KR20000032293A - Method for manufacturing semiconductor memory device - Google Patents

Method for manufacturing semiconductor memory device Download PDF

Info

Publication number
KR20000032293A
KR20000032293A KR1019980048714A KR19980048714A KR20000032293A KR 20000032293 A KR20000032293 A KR 20000032293A KR 1019980048714 A KR1019980048714 A KR 1019980048714A KR 19980048714 A KR19980048714 A KR 19980048714A KR 20000032293 A KR20000032293 A KR 20000032293A
Authority
KR
South Korea
Prior art keywords
layer
gate
forming
region
semiconductor substrate
Prior art date
Application number
KR1019980048714A
Other languages
Korean (ko)
Inventor
강우탁
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019980048714A priority Critical patent/KR20000032293A/en
Publication of KR20000032293A publication Critical patent/KR20000032293A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape

Abstract

PURPOSE: A method for manufacturing a semiconductor memory device is provided to selectively form a silicide layer on a periphery region in one time of a photography process, and to form each gate spacer on a cell array region and the periphery region. CONSTITUTION: A gate(8) is formed on a substrate(2) having a cell array region and a periphery region. Next, an oxide layer(10) and an insulation layer(12) of a predetermined etching ratio are sequentially evaporated on whole area of the substrate(2) including the gate(8). Next, a mask pattern(14) is formed so that the periphery region is exposed. Next, a dry etching is performed to the insulation layer(12) in the periphery region while the oxide layer(10) is used as an etch stopping layer, so that a first gate spacer(12a) is formed. Next, a mask pattern(14) is removed. Next, the oxide layer(10) in the periphery region is removed, so that an upper area of the semiconductor substrate(2) is exposed at two sides of the gate spacer(12a). Next, a silicide layer(18) is formed on the exposed semiconductor substrate(2). Next, a dry etching is performed to the insulation layer(12) with an etching selection ratio to the silicide layer(18) in the cell array region while the oxide layer(10) is used as an etch stopping layer, so that a second gate spacer(12b) is formed.

Description

반도체 메모리 장치의 제조 방법(METHOD OF FABRICATING SEMICONDUCTOR MEMORY DEVICE)METHOD OF FABRICATING SEMICONDUCTOR MEMORY DEVICE

본 발명은 반도체 메모리 장치의 제조 방법에 관한 것으로, 좀 더 구체적으로는 주변회로 영역에 선택적으로 실리사이드막(silicide layer)을 형성하는 반도체 메모리 장치의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor memory device, and more particularly, to a method of manufacturing a semiconductor memory device in which a silicide layer is selectively formed in a peripheral circuit region.

DRAM(dynamic random access memory)이 점차 고집적화 됨에 따라, 트랜지스터(transistor)의 크기도 점점 작아져서 서브 미크론 레벨(sub-micron level) 이하로 줄어들고 있다. 따라서, NMOS 트랜지스터의 경우, 드레인 전압이 증가함에 따라 소오스(source)와 드레인(drain)의 디플리션 영역(depletion region)이 서로 만나게 되고, 또한 소오스와 채널(channel)간의 퍼텐셜 장벽(potential barrier)이 낮아져서 펀치쓰루(punchthrough)가 발생된다. 그리고, 트랜지스터의 소오스/드레인의 브레이크다운 전압(breakdown voltage)이 감소되고, 문턱 전압(threshold voltage)이 감소되며, 스윙(swing) 증가를 가져오는 전형적인 숏 채널 효과(short channel effect)가 발생된다.As dynamic random access memory (DRAM) becomes increasingly integrated, the size of transistors is also getting smaller and smaller to sub-micron levels. Therefore, in the case of NMOS transistors, as the drain voltage increases, source and drain depletion regions meet each other, and a potential barrier between the source and the channel is also encountered. This lowers and punchthrough occurs. Then, the breakdown voltage of the source / drain of the transistor is reduced, the threshold voltage is reduced, and a typical short channel effect that causes an increase in swing occurs.

이와 같은 상기 숏 채널 효과를 개선하기 위해서, 고농도 소오스/드레인 영역 형성을 위한 이온주입 에너지(ion implantation energy)를 작게 하여 얕은 접합(shallow junction)을 형성해야 한다. 그러면, 소오스/드레인 영역의 면적 점유율이 노멀 전압에 비해 작아지게 되고, 소오스/드레인 영역의 디플리션 영역이 감소되어 숏 채널 효과가 개선되고, 펀치쓰루 전압이 증가된다.In order to improve such a short channel effect, a shallow junction should be formed by reducing ion implantation energy for forming a high concentration source / drain region. Then, the area occupancy of the source / drain regions becomes smaller than that of the normal voltage, and the depletion region of the source / drain regions is reduced to improve the short channel effect and to increase the punch-through voltage.

그러나, 상기 얕은 접합은 옴성 콘택(ohmic contact)과 면저항(sheet resistance)에 좋지 않은 영향을 주게 된다. 즉, 콘택 식각 공정시 소오스/드레인 영역의 실리콘 소모로 인해 옴성 콘택이 어려워지는 문제점과, 옴성 콘택을 형성하기 위해 소오스/드레인 영역의 실리콘 소모를 최소화하는 저스트 식각(just etch) 공정을 수행할 경우 콘택 낫 오픈(contact not open)이 발생되는 문제점이 있게 된다.However, the shallow junction adversely affects ohmic contact and sheet resistance. That is, when the contact etching process is a problem that the ohmic contact is difficult due to the silicon consumption of the source / drain region, and the just etch process to minimize the silicon consumption of the source / drain region to form the ohmic contact There is a problem that a contact not open occurs.

본 발명은 상술한 제반 문제점을 해결하기 위해 제안된 것으로서, 반도체 메모리 장치의 셀 어레이 영역을 제외한 주변회로 영역에 선택적으로 실리사이드화(silicidation) 공정을 적용할 수 있고, 따라서 얕은 접합에 대한 옴성 콘택을 형성할 수 있는 반도체 메모리 장치의 제조 방법을 제공함에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems, and can selectively apply a silicidation process to a peripheral circuit region except for a cell array region of a semiconductor memory device, thereby providing ohmic contact for a shallow junction. It is an object of the present invention to provide a method of manufacturing a semiconductor memory device that can be formed.

도 1 내지 도 4는 본 발명의 실시예에 따른 반도체 메모리 장치의 제조 방법의 공정들을 순차적으로 보여주는 흐름도.1 to 4 are flowcharts sequentially showing processes of a method of manufacturing a semiconductor memory device according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

2 : 반도체 기판 4 : 폴리실리콘막2: semiconductor substrate 4: polysilicon film

5, 12, 20 : 실리콘 질화막 6 : HTO막5, 12, 20: silicon nitride film 6: HTO film

8 : 게이트 9a, 9b : 저농도 소오스/드레인 영역8 gate 9a, 9b low concentration source / drain region

10 : 버퍼 산화막 14 : 포토레지스트 패턴10 buffer oxide film 14 photoresist pattern

12a, 12b : 게이트 스페이서 16 : 고농도 소오스/드레인 영역12a, 12b: Gate spacer 16: High concentration source / drain region

18 : 실리사이드막 22 : 층간절연막18 silicide film 22 interlayer insulating film

(구성)(Configuration)

상술한 목적을 달성하기 위한 본 발명에 의하면, 반도체 메모리 장치의 제조 방법은, 셀 어레이 영역(cell array region)과 주변회로 영역(periphery region)을 갖는 반도체 기판(2) 상에 게이트 산화막을 사이에 두고 게이트(8)를 형성하는 단계; 상기 게이트(8)를 포함하여 반도체 기판(2) 전면에 산화막(10) 및 이 산화막(10)과 식각 선택비를 갖는 절연막(12)을 차례로 형성하는 단계; 상기 주변회로 영역이 노출되도록 마스크 패턴(14)을 형성하는 단계; 상기 주변회로 영역의 절연막(12)을 건식 식각 하여 제 1 게이트 스페이서(gate spacer)(12a)를 형성하되, 상기 산화막(10)을 식각 정지층(etch stopping layer)으로 사용하여 형성하는 단계; 상기 마스크 패턴(14)을 제거하는 단계; 상기 주변회로 영역의 상기 산화막(10)을 제거하여 상기 제 1 게이트 스페이서(12a) 양측의 반도체 기판(2)의 상부를 노출시키는 단계; 상기 노출된 반도체 기판(2) 상에 실리사이드막(silicide layer)(18)을 형성하는 단계; 및 상기 셀 어레이 영역의 절연막(12)을 건식 식각 하여 제 2 게이트 스페이서(12b)를 형성하되, 상기 산화막(10)을 식각 정지층으로 사용하고, 상기 실리사이드막(18)에 대해 식각 선택비를 갖는 조건으로 수행하여 형성하는 단계를 포함한다.According to the present invention for achieving the above object, a method of manufacturing a semiconductor memory device, between the gate oxide film on a semiconductor substrate 2 having a cell array region and a peripheral region (periphery region) between; Forming a gate 8; Sequentially forming an oxide film (10) and an insulating film (12) having an etch selectivity with the oxide film (10) over the semiconductor substrate (2) including the gate (8); Forming a mask pattern 14 to expose the peripheral circuit region; Dry etching the insulating layer 12 of the peripheral circuit region to form a first gate spacer 12a, wherein the oxide layer 10 is formed as an etch stopping layer; Removing the mask pattern (14); Removing the oxide layer (10) in the peripheral circuit region to expose an upper portion of the semiconductor substrate (2) on both sides of the first gate spacer (12a); Forming a silicide layer (18) on the exposed semiconductor substrate (2); And dry etching the insulating layer 12 of the cell array region to form a second gate spacer 12b, wherein the oxide layer 10 is used as an etch stop layer, and an etch selectivity is applied to the silicide layer 18. Forming by performing under conditions having.

이 방법의 바람직한 실시예에 있어서, 상기 산화막(10) 형성 전에, 상기 게이트(8) 양측의 반도체 기판(2) 내에 저농도 소오스/드레인 영역(9a, 9b)을 형성하는 단계를 더 포함할 수 있다.In a preferred embodiment of the method, the method may further include forming low concentration source / drain regions 9a and 9b in the semiconductor substrate 2 on both sides of the gate 8 before the oxide film 10 is formed. .

이 방법의 바람직한 실시예에 있어서, 상기 주변회로 영역의 산화막(10)을 제거하기 전에, 상기 제 1 게이트 스페이서(12a) 양측의 반도체 기판(2) 내에 고농도 소오스/드레인 영역(16)을 형성하는 단계를 더 포함할 수 있다.In a preferred embodiment of this method, a high concentration source / drain region 16 is formed in the semiconductor substrate 2 on both sides of the first gate spacer 12a before removing the oxide film 10 in the peripheral circuit region. It may further comprise a step.

(작용)(Action)

도 3을 참조하면, 본 발명의 실시예에 따른 신규한 반도체 메모리 장치의 제조 방법은, 한 번의 포토 공정으로 주변회로 영역에 선택적으로 실리사이드막을 형성할 수 있고, 또한 셀 어레이 영역과 주변회로 영역에 각각의 게이트 스페이서를 형성할 수 있다.Referring to FIG. 3, in the novel semiconductor memory device manufacturing method according to the embodiment of the present invention, a silicide film may be selectively formed in a peripheral circuit region in one photo process, and further, in a cell array region and a peripheral circuit region. Each gate spacer can be formed.

(실시예)(Example)

이하, 도 1 내지 도 4를 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4.

도 1 내지 도 4는 본 발명의 실시예에 따른 반도체 메모리 장치의 제조 방법의 공정들을 순차적으로 보여주는 흐름도이다.1 to 4 are flowcharts sequentially showing processes of a method of manufacturing a semiconductor memory device according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 따른 반도체 메모리 장치의 제조 방법은 먼저, 셀 어레이 영역(cell array region) 및 주변회로 영역(periphery region)을 갖는 반도체 기판(2) 상에 게이트(8)가 형성된다. 상기 게이트(8)는 반도체 기판(2) 상에 폴리실리콘막(4), 실리콘 질화막(5), 그리고 HTO(high temperature oxide)막(6)이 차례로 증착된 후, 게이트 마스크(gate mask)를 사용하여 이 막들이 패터닝(patterning)되어 형성된다. 상기 게이트(8) 하부에는 게이트 산화막(gate oxide)(도면에 미도시)이 형성되어 있다.Referring to FIG. 1, a method of manufacturing a semiconductor memory device according to an embodiment of the present invention may first include a gate 8 on a semiconductor substrate 2 having a cell array region and a peripheral region. ) Is formed. The gate 8 is formed by sequentially depositing a polysilicon film 4, a silicon nitride film 5, and a high temperature oxide (HTO) film 6 on the semiconductor substrate 2, and then applying a gate mask. These films are then patterned to form. A gate oxide (not shown) is formed below the gate 8.

예를 들어, 불순물 이온주입 공정(impurity ion implantation process)을 사용하여 상기 게이트(8) 양측의 반도체 기판(2) 내에 저농도 소오스/드레인 영역(9a, 9b)이 형성된다.For example, low concentration source / drain regions 9a and 9b are formed in the semiconductor substrate 2 on both sides of the gate 8 using an impurity ion implantation process.

상기 게이트(8)를 포함하여 반도체 기판(2) 전면에 버퍼 산화막(buffer oxide)(10)이 증착된다. 상기 버퍼 산화막(10)은 MTO(middle temperature oxide) 또는 HTO 로서, 약 100Å의 두께로 증착된다. 상기 버퍼 산화막(10) 상에 게이트 스페이서 형성을 위한 실리콘 질화막(12)이 약 600Å의 두께로 증착된다.A buffer oxide 10 is deposited on the entire surface of the semiconductor substrate 2 including the gate 8. The buffer oxide film 10 is a middle temperature oxide (MTO) or HTO, and is deposited to a thickness of about 100 GPa. A silicon nitride film 12 for forming a gate spacer on the buffer oxide film 10 is deposited to a thickness of about 600 kPa.

도 2에 있어서, 상기 실리콘 질화막(12) 상에 상기 주변회로 영역이 노출되도록 포토레지스트 패턴(photoresist pattern)(14)이 형성된다. 상기 노출된 주변회로 영역의 상기 실리콘 질화막(12)이 에치 백(etch back) 공정과 같은 건식 식각 방법으로 식각 되어 게이트(8) 양측벽의 버퍼 산화막(10) 상에 게이트 스페이서(12a)가 형성된다. 이때, 상기 게이트 스페이서(12a) 형성시 상기 버퍼 산화막(10)은 식각 정지층으로 사용된다. 이러한 게이트 스페이서(12a) 형성 공정시 게이트(8)의 상부가 둥글게 식각 됨으로써, 후속 자기정렬 콘택 형성 공정시 콘택홀의 종횡비가 감소된다.In FIG. 2, a photoresist pattern 14 is formed on the silicon nitride film 12 to expose the peripheral circuit region. The silicon nitride layer 12 of the exposed peripheral circuit region is etched by a dry etching method such as an etch back process to form a gate spacer 12a on the buffer oxide layer 10 on both sidewalls of the gate 8. do. In this case, the buffer oxide layer 10 is used as an etch stop layer when the gate spacer 12a is formed. As the upper portion of the gate 8 is etched roundly in the gate spacer 12a forming process, the aspect ratio of the contact hole is reduced in the subsequent self-aligned contact forming process.

상기 저농도 소오스/드레인 영역(16) 형성과 마찬가지로, 예를 들어, 불순물 이온주입 공정을 사용하여 상기 게이트 스페이서(12a) 양측의 반도체 기판(2) 내에 고농도 소오스/드레인 영역(16)이 형성된다.Similarly to forming the low concentration source / drain regions 16, for example, a high concentration source / drain region 16 is formed in the semiconductor substrate 2 on both sides of the gate spacer 12a using an impurity ion implantation process.

도 3을 참조하면, 상기 포토레지스트 패턴(14)이 제거된 후, 상기 주변회로 영역의 저농도 소오스/드레인 영역(9a)의 실리콘이 노출되도록 버퍼 산화막(10)이 제거된다.Referring to FIG. 3, after the photoresist pattern 14 is removed, the buffer oxide layer 10 is removed to expose silicon in the low concentration source / drain region 9a of the peripheral circuit region.

상기 노출된 실리콘을 이 분야에서 잘 알려진 실리사이드화 공정을 사용하여 실리사이드화 하면, 주변회로 영역의 소오스/드레인 영역(9a) 상에 실리사이드막(18)이 형성된다.When the exposed silicon is silicided using a silicidation process well known in the art, a silicide film 18 is formed on the source / drain regions 9a of the peripheral circuit region.

다음, 상기 셀 어레이 영역의 실리콘 질화막(12)이 건식 식각 방법으로 식각 되어 게이트(8) 양측벽의 버퍼 산화막(10) 상에 게이트 스페이서(12b)가 형성된다. 이때, 상기 주변회로 영역의 게이트 스페이서(12a) 형성과 마찬가지로, 상기 게이트 스페이서(12b) 형성시 상기 버퍼 산화막(10)은 식각 정지층으로 사용된다.Next, the silicon nitride film 12 of the cell array region is etched by a dry etching method to form a gate spacer 12b on the buffer oxide film 10 on both sidewalls of the gate 8. In this case, as in the formation of the gate spacer 12a in the peripheral circuit region, the buffer oxide layer 10 is used as an etch stop layer when the gate spacer 12b is formed.

이와 같이, 상기 버퍼 산화막(10)은 상기 게이트 스페이서(12a, 12b) 형성시 식각 정지층으로 사용되어 하부의 저농도 소오스/드레인 영역(9a, 9b)의 실리콘이 식각 되는 것을 방지하는 역할을 한다. 또한, 상기 게이트 스페이서(12b) 형성 공정시 게이트(8)의 상부가 둥글게 식각 됨으로써, 후속 자기정렬 콘택 형성 공정시 콘택홀의 종횡비가 감소된다.As described above, the buffer oxide layer 10 serves as an etch stop layer when the gate spacers 12a and 12b are formed to prevent etching of silicon in the lower concentration source / drain regions 9a and 9b. In addition, the upper portion of the gate 8 is etched roundly during the gate spacer 12b forming process, thereby reducing the aspect ratio of the contact hole during the subsequent self-aligned contact forming process.

이때, 상기 게이트 스페이서(12b) 형성을 위한 건식 식각 공정은 실리콘 질화막과 산화막의 식각 선택비가 충분히 큰 조건으로 수행하여, 주변회로 영역의 필드 산화막이 소모되는 것을 방지하며, 셀 어레이 영역의 버퍼 산화막(10)이 증착 직후와 거의 같은 두께로 남도록 한다. 일반적으로, 이러한 조건에서 상기 실리사이드막(18) 또한 실리콘 질화막에 대해 식각 선택비를 갖게 되고, 또한 공정 조건을 조절하여 그 식각 선택비를 더 높일 수도 있다.In this case, the dry etching process for forming the gate spacer 12b is performed under a condition where the etching selectivity of the silicon nitride film and the oxide film is sufficiently large to prevent the field oxide film of the peripheral circuit region from being consumed, and the buffer oxide film of the cell array region ( 10) remain almost the same thickness immediately after deposition. In general, the silicide layer 18 also has an etch selectivity with respect to the silicon nitride layer under such conditions, and may further increase the etch selectivity by adjusting process conditions.

후속 공정으로, 도 4에서와 같이, 반도체 기판(2) 전면에 자기정렬 콘택 형성을 위해 사용되는 실리콘 질화막(20)과, 배선간의 격리를 위한 층간절연막(22)이 차례로 증착된다. 상기 실리콘 질화막(20)은 약 100Å의 두께로 증착된다.In a subsequent process, as shown in FIG. 4, a silicon nitride film 20 used for forming a self-aligned contact on the entire surface of the semiconductor substrate 2, and an interlayer insulating film 22 for isolation between wirings are sequentially deposited. The silicon nitride film 20 is deposited to a thickness of about 100 GPa.

본 발명은 한 번의 포토 공정으로 주변회로 영역에 선택적으로 실리사이드막을 형성할 수 있고, 또한 셀 어레이 영역과 주변회로 영역에 각각의 게이트 스페이서를 형성할 수 있는 효과가 있다.According to the present invention, the silicide layer may be selectively formed in the peripheral circuit region in one photo process, and the respective gate spacers may be formed in the cell array region and the peripheral circuit region.

Claims (5)

셀 어레이 영역(cell array region)과 주변회로 영역(periphery region)을 갖는 반도체 기판(2) 상에 게이트 산화막을 사이에 두고 게이트(8)를 형성하는 단계;Forming a gate 8 on the semiconductor substrate 2 having a cell array region and a peripheral region, with a gate oxide film interposed therebetween; 상기 게이트(8)를 포함하여 반도체 기판(2) 전면에 산화막(10) 및 이 산화막(10)과 식각 선택비를 갖는 절연막(12)을 차례로 형성하는 단계;Sequentially forming an oxide film (10) and an insulating film (12) having an etch selectivity with the oxide film (10) over the semiconductor substrate (2) including the gate (8); 상기 주변회로 영역이 노출되도록 마스크 패턴(14)을 형성하는 단계;Forming a mask pattern 14 to expose the peripheral circuit region; 상기 주변회로 영역의 절연막(12)을 건식 식각 하여 제 1 게이트 스페이서(gate spacer)(12a)를 형성하되, 상기 산화막(10)을 식각 정지층(etch stopping layer)으로 사용하여 형성하는 단계;Dry etching the insulating layer 12 of the peripheral circuit region to form a first gate spacer 12a, wherein the oxide layer 10 is formed as an etch stopping layer; 상기 마스크 패턴(14)을 제거하는 단계;Removing the mask pattern (14); 상기 주변회로 영역의 상기 산화막(10)을 제거하여 상기 제 1 게이트 스페이서(12a) 양측의 반도체 기판(2)의 상부를 노출시키는 단계;Removing the oxide layer (10) in the peripheral circuit region to expose an upper portion of the semiconductor substrate (2) on both sides of the first gate spacer (12a); 상기 노출된 반도체 기판(2) 상에 실리사이드막(silicide layer)(18)을 형성하는 단계; 및Forming a silicide layer (18) on the exposed semiconductor substrate (2); And 상기 셀 어레이 영역의 절연막(12)을 건식 식각 하여 제 2 게이트 스페이서(12b)를 형성하되, 상기 산화막(10)을 식각 정지층으로 사용하고, 상기 실리사이드막(18)에 대해 식각 선택비를 갖는 조건으로 수행하여 형성하는 단계를 포함하는 반도체 메모리 장치의 제조 방법.Dry etching the insulating layer 12 of the cell array region to form a second gate spacer 12b, wherein the oxide layer 10 is used as an etch stop layer, and has an etch selectivity with respect to the silicide layer 18. A method of manufacturing a semiconductor memory device comprising the step of forming under conditions. 제 1 항에 있어서,The method of claim 1, 상기 절연막(12)은 실리콘 질화막인 반도체 메모리 장치의 제조 방법.And the insulating film is a silicon nitride film. 제 1 항에 있어서,The method of claim 1, 상기 제 2 게이트 스페이서(12b)를 형성하기 위한 건식 식각 공정은, 주변회로 영역의 필드 산화막(field oxide layer)이 식각 되지 않도록 산화막에 대해 충분히 높은 식각 선택비를 갖는 조건으로 수행되는 반도체 메모리 장치의 제조 방법.The dry etching process for forming the second gate spacer 12b is performed under conditions having a sufficiently high etching selectivity with respect to the oxide layer so that the field oxide layer of the peripheral circuit region is not etched. Manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 산화막(10) 형성 전에, 상기 게이트(8) 양측의 반도체 기판(2) 내에 저농도 소오스/드레인 영역(9a, 9b)을 형성하는 단계를 더 포함하는 반도체 메모리 장치의 제조 방법.And forming a low concentration source / drain regions (9a, 9b) in the semiconductor substrate (2) on both sides of the gate (8) before forming the oxide film (10). 제 1 항에 있어서,The method of claim 1, 상기 주변회로 영역의 산화막(10)을 제거하기 전에, 상기 제 1 게이트 스페이서(12a) 양측의 반도체 기판(2) 내에 고농도 소오스/드레인 영역(16)을 형성하는 단계를 더 포함하는 반도체 메모리 장치의 제조 방법.Before removing the oxide film 10 in the peripheral circuit region, forming a high concentration source / drain region 16 in the semiconductor substrate 2 on both sides of the first gate spacer 12a. Manufacturing method.
KR1019980048714A 1998-11-13 1998-11-13 Method for manufacturing semiconductor memory device KR20000032293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980048714A KR20000032293A (en) 1998-11-13 1998-11-13 Method for manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980048714A KR20000032293A (en) 1998-11-13 1998-11-13 Method for manufacturing semiconductor memory device

Publications (1)

Publication Number Publication Date
KR20000032293A true KR20000032293A (en) 2000-06-15

Family

ID=19558228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980048714A KR20000032293A (en) 1998-11-13 1998-11-13 Method for manufacturing semiconductor memory device

Country Status (1)

Country Link
KR (1) KR20000032293A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058512A (en) * 2000-12-30 2002-07-12 박종섭 Method for fabricating semiconductor device
KR100381022B1 (en) * 2001-06-30 2003-04-23 주식회사 하이닉스반도체 Method of forming gate for reduction of leakage current
KR20030050780A (en) * 2001-12-19 2003-06-25 주식회사 하이닉스반도체 Method of manufacturing a transistor in a semiconductor device
KR100400250B1 (en) * 2001-06-29 2003-10-01 주식회사 하이닉스반도체 Method For Forming The Transitor Of Semiconductor Device
KR100720228B1 (en) * 2001-06-28 2007-05-22 주식회사 하이닉스반도체 Method for manufacturing a transistor
KR100736956B1 (en) * 2000-12-21 2007-07-09 주식회사 하이닉스반도체 method for manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736956B1 (en) * 2000-12-21 2007-07-09 주식회사 하이닉스반도체 method for manufacturing semiconductor device
KR20020058512A (en) * 2000-12-30 2002-07-12 박종섭 Method for fabricating semiconductor device
KR100720228B1 (en) * 2001-06-28 2007-05-22 주식회사 하이닉스반도체 Method for manufacturing a transistor
KR100400250B1 (en) * 2001-06-29 2003-10-01 주식회사 하이닉스반도체 Method For Forming The Transitor Of Semiconductor Device
KR100381022B1 (en) * 2001-06-30 2003-04-23 주식회사 하이닉스반도체 Method of forming gate for reduction of leakage current
KR20030050780A (en) * 2001-12-19 2003-06-25 주식회사 하이닉스반도체 Method of manufacturing a transistor in a semiconductor device

Similar Documents

Publication Publication Date Title
US6281064B1 (en) Method for providing dual work function doping and protective insulating cap
US6939765B2 (en) Integration method of a semiconductor device having a recessed gate electrode
JPH04328864A (en) Manufacture of ultra-high integrated semiconductor memory device
KR930009132B1 (en) Method of fabricating high integrated semiconductor memory device
US6432787B1 (en) Method and apparatus for providing low-GIDL dual workfunction gate doping with borderless diffusion contact
KR20000032293A (en) Method for manufacturing semiconductor memory device
KR100384062B1 (en) Method for fabricating selective silicide film of MDL
US7326606B2 (en) Semiconductor processing methods
US20050151173A1 (en) Semiconductor device and methods of manufacturing the same
KR20010066327A (en) A method for fabricating dual gate electrode
US6277699B1 (en) Method for forming a metal-oxide-semiconductor transistor
KR100267010B1 (en) A method of fabricating semiconductor device
KR100552592B1 (en) Method of manufacturing the semiconductor device
KR100255514B1 (en) Fabricating method of semiconductor memory device
KR20030013624A (en) Semiconductor device having notched gate electrode and method for manufacturing the same
KR100545210B1 (en) A semiconductor device having a memory device and a logic device, and a manufacturing method thereof
KR100273297B1 (en) Method for fabricating mos transistor
KR100447230B1 (en) Method for forming salicide of semiconductor device
KR100202642B1 (en) Method for manufacturing mos transistor
KR20020017092A (en) Method for manufacturing semiconductor device
KR100314478B1 (en) A method for forming a gate electrode of a semiconductor device
KR100432893B1 (en) Method for forming a semiconductor device
KR100400780B1 (en) Method for fabricating of semiconductor device
KR100340884B1 (en) Method for forming transistor in semiconductor device
KR20040056195A (en) Method for forming of mos transistor

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid