
forming
formation region
source
Prior art date
Application number
KR1020020013621A
Other languages
Korean (ko)
Inventor
김동찬
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020013621A priority Critical patent/KR20030073867A/en
Publication of KR20030073867A publication Critical patent/KR20030073867A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823871Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for fabricating a metal oxide semiconductor(MOS) transistor is provided to control an increase of density in a junction and reduce junction leakage and junction capacitance by performing a pocket ion implantation process only on a channel and a source/drain extension region. CONSTITUTION: A semiconductor substrate(100) is prepared in which an NMOS transistor formation region(I) and a PMOS transistor formation region(II) are defined. An isolation layer(103) is formed on the substrate. A gate oxide layer(110) is formed on the substrate. The first and second gates(112a,112b) are formed on the gate oxide layer in the NMOS and PMOS transistor formation regions, respectively. The first insulation layer pattern covering the first and second gates and the second insulation layer pattern having etch selectivity different from that of the first insulation layer pattern are sequentially formed. Ion implantation processes are selectively performed on the NMOS and PMOS transistor formation regions to form the first and second sources/drains(117,118,119,120), respectively. The first and second epitaxial layers are selectively formed in the substrate corresponding to the first and second sources/drains. Ion implantation processes are selectively performed on the first and second epitaxial layers to form the first and second high density regions(124,126), respectively. The second insulation layer is eliminated. Pocket ions and source/drain extension ions are sequentially implanted into the NMOS and PMOS transistor formation regions, respectively.

Description

모스 트랜지스터 제조 방법{METHOD FOR MANUFACTURING MOS TRANSISTOR}MOS transistor manufacturing method {METHOD FOR MANUFACTURING MOS TRANSISTOR}

본 발명은 반도체장치의 제조 방법에 관한 것으로, 보다 상세하게는 트랜지스터 및 정션의 고성능 및 안정성을 확보할 수 있는 모스 트랜지스터(MOS transistor) 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a MOS transistor capable of securing high performance and stability of transistors and junctions.

일반적으로, 반도체 소자가 고집적화 됨에 따라 모스 트랜지스터는 얕은 깊이를 갖는 소오스/드레인 접합부(shallow source/drain junction)를 형성하기 위한 방법으로, 저에너지의 이온 주입에 의한 방법과 이를 응용한 이중 이온 주입방법, 선비정질화에 의한 채널링 효과억제 방법 등이 제안된다. 이러한 방법들은 0.1㎛ 이하 급의 반도체 소자의 얕은 접합 형성을 위해서는 주입된 이온에 의한 결함 형성에 따른 물리적, 화학적 특성 규명이 아직 미흡한 실정이다. 따라서, 얕은 접합부를 형성하는 방법으로 실리콘 등의 기판 표면의 하부에 이온 주입에 의해 형성하는 방법을 탈피하여 소오스/드레인 접합부를 기판의 상부에도 형성하는 선택적 에피택셜 성장 방법에 의한 엘레베이티드 소오스/드레인 접합부가 제안되고 있다.In general, as semiconductor devices are highly integrated, a MOS transistor is a method for forming a shallow source / drain junction having a shallow depth, a method by ion implantation of low energy, a dual ion implantation method using the same, A method of suppressing channeling effect by pre-crystallization is proposed. These methods still lack the physical and chemical characterization of defect formation by implanted ions for the formation of shallow junctions of semiconductor devices of less than 0.1㎛ class. Therefore, the elevation of the source / drain by the selective epitaxial growth method in which the source / drain junction is formed on the upper part of the substrate, instead of the method of forming the shallow junction by ion implantation on the lower part of the substrate surface such as silicon. Drain junctions have been proposed.

그러나, 종래의 기술에서는 반도체 소자가 점점 고집적화됨에 따라 게이트 길이(gate length)가 감소되고 쇼트 채널(short channel) 효과가 발생된다. 따라서, 이러한 쇼트 채널 효과를 개선하기 위해서는 정션 깊이와 소오스/드레인의 농도를 감소시켜야만 하므로 이에 따라 필연적으로 소오스/드레인의 기생 저항이 증가하여 트랜지스터의 성능이 저하되었다. 또한 쇼트 채널 효과를 개선하기 위해서는 포켓 이온주입 공정이 진행되나, 상기 포켓 이온주입 공정에 의해 채널영역 이외에 정션 내의 원치않는 부분에 주입되어 정션 리키지(junction leakage)와 정션 캐패시턴스(junction capacitance)가 증가되는 문제점이 있었다.However, in the prior art, as the semiconductor devices are increasingly integrated, the gate length is reduced and a short channel effect occurs. Therefore, in order to improve the short channel effect, it is necessary to decrease the junction depth and the source / drain concentration, thereby inevitably increasing the parasitic resistance of the source / drain, thereby degrading the performance of the transistor. In addition, the pocket ion implantation process is performed to improve the short channel effect. However, the pocket ion implantation process is injected into unwanted portions of the junction in addition to the channel region to increase junction leakage and junction capacitance. There was a problem.

이에 본 발명은 상기 종래의 문제점을 해결하기 위해 안출된 것으로, 정션 리키지와 정션 캐패시턴스를 감소시킬 수 있는 모스 트랜지스터 제조 방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a MOS transistor manufacturing method capable of reducing the junction liquidity and junction capacitance.

도 1a 내지 도 1k는 본 발명에 따른 모스 트랜지스터 제조 방법을 설명하기 위한 공정단면도.1A to 1K are cross-sectional views illustrating a method of manufacturing a MOS transistor according to the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

100. 반도체기판 102. 샬로트렌치100. Semiconductor substrate 102. Charlotte trench

103. 소자격리막 104, 106. 웰103. Device isolators 104, 106. Wells

110. 게이트 산화막 112a, 112b. 게이트110. Gate oxide films 112a and 112b. gate

114, 116. 절연 스페이서 117, 118, 119, 120. 소오스/드레인114, 116. Insulation spacers 117, 118, 119, 120. Source / drain

122. 에피텍셜층 124, 126. 고농도영역122. Epitaxial layer 124, 126. High concentration region

128. 실리사이드층 160. 완충막128. Silicide layer 160. Buffer membrane

162. 절연막 164. 개구부162. Insulator 164. Opening

166. 금속플러그 130, 132, 134, 136, 138, 140. 감광막 패턴166. Metal plugs 130, 132, 134, 136, 138, 140. Photoresist pattern

Ⅰ. NMOS트랜지스터 형성영역 Ⅱ. PMOS 트랜지스터 형성영역I. NMOS transistor formation area Ⅱ. PMOS transistor formation area

상기 목적을 달성하기 위한 본 발명의 모스 트랜지스터 제조 방법은 NMOS 트랜지스터 형성영역 및 PMOS트랜지스터 형성영역이 정의된 반도체기판을 제공하는 단계와, 기판에 소자와 소자 간을 분리하는 소자격리막을 형성하는 단계와, 소자격리막을 포함한 기판 전면에 게이트 산화막을 형성하는 단계와, 게이트 산화막의 NMOS 트랜지스터 형성영역에 제 1게이트 및 PMOS트랜지스터 형성영역에 제 2게이트를 각각 형성하는 단계와, 제 1 및 제 2게이트를 덮는 제 1절연막 패턴 및 제 1절연막 패턴과 식각선택비가 다른 제 2절연막 패턴을 차례로 형성하는 단계와, NMOS 트랜지스터 형성영역에 선택적으로 이온주입을 실시하여 제 1소오스/드레인을 형성하는 단계와, PMOS 트랜지스터 형성영역에 선택적으로 이온주입을 실시하여 제 2소오스/드레인을 형성하는 단계와, 기판의 제 1 및 제 2소오스/드레인과 대응된 부분에 선택적으로 제 1 및 제 2에피텍셜층을 형성하는 단계와, 제 1에피텍셜층에 선택적으로 이온주입을 실시하여 제 1고농도영역을 형성하는 단계와, 제 2에피텍셜층에 선택적으로 이온주입을 실시하여 제 2고농도영역을 형성하는 단계와, 제 2절연막 패턴을 제거하는 단계와, NMOS 트랜지스터 형성영역에 포켓 이온주입 및 소오스/드레인 확장 이온주입을 차례로 실시하는 단계와, PMOS 트랜지스터 형성영역에 포켓 이온주입 및 소오스/드레인 확장 이온주입을 차례로 실시하는 단계를 포함한 것을특징으로 한다.In order to achieve the above object, the present invention provides a method of manufacturing a MOS transistor, the method including: providing a semiconductor substrate having an NMOS transistor forming region and a PMOS transistor forming region; Forming a gate oxide film on the entire surface of the substrate including the device isolation film, forming a first gate in the NMOS transistor formation region of the gate oxide film, and a second gate in the PMOS transistor formation region, respectively, and forming the first and second gates. Sequentially forming a covering first insulating film pattern and a second insulating film pattern having a different etching selectivity from the first insulating film pattern, selectively implanting ions into an NMOS transistor formation region to form a first source / drain, and a PMOS Selectively implanting ions into the transistor formation region to form a second source / drain Selectively forming first and second epitaxial layers on portions corresponding to the first and second sources / drains of the substrate, and selectively implanting ions into the first epitaxial layer to form a first high concentration region. Forming a second high concentration region by selectively implanting ions into the second epitaxial layer, removing the second insulating film pattern, and implanting pocket ions and source / drain into the NMOS transistor formation region. The method includes the steps of sequentially performing extended ion implantation, and then sequentially performing pocket ion implantation and source / drain extended ion implantation in the PMOS transistor formation region.

상기 게이트 산화막으로는 실리콘 산화막, 실리콘 질화막 및 실리콘 질화막과 실리콘 산화막의 적층 구조 중 어느 하나를 이용하는 것을 포함한다.The gate oxide film may include any one of a silicon oxide film, a silicon nitride film, and a stacked structure of a silicon nitride film and a silicon oxide film.

상기 PMOS 트랜지스터 형성영역에 포켓 이온주입 및 소오스/드레인 확장 이온주입을 차례로 실시한 후에, 상기 결과물 상에 실리사이드층을 노출시키는 개구부를 가진 절연막을 형성하는 단계와, 개구부를 덮는 도전 플러그를 형성하는 단계를 추가하는 것을 포함한다.After the pocket ion implantation and the source / drain expansion ion implantation are sequentially performed in the PMOS transistor formation region, forming an insulating film having an opening for exposing a silicide layer on the resultant, and forming a conductive plug covering the opening. It includes adding.

상기 제 1절연막 패턴으로는 실리콘 질화막을 이용하고 제 2절연막 패턴으로는 실리콘 산화막을 이용하는 것을 포함한다.A silicon nitride film is used as the first insulating film pattern, and a silicon oxide film is used as the second insulating film pattern.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1k는 본 발명에 따른 모스 트랜지스터 제조 방법을 설명하기 위한 공정단면도이다.1A to 1K are cross-sectional views illustrating a method of manufacturing a MOS transistor according to the present invention.

본 발명의 모스 트랜지스터 제조 방법은, 도 1a에 도시된 바와 같이, 먼저, 반도체기판(100)의 소자 격리영역(미도시)에 샬로우 트렌치(shallow trench)(102)를 형성하고, 상기 샬로우 트렌치(102)를 매립시키는 소자격리막(103)을 형성한다.In the method of manufacturing the MOS transistor of the present invention, as shown in FIG. 1A, a shallow trench 102 is formed in an element isolation region (not shown) of the semiconductor substrate 100, and the shallow A device isolation film 103 is formed to fill the trench 102.

이때, 상기 기판(100)에는 NMOS 트랜지스터 형성영역(Ⅰ) 및 PMOS 트랜지스터 형성영역(Ⅱ)이 정의되어져 있다. 이어서, 상기 소자격리막(103)이 형성된 기판에 마스크 작업을 실시하고 이온주입 공정을 진행함으하여 NMOS 트랜지스터 형성영역(Ⅰ)에는 P웰(104)을 형성하고 PMOS 트랜지스터 형성영역(Ⅱ)에는 N웰(106)을형성한다.In this case, an NMOS transistor forming region I and a PMOS transistor forming region II are defined in the substrate 100. Subsequently, a mask operation is performed on the substrate on which the device isolation film 103 is formed and an ion implantation process is performed to form a P well 104 in the NMOS transistor forming region I and an N well in the PMOS transistor forming region II. Form 106.

그런 다음, 도 1b에 도시된 바와 같이, 상기 P웰(104) 및 N웰(106)을 포함한 기판 전면에 게이트 산화막(110)을 형성한다. 이때, 상기 게이트 산화막(110)은 실리콘 산화막, 실리콘 질화막 및 실리콘 질화막과 실리콘 산화막의 적층 구조 중 어느 하나를 이용한다. 이 후, 상기 게이트 산화막(110) 상에 불순물이 도핑된 다결정 실리콘층을 형성하고 나서, 포토리쏘그라피 공정에 의해 상기 다결정 실리콘층을 식각하여 NMOS 트랜지스터 형성영역(Ⅰ) 및 PMOS 트랜지스터 형성영역(Ⅱ)에 각각의 제 1및 제 2게이트(112a)(112b)를 형성한다.Next, as shown in FIG. 1B, a gate oxide film 110 is formed on the entire surface of the substrate including the P well 104 and the N well 106. In this case, the gate oxide film 110 may use any one of a silicon oxide film, a silicon nitride film, and a stacked structure of a silicon nitride film and a silicon oxide film. Thereafter, a polycrystalline silicon layer doped with an impurity is formed on the gate oxide layer 110, and then the polycrystalline silicon layer is etched by a photolithography process to form an NMOS transistor formation region I and a PMOS transistor formation region II. ) And the first and second gates 112a and 112b, respectively.

이어서, 도 1c에 도시된 바와 같이, 상기 제 1 및 제 2게이트(112a)(112b)를 포함한 기판 전면에 실리콘 질화막과 상기 실리콘 질화막과 식각선택비가 다른 옥사이드(oxide) 계열의 산화막을 차례로 증착한 다음, 마스크 공정을 통하여 상기 실리콘 산화막 및 실리콘 질화막을 식각하여 제 1 및 제 2게이트(112a)(112b)를 덮는 각각의 제 1절연 스페이서(114) 및 제 2절연 스페이서(116)를 형성한다. 그 다음, 상기 결과의 기판 전면에 감광막을 도포한 후 노광 및 현상하여 PMOS 트랜지스터 형성영역(Ⅱ)을 덮고 NMOS트랜지스터 형성영역(Ⅰ)을 노출시키는 제 1감광막 패턴(130)을 형성한다. 이 후, 상기 제 1감광막 패턴(130)을 마스크로 하고 기판 전면에 N+ 이온주입을 실시하여 제 1게이트(112a) 하부의 양측 기판에 제 1소오스/드레인(N+) (117)(118)을 형성한다.Subsequently, as shown in FIG. 1C, a silicon nitride film and an oxide-based oxide film having an etch selectivity different from that of the silicon nitride film are sequentially deposited on the entire surface of the substrate including the first and second gates 112a and 112b. Next, the silicon oxide film and the silicon nitride film are etched through a mask process to form respective first insulating spacers 114 and second insulating spacers 116 covering the first and second gates 112a and 112b. Next, after the photoresist is coated on the entire surface of the resultant substrate, the photoresist is exposed and developed to form a first photoresist pattern 130 covering the PMOS transistor formation region II and exposing the NMOS transistor formation region I. Subsequently, the first photoresist pattern 130 is used as a mask and N + ion implantation is performed on the entire surface of the substrate so that the first source / drain (N +) 117 (118) is disposed on both substrates below the first gate 112a. Form.

그런 다음, 도 1d에 도시된 바와 같이, 제 1감광막 패턴을 제거한다. 이 후, 상기 제 1소오스/드레인(N+)(117)(118)을 포함한 기판 전면에 다시 감광막을 도포하고 노광 및 현상하여 NMOS트랜지스터 형성영역(Ⅰ)을 덮고 PMOS 트랜지스터 형성영역(Ⅱ)을 노출시키는 제 2감광막 패턴(132)을 형성한다. 이어서, 제 2감광막 패턴(132)을 마스크로 하고 기판 전면에 P+이온주입을 실시하여 제 2게이트(112b) 하부의 양측 기판에 제 2소오스/드레인(P+)(119)(120)을 형성한다.Then, as shown in Fig. 1D, the first photoresist pattern is removed. Subsequently, a photoresist film is applied to the entire surface of the substrate including the first source / drain (N +) 117 and 118 again, followed by exposure and development to cover the NMOS transistor formation region I and expose the PMOS transistor formation region II. The second photosensitive film pattern 132 is formed. Subsequently, P + ions are implanted to the entire surface of the substrate using the second photoresist pattern 132 as a mask to form second sources / drains (P +) 119 and 120 on both substrates below the second gate 112b. .

그 다음, 도 1e에 도시된 바와 같이, 상기 제 1소오스/드레인(N+)(117)(118) 및 제 2소오스/드레인(P+)(119)(120)을 덮도록 선택적으로 에피텍셜층(122)을 성장시킨다.Next, as shown in FIG. 1E, an epitaxial layer (optional) may be selectively covered to cover the first source / drain (N +) 117 118 and the second source / drain (P +) 119, 120. 122).

이 후, 도 1f에 도시된 바와 같이, 상기 에피텍셜층(122)을 포함한 기판 상에 PMOS 트랜지스터 형성영역(Ⅱ)을 덮고 NMOS트랜지스터 형성영역(Ⅰ)을 노출시키는 제 3감광막 패턴(134)을 형성한다. 이어, 제 3감광막 패턴(134)을 마스크로 하고 상기 NMOS트랜지스터 형성영역(Ⅰ)의 상기 에피텍셜층에 N+ 고농도 이온주입을 실시하여 제 1고농도영역(N+)(124)한다. 이때, N+ 이온주입되는 에너지는 상기 제 1 소오스/드레인(117)(118)영역보다 깊게 이온이 주입되지 않도록 하는 범위 내에서 셋팅된다.Afterwards, as shown in FIG. 1F, the third photoresist pattern 134 covering the PMOS transistor formation region II and exposing the NMOS transistor formation region I is exposed on the substrate including the epitaxial layer 122. Form. Subsequently, N + high concentration ion implantation is performed on the epitaxial layer of the NMOS transistor formation region I using the third photoresist pattern 134 as a mask to form the first high concentration region N + 124. In this case, N + ion implanted energy is set within a range such that ions are not implanted deeper than the first source / drain 117 and 118 regions.

그런 다음, 도 1g에 도시된 바와 같이, 제 3감광막 패턴을 제거한다. 그런 다음, 상기 결과물 상에 NMOS트랜지스터 형성영역(Ⅰ)을 덮고 PMOS 트랜지스터 형성영역(Ⅱ)을 노출시키는 제 4감광막 패턴(136)을 형성한다. 이 후에, 상기 제 4감광막 패턴(136)을 마스크로 하고 기판 전면에 P+이온주입을 실시하여 제 2고농도영역(P+)(126)을 형성한다. 이때, P+ 이온주입되는 에너지는 상기 제 2소오스/드레인(119)(120)영역보다 깊게 이온이 주입되지 않도록 하는 범위 내에서 셋팅된다.Then, as shown in Fig. 1G, the third photoresist pattern is removed. Next, a fourth photoresist pattern 136 is formed on the resultant to cover the NMOS transistor formation region I and expose the PMOS transistor formation region II. Thereafter, the fourth photoresist pattern 136 is used as a mask to form a second high concentration region (P +) 126 by performing P + ion implantation on the entire substrate. In this case, P + ion implantation energy is set within a range such that ions are not implanted deeper than the second source / drain 119 and 120 regions.

이어서, 도 1h에 도시된 바와 같이, 상기 제 4감광막 패턴을 제거한 다음, 살리사이드 공정을 진행하여 NMOS트랜지스터 형성영역(Ⅰ)의 제 1고농도영역(N+)(124) 및 PMOS 트랜지스터 형성영역(Ⅱ)의 제 2고농도영역(P+)(126)의 에피텍셜층 상부에 각각의 살리사이드층(128)을 형성한다.Subsequently, as shown in FIG. 1H, after the fourth photoresist pattern is removed, a salicide process is performed to form the first high concentration region (N +) 124 and the PMOS transistor formation region (II) of the NMOS transistor formation region (I). Each salicide layer 128 is formed on the epitaxial layer of the second high concentration region (P +) 126.

그 다음, 도 1i에 도시된 바와 같이, 상기 살리사이드층(128)을 포함한 기판 상에 PMOS 트랜지스터 형성영역(Ⅱ)을 덮고 NMOS트랜지스터 형성영역(Ⅰ)을 노출시키는 제 5감광막 패턴(138)을 형성한다. 이후, 제 5감광막 패턴(138)을 마스크로 하고 NMOS트랜지스터 형성영역(Ⅰ)에 포켓 이온주입 및 제 1소오스/드레인 (117)(118) 확장 이온주입(N-)을 차례로 실시한다. 이때, 도면부호 150은 포켓 이온주입한 상태를 도시한 것이고, 도면부호 152는 제 1소오스/드레인 (117)(118) 확장 이온주입(N-)한 상태를 도시한 것이다.Next, as shown in FIG. 1I, a fifth photoresist pattern 138 covering the PMOS transistor forming region II and exposing the NMOS transistor forming region I is exposed on the substrate including the salicide layer 128. Form. Thereafter, using the fifth photoresist pattern 138 as a mask, pocket ion implantation and first source / drain 117 and 118 extended ion implantation (N−) are sequentially performed in the NMOS transistor formation region (I). In this case, reference numeral 150 denotes a state in which pocket ion implantation is performed, and reference numeral 152 illustrates a state in which first source / drain 117 and 118 expansion ion implantation (N−) is performed.

이어서, 도 1j에 도시된 바와 같이, 제 5감광막 패턴을 제거하고 나서, 상기 포켓 이온주입 및 제 1소오스/드레인(117)(118) 확장 이온주입(N-) 공정이 완료된기판 상에 다시 NMOS트랜지스터 형성영역(Ⅰ)을 덮고 PMOS 트랜지스터 형성영역(Ⅱ)을 노출시키는 제 6감광막 패턴(140)을 형성한다. 이 후에, 제 6감광막 패턴(140)을 마스크로 하고 기판 전면에 포켓 이온주입 및 제 2소오스/드레인(119)(120) 확장 이온주입(P-)을 실시한다. 이때, 도면부호 154는 포켓 이온주입한 상태를 도시한 것이고, 도면부호 156는 제 2소오스/드레인(119)(120) 확장 이온주입(P-)한 상태를 도시한 것이다.Subsequently, as shown in FIG. 1J, after removing the fifth photoresist pattern, the NMOS is again on the substrate on which the pocket ion implantation and the first source / drain 117 and 118 expansion ion implantation (N−) processes are completed. A sixth photosensitive film pattern 140 covering the transistor forming region I and exposing the PMOS transistor forming region II is formed. Subsequently, pocket ion implantation and second source / drain 119 and 120 extended ion implantation (P−) are performed on the entire surface of the substrate using the sixth photosensitive film pattern 140 as a mask. In this case, reference numeral 154 denotes a pocket ion implanted state, and reference numeral 156 denotes a state in which the second source / drain 119 and 120 extended ion implantation (P−) is performed.

그런 다음에, 도 1k에 도시된 바와 같이, 상기 제 6감광막 패턴을 제거한다. 이어, 상기 포켓 이온주입 및 제 2소오스/드레인(119)(120) 확장 이온주입(P-) 공정이 완료된 기판에 완충막(buffer oxide layer)(160) 및 BPSG 등을 이용한 절연막(162)을 차례로 증착한다. 이 후, 포토리쏘그라피 공정에 의해 상기 완충막(160) 및 절연막(162)을 식각하여 상기 살리사이드층(128)을 노출시키는 개구부(164)를 형성하고 나서, 상기 개구부(164)를 포함한 절연막(162) 상에 스퍼터링법에 의해 금속막을 증착 및 에치백하여 상기 개구부(164)를 덮는 금속 플러그(166)을 형성한다.Then, as shown in Fig. 1K, the sixth photosensitive film pattern is removed. Subsequently, an insulating film 162 using a buffer oxide layer 160 and a BPSG is applied to a substrate on which the pocket ion implantation and the second source / drain 119 and 120 expansion ion implantation (P-) processes are completed. Deposition in turn. Thereafter, the buffer layer 160 and the insulating layer 162 are etched by a photolithography process to form an opening 164 exposing the salicide layer 128, and then an insulating film including the opening 164. A metal film is deposited and etched back on the 162 by sputtering to form a metal plug 166 covering the opening 164.

이상에서와 같이, 본 발명에서는 포켓 이온주입을 채널과 소오스/드레인 확장영역으로 제한하여 실시함으로써 정션 내의 농도 증가를 제어하고, 정션 리키지 및 정션 캐패시턴스를 줄일 수 있다.As described above, in the present invention, by limiting the pocket ion implantation to the channel and the source / drain extension region, it is possible to control the increase in concentration in the junction, and to reduce the junction liquidity and the junction capacitance.

또한, 본 발명에서는 소오스/드레인 확장 이온주입 및 포켓 이온주입을 실시함으로써, 쇼트 채널 마진을 확보하고, 정션과 채널의 불필요한 보론 농도를 줄일 수 있으므로 정션 리키지와 정션 캐패시턴스를 감소시킬 수 있다. 따라서, 트랜지스터와 정션의 고성능과 안정성을 확보할 수 있다.In addition, in the present invention, by performing source / drain expansion ion implantation and pocket ion implantation, short channel margins can be secured, and unnecessary boron concentrations of junctions and channels can be reduced, thereby reducing junction liquidity and junction capacitance. Therefore, high performance and stability of the transistor and the junction can be ensured.

기타, 본 발명은 그 요지를 일탈하지 않는 범위에서 다양하게 변경하여 실시할 수 있다.In addition, this invention can be implemented in various changes within the range which does not deviate from the summary.

Claims (4)

NMOS 트랜지스터 형성영역 및 PMOS트랜지스터 형성영역이 정의된 반도체기판을 제공하는 단계와,Providing a semiconductor substrate having an NMOS transistor formation region and a PMOS transistor formation region defined therein; 상기 기판에 소자와 소자 간을 분리하는 소자격리막을 형성하는 단계와,Forming a device isolation film separating the device from the device on the substrate; 상기 소자격리막을 포함한 기판 전면에 게이트 산화막을 형성하는 단계와,Forming a gate oxide film on an entire surface of the substrate including the device isolation film; 상기 게이트 산화막의 NMOS 트랜지스터 형성영역에 제 1게이트 및 PMOS트랜지스터 형성영역에 제 2게이트를 각각 형성하는 단계와,Forming a first gate in a NMOS transistor forming region of the gate oxide film and a second gate in a PMOS transistor forming region, respectively; 상기 제 1 및 제 2게이트를 덮는 제 1절연막 패턴 및 상기 제 1절연막 패턴과 식각선택비가 다른 제 2절연막 패턴을 차례로 형성하는 단계와,Sequentially forming a first insulating layer pattern covering the first and second gates and a second insulating layer pattern having an etch selectivity different from that of the first insulating layer pattern; 상기 NMOS 트랜지스터 형성영역에 선택적으로 이온주입을 실시하여 제 1소오스/드레인을 형성하는 단계와,Selectively implanting ions into the NMOS transistor formation region to form a first source / drain; 상기 PMOS 트랜지스터 형성영역에 선택적으로 이온주입을 실시하여 제 2소오스/드레인을 형성하는 단계와,Selectively implanting ions into the PMOS transistor formation region to form a second source / drain; 상기 기판의 상기 제 1 및 제 2소오스/드레인과 대응된 부분에 선택적으로 제 1 및 제 2에피텍셜층을 형성하는 단계와,Selectively forming first and second epitaxial layers on portions of the substrate corresponding to the first and second sources / drains, 상기 제 1에피텍셜층에 선택적으로 이온주입을 실시하여 제 1고농도영역을 형성하는 단계와,Selectively implanting ions into the first epitaxial layer to form a first high concentration region; 상기 제 2에피텍셜층에 선택적으로 이온주입을 실시하여 제 2고농도영역을 형성하는 단계와,Selectively implanting ions into the second epitaxial layer to form a second high concentration region; 상기 제 2절연막 패턴을 제거하는 단계와,Removing the second insulating pattern; 상기 NMOS 트랜지스터 형성영역에 포켓 이온주입 및 소오스/드레인 확장 이온주입을 차례로 실시하는 단계와,Performing pocket ion implantation and source / drain expansion ion implantation sequentially in the NMOS transistor formation region; 상기 PMOS 트랜지스터 형성영역에 포켓 이온주입 및 소오스/드레인 확장 이온주입을 차례로 실시하는 단계를 포함하는 것을 특징으로 하는 모스 트랜지스터 제조 방법.And sequentially performing pocket ion implantation and source / drain extension ion implantation into the PMOS transistor formation region. 제 1항에 있어서, 상기 게이트 산화막은 실리콘 산화막, 실리콘 질화막 및 실리콘 질화막과 실리콘 산화막의 적층 구조 중 어느 하나를 이용하는 것을 특징으로 하는 모스 트랜지스터 제조 방법.The method of claim 1, wherein the gate oxide film is any one of a silicon oxide film, a silicon nitride film, and a stacked structure of a silicon nitride film and a silicon oxide film. 제 1항에 있어서, 상기 PMOS 트랜지스터 형성영역에 포켓 이온주입 및 소오스/드레인 확장 이온주입을 차례로 실시한 후에,The method of claim 1, wherein after performing pocket ion implantation and source / drain expansion ion implantation in the PMOS transistor formation region, 상기 결과물 상에 상기 실리사이드층을 노출시키는 개구부를 가진 절연막을 형성하는 단계와,Forming an insulating film having an opening exposing the silicide layer on the resultant, 상기 개구부를 덮는 도전 플러그를 형성하는 단계를 추가하는 것을 특징으로 하는 모스 트랜지스터 제조 방법.And forming a conductive plug covering the opening. 제 1항에 있어서, 상기 제 1절연막 패턴으로는 실리콘 질화막을 이용하고 상기 제 2절연막 패턴으로는 실리콘 산화막을 이용하는 것을 특징으로 하는 모스 트랜지스터 제조 방법.The method of claim 1, wherein a silicon nitride film is used as the first insulating film pattern, and a silicon oxide film is used as the second insulating film pattern.
KR1020020013621A 2002-03-13 2002-03-13 Method for manufacturing mos transistor KR20030073867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020013621A KR20030073867A (en) 2002-03-13 2002-03-13 Method for manufacturing mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020013621A KR20030073867A (en) 2002-03-13 2002-03-13 Method for manufacturing mos transistor

Publications (1)

Publication Number Publication Date
KR20030073867A true KR20030073867A (en) 2003-09-19

Family

ID=32224660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020013621A KR20030073867A (en) 2002-03-13 2002-03-13 Method for manufacturing mos transistor

Country Status (1)

Country Link
KR (1) KR20030073867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882930B1 (en) * 2004-12-17 2009-02-10 삼성전자주식회사 CMOS semiconductor devices having source and drain regions and methods of fabricating the same
KR101011728B1 (en) * 2010-06-30 2011-01-28 (주) 대유 Driving device for crane type electric pulling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882930B1 (en) * 2004-12-17 2009-02-10 삼성전자주식회사 CMOS semiconductor devices having source and drain regions and methods of fabricating the same
US7714394B2 (en) 2004-12-17 2010-05-11 Samsung Electronics Co., Ltd. CMOS semiconductor devices having elevated source and drain regions and methods of fabricating the same
KR101011728B1 (en) * 2010-06-30 2011-01-28 (주) 대유 Driving device for crane type electric pulling apparatus

Similar Documents

Publication Publication Date Title
US9852953B2 (en) CMOS fabrication
KR100512029B1 (en) Method of making nmos and pmos devices with reduced masking steps
US7309633B2 (en) Semiconductor device including MOS field effect transistor having offset spacers or gate sidewall films on either side of gate electrode and method of manufacturing the same
US20110006373A1 (en) Transistor Structure
US5612240A (en) Method for making electrical connections to self-aligned contacts that extends beyond the photo-lithographic resolution limit
US7902021B2 (en) Method for separately optimizing spacer width for two or more transistor classes using a recess spacer integration
KR20040079747A (en) Method for manufacturing CMOS transistor having lightly doped drain structure
KR20030073867A (en) Method for manufacturing mos transistor
KR20050002076A (en) Method for fabrication of semiconductor device
KR20010066327A (en) A method for fabricating dual gate electrode
KR20050045560A (en) Method for implanting channel ions in recess gate type transistor
KR20000032293A (en) Method for manufacturing semiconductor memory device
JP2003031680A (en) Method for manufacturing semiconductor device
KR100268928B1 (en) Method for fabricating semiconductor device
KR20030001787A (en) Method for manufacturing a transistor
JP2919690B2 (en) Method for manufacturing semiconductor device
KR100565754B1 (en) Method for forming semi-conductor device
KR100340884B1 (en) Method for forming transistor in semiconductor device
KR100511931B1 (en) Manufacturing method for semiconductor memory
KR20000045470A (en) Fabrication method of semiconductor device
KR20040099617A (en) Manufacturing method for semiconductor device
JP2000311951A (en) Semiconductor device and manufacture thereof
KR20040008496A (en) Method for manufacturing a transistor
KR20040021775A (en) Method Of Forming Semiconductor Transistor
KR20000021001A (en) Method for manufacturing semiconductor devices

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination