KR20030072671A - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR20030072671A
KR20030072671A KR1020020011814A KR20020011814A KR20030072671A KR 20030072671 A KR20030072671 A KR 20030072671A KR 1020020011814 A KR1020020011814 A KR 1020020011814A KR 20020011814 A KR20020011814 A KR 20020011814A KR 20030072671 A KR20030072671 A KR 20030072671A
Authority
KR
South Korea
Prior art keywords
layer
ion implantation
forming
capping layer
gate
Prior art date
Application number
KR1020020011814A
Other languages
Korean (ko)
Other versions
KR100855281B1 (en
Inventor
사승훈
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020011814A priority Critical patent/KR100855281B1/en
Publication of KR20030072671A publication Critical patent/KR20030072671A/en
Application granted granted Critical
Publication of KR100855281B1 publication Critical patent/KR100855281B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to be capable of minimizing the silicidation of polysilicon. CONSTITUTION: A semiconductor substrate(41) is defined to an active region and an isolation region. A polysilicon gate(51a) and a capping layer are sequentially stacked. Germanium ions are implanted into the substrate. After removing the capping layer, an LDD region(55) is formed. After forming a spacer(61) at both sidewalls of the polysilicon gate(51a), a source/drain(63) is formed in the substrate. A metal silicide layer(65) is formed on the surface of the source/drain and the polysilicon gate.

Description

반도체소자의 제조방법{Method for fabricating semiconductor device}Method for fabricating semiconductor device

본 발명은 반도체소자의 제조방법에 관한 것으로서, 보다 상세하게는 게이트층의 실리사이드 형성문제를 최소화시켜 소자의 전기적 특성을 향상시킬 수 있는 반도체소자의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device that can improve the electrical characteristics of the device by minimizing the silicide formation problem of the gate layer.

종래기술에 따른 반도체소자의 제조방법을 도 1 내지 도 6을 참조하여 설명하면 다음과 같다.A method of manufacturing a semiconductor device according to the prior art will be described with reference to FIGS. 1 to 6.

도 1 내지 도 6은 종래기술에 따른 반도체소자의 제조방법을 설명하기 위한 공정별 단면도이다.1 to 6 are cross-sectional views of processes for explaining a method of manufacturing a semiconductor device according to the prior art.

종래기술에 따른 반도체소자의 제조방법은, 도 1에 도시된 바와같이, 먼저 소자가 형성될 지역을 확보하고자 반도체기판(11)내에 미리 소자분리영역과 소자영역을 분리하는 트렌치소자분리막(13)을 형성한다.In the method of manufacturing a semiconductor device according to the related art, as shown in FIG. 1, a trench device isolation film 13 separating a device isolation region and a device region in advance in a semiconductor substrate 11 to secure a region where a device is to be formed first. To form.

그다음, 도 2에 도시된 바와같이, 소자가 형성되지 않을 지역을 감광막(14)으로 덮은 상태에서 상기 소자형성지역의 반도체기판(11)내에 이온주입을 실시하여 웰(15)을 형성한후 감광막(14)을 제거한다.Then, as shown in FIG. 2, the wells 15 are formed by performing ion implantation into the semiconductor substrate 11 in the element formation region while the region where the element is not formed is covered with the photosensitive layer 14. Remove (14).

이어서, 도 3에 도시된 바와같이, 상기 반도체기판(11)상에 게이트산화층과 폴리실리콘 또는 실리콘게르마늄층을 순차적으로 적층한후 이들을 게이트마스크(마스크)를 이용하여 선택적으로 제거하여 게이트산화막(17)과 게이트전극(19)을 형성한다.Subsequently, as shown in FIG. 3, the gate oxide layer and the polysilicon or silicon germanium layer are sequentially stacked on the semiconductor substrate 11, and then, the gate oxide layer 17 is selectively removed using a gate mask (mask). ) And the gate electrode 19 are formed.

그다음, 도 4에 도시된 바와같이, 상기 게이트전극(19)양측아래의 반도체기판 (11)내에 LDD이온주입층과 할로(halo)이온주입층을 형성하기 위한 이온주입을 순차적으로 진행하여 LDD이온주입층(21)과 할로이온주입층(23)을 형성한다.Next, as illustrated in FIG. 4, LDD ions are sequentially formed by sequentially performing ion implantation to form an LDD ion implantation layer and a halo ion implantation layer in the semiconductor substrate 11 below both sides of the gate electrode 19. The injection layer 21 and the haloion injection layer 23 are formed.

이어서, 도 5에 도시된 바와같이, 상기 게이트전극(19)과 게이트산화막(17)측면에 버퍼산화층(25)을 형성한후 그 위에 절연막스페이서(27)를 형성한다.Subsequently, as shown in FIG. 5, a buffer oxide layer 25 is formed on the gate electrode 19 and the gate oxide layer 17, and then an insulating film spacer 27 is formed thereon.

이어서, 도 5에 도시된 바와같이, 상기 절연막스페이서(27)양측아래의 반도체기판(11)내에 소오스/드레인 형성용 불순물을 주입하여 소오스/드레인(29)을 형성한다.Next, as illustrated in FIG. 5, the source / drain forming impurities are implanted into the semiconductor substrate 11 below both sides of the insulating film spacer 27 to form the source / drain 29.

그다음, 도 6에 도시된 바와같이, 상기 전체 구조의 상면에 코발트를 증착한후 이를 1차 및 2차 열처리공정을 진행하여 상기 게이트전극(19)과 소오스/ 드레인(29)표면에 실리사이드막(31)을 형성한다.Next, as shown in FIG. 6, cobalt is deposited on the upper surface of the entire structure, and then the first and second heat treatment processes are performed on the surface of the gate electrode 19 and the source / drain 29 to form a silicide layer ( 31).

그러나, 상기와 같은 종래기술에 의하면, LDD이온주입층과 소오스/드레인의 깊이(즉, 접합깊이)에 따라 소자특성열화, 즉 핫캐리어 효과 및 단채널 효과 등의 문제점을 나타낼 수 있어 보다 얕은 접합 형성이 필요하다.However, according to the prior art as described above, depending on the LDD ion implantation layer and the source / drain depth (that is, the junction depth), problems such as deterioration of device characteristics, that is, a hot carrier effect and a short channel effect, may be exhibited. Formation is required.

또한, 소오스/드레인은, 도 6에서와 같이, 이후 금속층과 접촉될 수 있는 부분의 접촉저항을 감소시키기 위해 미리 기판내의 실리콘원자와 반응할 수 있는 금속층을 먼저 증착하고, 한 두차례의 열처리를 통하여 선택적으로 실리사이드층을 형성시키는 공정을 진행하게 되므로써 저항의 문제점을 해결할 수 있다.In addition, the source / drain may first deposit a metal layer capable of reacting with silicon atoms in the substrate in advance and then perform one or two heat treatments as shown in FIG. Through the process of selectively forming a silicide layer through it can solve the problem of resistance.

그러나, LDD층의 경우는 점점 얕은 접합을 하게 됨에 따라 기생저항이 증가되어 전기의 흐름을 방해하는 문제점을 갖고 있어 반도체소자의 감소에 따라 반드시 해결해야만 한다.However, the LDD layer has a problem that the parasitic resistance is increased to obstruct the flow of electricity as the shallow junction is gradually made, which must be solved as the semiconductor device decreases.

따라서, 이상에서와 같이, 종래기술 이용시에 소자의 크기가 감소함에 따라 MOSFET의 경우 단채널 효과와 더불어 기생저항의 증가에 의해 소자작동의 어려움및 소자성능의 감소가 야기되므로 그 해결방안으로서 얕은 접합 형성과 함께 실리사이드를 형성하므로써 콘택저항을 낮추는 기술을 사용하게 된다.Therefore, as described above, as the size of the device decreases when using the prior art, in the case of the MOSFET, the short channel effect and the increase of the parasitic resistance cause difficulty in device operation and decrease in device performance. Formation of silicide together with the formation leads to a technique of lowering contact resistance.

그러나, 실리사이드가 형성되지 않는 얕은 접합영역의 경우에는 기생저항의 증가문제를 해결할 수 없어 한계를 갖게 된다.However, in the case of the shallow junction region in which silicide is not formed, the problem of increasing parasitic resistance cannot be solved.

이에 본 발명은 상기 종래기술의 제반 문제점을 해결하기 위하여 안출한 것으로서, 폴리실리콘의 실리사이드화를 최소화시킬 수 있어 소자 성능에 따른 소자 특성 향상 및 수율 향상을 기대할 수 있는 반도체소자의 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems of the prior art, it is possible to minimize the silicide of the polysilicon to provide a method for manufacturing a semiconductor device that can be expected to improve the device characteristics and yield according to the device performance The purpose is.

도 1 내지 도 6은 종래기술에 따른 반도체소자의 제조방법을 설명하기 위한 공정별 단면도.1 to 6 are cross-sectional views for each process for explaining a method of manufacturing a semiconductor device according to the prior art.

도 7 내지 도 13은 본 발명에 따른 반도체소자의 제조방법을 설명하기 위한 공정별 단면도.7 to 13 are cross-sectional views for each process for explaining a method of manufacturing a semiconductor device according to the present invention.

[도면부호의설명][Description of Drawing Reference]

41 : 반도체기판43 : 트렌치소자분리막41 semiconductor substrate 43 trench isolation film

45 : 감광막47 : 웰45 photosensitive film 47 well

49 : 게이트산화막51 : 폴리실리콘49 gate oxide film 51 polysilicon

53 : 캡핑층55 : LDD 이온주입층53 capping layer 55 LDD ion implantation layer

57 : 할로이온주입층59 : 버퍼산화막57: halo ion implantation layer 59: buffer oxide film

61 : 절연막스페이서63 : 소오스/드레인61 insulating film spacer 63 source / drain

65 : 금속실리사이드막65 metal silicide film

상기 목적을 달성하기 위한 본 발명에 따른 반도체소자의 제조방법은, 반도체기판을 소자영역과 소자분리영역으로 한정하는 단계; 상기 반도체기판상에 게이트층과 캡핑층을 적층하는 단계; 상기 캡핑층과 게이트층을 패터닝하여 캡핑층 패턴과 게이트층패턴을 형성하는 단계; 상기 캡핑층패턴양측아래의 반도체기판내에 게르마늄이온을 주입하는 단계; 상기 캡핑층패턴을 제거한후 상기 게이트층패턴 양측아래의 반도체기판내에 LDD이온주입층을 형성하는 단계; 상기 게이트층패턴 양측면에 스페이서를 형성한후 그 스페이서양측아래의 반도체기판내에 소오스 /드레인을 형성하는 단계; 및 상기 소오스/드레인 및 게이트층패턴표면에 금속실리 사이드막을 형성하는 단계를 포함하여 이루어지는 것을 특징으로한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, the method including: limiting a semiconductor substrate to an element region and an isolation region; Stacking a gate layer and a capping layer on the semiconductor substrate; Patterning the capping layer and the gate layer to form a capping layer pattern and a gate layer pattern; Implanting germanium ions into the semiconductor substrate below both sides of the capping layer pattern; Removing the capping layer pattern and forming an LDD ion implantation layer in the semiconductor substrate under both sides of the gate layer pattern; Forming spacers on both sides of the gate layer pattern, and then forming source / drain in the semiconductor substrate under both spacers; And forming a metal silicide layer on the source / drain and gate layer pattern surfaces.

(실시예)(Example)

이하, 본 발명에 따른 반도체소자의 제조방법을 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 7 내지 도 13은 본 발명에 따른 반도체소자의 제조방법을 설명하기 위한 공정단면도이다.7 to 13 are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with the present invention.

본 발명에 따른 반도체소자의 제조방법은, 도 7에 도시된 바와같이, 먼저 먼저 소자가 형성될 지역을 확보하고자 반도체기판(41)내에 미리 소자분리영역과 소자영역을 분리하는 트렌치소자분리막(43)을 형성한다. 이때, 상기 트렌치소자 분리막 (43)을 형성하기 위해 버즈빅(bird's beak)이 거의 없이 소자의 고집적화에 따라 소자간에 전기적으로 분리시키는 영역을 축소시킬 수 있는 STI 공정기술을 적용한다.According to the method of manufacturing a semiconductor device according to the present invention, as shown in FIG. 7, first, a trench device isolation film 43 for separating a device isolation region and a device region in advance in the semiconductor substrate 41 to secure a region where a device is to be formed. ). At this time, to form the trench isolation layer 43, an STI process technology capable of reducing the area electrically separated between the devices according to the high integration of the device with little bird's beak is applied.

그다음, 도 8에 도시된 바와같이, 소자가 형성되지 않을 지역에 감광막(45)을 덮은 상태에서 상기 소자형성지역의 반도체기판(41)내에 이온주입을 실시하여 웰(47)을 형성한후 상기 감광막(45)을 제거한다. 이때, 서로 다른 종류의 소자를 구현하기 위하여 상기 설명된 방법을 두 번의 반복적인 공정을 수행하게 된다. 예를들어, NMOSFET의 경우는 보론을 이용한 P 웰을, PMOSFET의 경우는 포스포러스 및 아세닉을 이용한 N 웰을 형성하게 된다.Then, as shown in FIG. 8, the wells 47 are formed by performing ion implantation into the semiconductor substrate 41 in the element formation region while covering the photosensitive film 45 in the region where the element is not to be formed. The photosensitive film 45 is removed. In this case, two repeated processes are performed in the above-described method to implement different kinds of devices. For example, in the case of an NMOSFET, a P well using boron is formed, and in the case of a PMOSFET, an N well using phosphorus and an acenic is formed.

이어서, 도 9에 도시된 바와같이, 상기 반도체기판(41)상에 게이트산화막 (49)과 폴리실리콘 또는 실리콘게르마늄층(51) 및 캡핑층(53)을 순차적으로 적층한다. 이때, 상기 캡핑층(53) 증착은 경우에 따라 게이트만의 추가 도핑시에는 도핑공정진행후에 진행한다. 또한, 상기 캡핑층(53) 증착시에는 HLD 및 TEOS 등의 산화막 계열물질과 SiN 및 Si3N4등의 나이트라이드 계열 물질을 사용한다. 그리고, 상기 캡핑층(53)의 증착 두께는 300 내지 1000 Å 범위를 갖는다.Subsequently, as shown in FIG. 9, the gate oxide layer 49, the polysilicon or silicon germanium layer 51, and the capping layer 53 are sequentially stacked on the semiconductor substrate 41. In this case, deposition of the capping layer 53 may be performed after the doping process is performed in case of additional doping of only the gate. In addition, when the capping layer 53 is deposited, an oxide-based material such as HLD and TEOS and a nitride-based material such as SiN and Si 3 N 4 are used. In addition, the deposition thickness of the capping layer 53 has a range of 300 to 1000 kPa.

그다음, 도 10에 도시된 바와같이, 이들을 게이트마스크(미도시)에 의해 선택적으로 제거하여 게이트산화막패턴(49a)과 게이트전극(51a) 및 캡핑층패턴(53a)을 형성한다. 이때, 상기 캡핑층패턴(53a)은 마스크없이 전면 이온주입시 게이트전극을 형성하기 위한 폴리실리콘에 이온주입되는 것을 막는 역할을 하게 된다. 또한, 상기 캡핑층패턴(53a)의 제거공정은, Ge 이온주입 공정직후에 진행하며, 후속 스페이서 형성직전에 제거할 수도 있다. 이때, 캐핑층 제거시에 습식용액을 사용하며, HF 계열의 용액을 이용한다.Then, as shown in FIG. 10, these are selectively removed by a gate mask (not shown) to form the gate oxide film pattern 49a, the gate electrode 51a, and the capping layer pattern 53a. In this case, the capping layer pattern 53a prevents ion implantation into polysilicon to form the gate electrode when the front surface ion implantation is performed without a mask. In addition, the capping layer pattern 53a may be removed immediately after the Ge ion implantation process, and may be removed immediately before formation of a subsequent spacer. At this time, a wet solution is used to remove the capping layer, and a solution of HF series is used.

한편, 상기 게이트전극의 도핑은 후속공정인 소오스/드레인 형성공정 진행시 그와 동시에 도핑하거나 추가적인 도핑 필요시에 게이트 패터닝 전에 이온주입하는 경우도 있다.On the other hand, the doping of the gate electrode may be doped at the same time during the subsequent source / drain formation process or ion implantation may be performed before gate patterning if additional doping is required.

이어서, 게르마늄(Ge)을 이온주입하여 얕은 접합이 형성되는 반도체기판내에만 게르마늄이 이온주입되도록 한다. 이때, 이온주입공정중 이온소스로는 게르마늄을 사용하고, 이온화에너지는 5 KeV 내지 100 KeV의 범위이며, 도우즈는 1E14 내지 2E15 범위로 한다.Subsequently, germanium (Ge) is ion-implanted so that germanium is implanted only in the semiconductor substrate where a shallow junction is formed. At this time, germanium is used as an ion source during the ion implantation process, and ionization energy is in the range of 5 KeV to 100 KeV, and dose is in the range of 1E14 to 2E15.

또한, 이온주입공정중 틸트 및 트위스트는 각각 0 내지 60 °와 0 내지 360 °범위로 한다.In addition, the tilt and twist during the ion implantation process are in the range of 0 to 60 ° and 0 to 360 °, respectively.

한편, 게르마늄 이온 주입시의 큰 특징은 Si 물질을 Si-Ge 계열 물질로 변화시킬 수 있기에 도펀트의 도핑효율을 증대할 수 있으며, 큰 질량을 갖고 있어 이온주입에 따라 표면의 비정질화시켜 도펀트의 이온주입 깊이를 감소시키게 되어 얕은접합 형성에 도움을 주게 된다.On the other hand, a great feature of germanium ion implantation is that the Si material can be changed to Si-Ge-based material, which increases the doping efficiency of the dopant. Reducing the depth of implantation helps to form shallow junctions.

그러나, 이후 코발트실리사이드를 형성하고자 코발트 증착후 후속 열처리에 따라 Si과의 반응을 유도시에 Ge 이온은 Si 원자와 Co 원자사이의 반응을 방해하며, 국부적으로 석출(segregation)되는 특징을 갖고 있기에 이온주입양 조절이 매우 중요하다. 또한, 실리사이드 형성에 특히 취약한 폴리실리콘의 경우는 이온주입되지 않게 하느 것이 좋다.However, in order to form cobalt silicide, Ge ions interfere with the reaction between Si atoms and Co atoms during cobalt deposition followed by subsequent heat treatment, and thus have localized segregation. Injection volume control is very important. In addition, in the case of polysilicon which is particularly susceptible to silicide formation, it is preferable not to ion implant.

따라서, 폴리실리콘위에는 캡핑층을 형성시키므로써 Ge 이온주입을 막는 층으로 사용하는 기술을 이용한다.Therefore, by using a technique to form a capping layer on the polysilicon as a layer to prevent the Ge ion implantation.

그다음, 도 11에 도시된 바와같이, Ge 이온주입공정을 진행한후 LDD 이온주입을 실시하여 상기 게이트전극(51a)의 양측 아래의 반도체기판(41)내에 LDD 이온주입층(55)을 형성한다. 이때, LDD 이온주입공정중 이온소스로는 NMOS의 경우 아세닉이나 안티몬를, PMOS의 경우 보론 플루오린(BF2)이나 인듐(indium)을 사용한다. 또한, 이온주입공정중 에너지는 2 KeV 내지 30 KeV의 범위로 하고, 도우즈는 1E14 내지 1E15의 범위로 하며, 틸트각 및 트위스트각은 각각 0°으로 진행한다.Next, as shown in FIG. 11, after performing the Ge ion implantation process, LDD ion implantation is performed to form the LDD ion implantation layer 55 in the semiconductor substrate 41 under both sides of the gate electrode 51a. . In this case, as the ion source during the LDD ion implantation process, an anionic or antimony is used in the case of NMOS, and boron fluorine (BF 2 ) or indium (indium) is used in the case of PMOS. In addition, the energy during the ion implantation process is in the range of 2 KeV to 30 KeV, the dose is in the range of 1E14 to 1E15, and the tilt angle and the twist angle proceed to 0 °, respectively.

그리고, 이렇게 LDD이온주입층(55)을 형성하므로써 소오스 및 드레인간에 흐르는 캐리어들의 전기장을 조절하게 된다. 이 영역은 소오스 및 드레인간의 캐리어가 흐름을 조절하기에 LDD 영역의 깊이 및 저항이 중요하게 된다.Then, by forming the LDD ion implantation layer 55, the electric field of the carriers flowing between the source and the drain is controlled. In this region, the depth and resistance of the LDD region become important for the carrier flow between the source and drain to be controlled.

또한, 이 영역은 소자의 크기가 감소하나 그에 따라 소자의 동작전압이 작아지지 못하여 채널 드레인쪽 일부분에 매우 높은 전기장이 집중되는 현상 때문에 원하지 않는 캐리어의 흐름이 형성되어 소자의 작동에 어려움을 갖게 되는 현상을 최소화시키는 역할을 하게 된다.In addition, this region reduces the size of the device, but the operating voltage of the device does not decrease, resulting in an undesired flow of carriers due to the concentration of very high electric fields in a portion of the channel drain, making it difficult to operate the device. Minimize the phenomenon.

그러나, 채널의 길이가 작아지게 되어 문턱전압이 낮아지는 단채널 효과 특성이 나타날 수 있다.However, a short channel effect characteristic may occur in which the length of the channel is reduced and the threshold voltage is lowered.

따라서, 이 지역에 Ge 이온주입을 실시하여 도펀트의 도핑효율 증대에 따른 기생저항을 최소화시키는 공정을 추가한다.Therefore, Ge ion implantation is performed in this region to minimize the parasitic resistance caused by the doping efficiency increase.

이어서, 틸트각을 주어 추가로 이온주입을 실시하여 LDD이온주입층(55)주변에 할로이온주입층(57)을 형성하여 단채널 효과를 완화시킨다.Subsequently, ion implantation is further performed at a tilt angle to form a halo ion implantation layer 57 around the LDD ion implantation layer 55 to mitigate short channel effects.

그다음, 도 12에 도시된 바와같이, 게이트전극(51a)측면에 버퍼산화막(59)과 절연막스페이서(61)를 형성한후 상기 절연막스페이서(61)양측 아래의 반도체기판 (41)내에 소오스 및 드레인(63)을 형성한다.Then, as shown in FIG. 12, after forming the buffer oxide film 59 and the insulating film spacer 61 on the side of the gate electrode 51a, the source and drain in the semiconductor substrate 41 under both sides of the insulating film spacer 61. (63) is formed.

이어서, 상기 소오스 및 드레인(63) 및 게이트전극(51a)에 고농도의 도펀트가 존재할 수 있도록 다량의 이온주입 및 RTP 아닐링을 수행한다. 이때, 상기 게이트전극(51a)과 소오스/드레인(63)지역은 금속과 접촉하므로써 동작전압이 걸리며 이로인해 캐리어들의 흐름을 선택적으로 조절하는 역할을 하게 된다.Subsequently, a large amount of ion implantation and RTP annealing are performed so that a high concentration of dopant may exist in the source and drain 63 and the gate electrode 51a. At this time, the gate electrode 51a and the source / drain 63 region are brought into contact with the metal to apply an operating voltage, thereby selectively controlling the flow of carriers.

그다음, 도 13에 도시된 바와같이, 금속과의 접촉저항을 낮추기 위해 전체 구조의 상면에 금속, 예를들어 코발트를 80 내지 150 Å 두께로 증착한후 열처리를 진행하여 게이트전극(51a)과 소오스/드레인(63) 상부분의 실리콘이 금속과 반응하게 하여 실리사이드막(65)을 형성한후 미반응되고 잔류하는 잔류물을 제거하게 된다. 이때, 코발트를 증착한후 캡핑층으로 Ti 또는 TiN을 증착한다. 상기 Ti 경우는 80 내지 150 Å 두께로, TiN의 경우는 200 내지 300 Å 두께로 증착한다.Then, as shown in FIG. 13, in order to lower the contact resistance with the metal, a metal, for example, cobalt, for example, is deposited to a thickness of 80 to 150 kPa on the upper surface of the entire structure, followed by heat treatment to process the gate electrode 51a and the source. After the silicon in the upper portion of the drain 63 reacts with the metal to form the silicide film 65, the unreacted and remaining residues are removed. At this time, after depositing cobalt Ti or TiN is deposited as a capping layer. In the case of Ti, it is deposited to a thickness of 80 to 150 kPa, and in the case of TiN to 200 to 300 kPa thick.

또한, 상기 1차 및 2차 열처리시에 챔버 분위기는 100 %의 N2를 유지하며, 1차 열처리후 진행하는 미반응 물질 제거공정은 습식용액을 이용하는데, 먼저 SC-1 용액(NH4OH:H2O2:H2O=0.2:1:10)을 이용하여 50±5℃로 10 내지 15분동안 진행한다.In addition, the chamber atmosphere is maintained at 100% of N 2 during the first and second heat treatment, and the unreacted material removal process performed after the first heat treatment uses a wet solution. First, SC-1 solution (NH 4 OH) is used. : H 2 O 2 : H 2 O = 0.2: 1: 10) at 50 ± 5 ° C. for 10-15 minutes.

이후, SC-2용액(HCl:H2O2:H2O=1:1:5)을 이용하여 50±5℃로 5 내지 10분동안 진행한다.Subsequently, using SC-2 solution (HCl: H 2 O 2 : H 2 O = 1: 1: 5) to proceed to 50 ± 5 ℃ for 5 to 10 minutes.

그리고, 2차 열처리시의 온도와 시간은 각각 750 내지 800 ℃와 20 내지 40초의 범위로 진행한다.And the temperature and time at the time of secondary heat processing advance in the range of 750-800 degreeC and 20-40 second, respectively.

상기에서 설명한 바와같이, 본 발명에 따른 반도체소자의 제조방법에 있어서는 다음과 같은 효과가 있다.As described above, the semiconductor device manufacturing method according to the present invention has the following effects.

본 발명에 따른 반도체소자의 제조방법에 의하면, 얕은 접합이 형성되는 LDD영역에만 Ge가 이온주입되도록 하므로써 접합 형성을 위해 이온주입되는 도펀트의 도핑효율을 증대할 수 있어 접합의 기생저항을 감소시킬 수 있다.According to the method of manufacturing a semiconductor device according to the present invention, by implanting Ge only in the LDD region where the shallow junction is formed, the doping efficiency of the dopant implanted to form the junction can be increased, thereby reducing the parasitic resistance of the junction. have.

또한, Ge 이온주입전에 폴리실리콘상에 캡핑층을 증착시키므로써 Ge 존재에 따른 폴리실리콘의 실리사이드화 형성문제를 최소화시킬 수 있게 되어 소자의 성능 증대에 따른 소자특성향상 및 수율 향상이 기대된다.In addition, by depositing a capping layer on polysilicon prior to Ge ion implantation, it is possible to minimize the problem of formation of silicides of polysilicon due to the presence of Ge, thereby improving device characteristics and yields by increasing device performance.

한편, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능할 것이다.On the other hand, the present invention is not limited to the above-described specific preferred embodiments, and various changes can be made by those skilled in the art without departing from the gist of the invention claimed in the claims. will be.

Claims (13)

반도체기판을 소자영역과 소자분리영역으로 한정하는 단계;Defining a semiconductor substrate as an element region and an isolation region; 상기 반도체기판상에 게이트층과 캡핑층을 적층하는 단계;Stacking a gate layer and a capping layer on the semiconductor substrate; 상기 캡핑층과 게이트층을 패터닝하여 캡핑층패턴과 게이트층패턴을 형성하는 단계;Patterning the capping layer and the gate layer to form a capping layer pattern and a gate layer pattern; 상기 캡핑층패턴양측아래의 반도체기판내에 게르마늄이온을 주입하는 단계;Implanting germanium ions into the semiconductor substrate below both sides of the capping layer pattern; 상기 캡핑층패턴을 제거한후 상기 게이트층패턴양측아래의 반도체기판내에 LDD이온주입층을 형성하는 단계;Removing the capping layer pattern and forming an LDD ion implantation layer in a semiconductor substrate below both sides of the gate layer pattern; 상기 게이트층패턴양측면에 스페이서를 형성한후 그 스페이서양측아래의 반도체기판내에 소오스/드레인을 형성하는 단계; 및Forming spacers on both sides of the gate layer pattern, and then forming a source / drain in the semiconductor substrate under the spacers; And 상기 소오스/드레인 및 게이트층패턴표면에 금속실리사이드막을 형성하는 단계를 포함하여 이루어지는 것을 특징으로하는 반도체소자의 제조방법.Forming a metal silicide film on the source / drain and gate layer pattern surfaces. 제1항에 있어서, 상기 게이트층은 게이트산화막과 폴리실리콘층을 포함하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 1, wherein the gate layer comprises a gate oxide layer and a polysilicon layer. 제1항에 있어서, 상기 상기 캡핑층을 형성하는 물질로는 HLD 및 TEOS 등의 산화막 계열물질과 SiN 및 Si3N4등의 나이트라이드 계열물질을 사용하는 것을 특징으로 하는 반도체소자의 제조방법.The method of claim 1, wherein an oxide-based material such as HLD and TEOS and a nitride-based material such as SiN and Si 3 N 4 are used as the material for forming the capping layer. 제1항에 있어서, 상기 캡핑층은 300 내지 1000 Å 두께로 증착하는 것을 포함하여 구성되는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 1, wherein the capping layer comprises 300 to 1000 Å thick. 제1항에 있어서, 상기 게르마늄 이온주입공정은 게르마늄을 이온소스로 사용하고, 이온화에너지는 5 KeV 내지 100 KeV 와 도우즈는 1E14 내지 2E15이고, 이온주입시의 틸트각과 트위스트각은 각각 0 내지 60 °와 0 내지 360 °의 범위로 하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 1, wherein the germanium ion implantation process using germanium as an ion source, the ionization energy is 5 KeV to 100 KeV and the dose is 1E14 to 2E15, the tilt angle and twist angle at the time of ion implantation are 0 to 60, respectively Method of manufacturing a semiconductor device, characterized in that in the range of 0 and 360 °. 제1항에 있어서, 상기 LDD 이온주입층 형성공정은, 이온화에너지는 2 KeV 내지 30 KeV 와 도우즈는 1E14 내지 1E15이고, 이온주입시의 틸트각은 0°으로 진행하는 것을 특징으로하는 반도체소자의 제조방법.The semiconductor device according to claim 1, wherein the LDD ion implantation layer forming process has ionization energy of 2 KeV to 30 KeV and dose of 1E14 to 1E15, and the tilt angle at the time of ion implantation progresses to 0 °. Manufacturing method. 제1항에 있어서, 상기 LDD 이온주입층 형성후 추가로 소정의 틸트각을 이용한 이온주입을 진행하여 상기 LDD 이온주입층주변에 추가이온주입층을 형성하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 1, wherein after the formation of the LDD ion implantation layer, ion implantation using a predetermined tilt angle is further performed to form an additional ion implantation layer around the LDD ion implantation layer. 제1항에 있어서, 상기 금속실리사이드막을 형성하는 단계는,The method of claim 1, wherein the forming of the metal silicide layer, 소오스/드레인을 형성한후 전체 구조의 상면에 80 내지 150 Å두께의 코발트를 증착하는 단계와,Depositing cobalt with a thickness of 80 to 150 mm on the top surface of the entire structure after forming the source / drain; 상기 코발트를 열처리한후 소오스/드레인과 게이트층패턴표면에 코발트실리사이드막을 형성하는 단계를 포함하는 것을 특징으로하는 반도체소자의 제조방법.And forming a cobalt silicide film on the surface of the source / drain and gate layer pattern after the heat treatment of the cobalt. 제8항에 있어서, 상기 코발트를 증착한후 Ti 또는 TiN으로 구성된 캡핑층을 형성하는 단계를 더 포함하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 8, further comprising forming a capping layer formed of Ti or TiN after depositing the cobalt. 제9항에 있어서, 상기 캡핑층은 상기 Ti 인 경우 80 내지 150 Å 두께로, TiN인 경우 200 내지 300 Å 두께로 형성하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 9, wherein the capping layer is formed to a thickness of 80 to 150 GPa in the case of Ti, and 200 to 300 GPa in the case of TiN. 제8항에 있어서, 상기 열처리는 1차 및 2차 열처리로 구성되되, 1차 열처리시의 온도 및 시간은 각각 250 내지 550 ℃와 30 내지 60초이고, 2차 열처리시의 온도 및 시간은 각각 750 내지 800 ℃와 20 내지 40초인 것을 특징으로하는 반도체소자의 제조방법.The method of claim 8, wherein the heat treatment is composed of primary and secondary heat treatment, the temperature and time of the first heat treatment is 250 to 550 ℃ and 30 to 60 seconds, respectively, the temperature and time of the second heat treatment, respectively Method for manufacturing a semiconductor device, characterized in that it is 20 to 40 seconds at 750 to 800 ℃. 제11항에 있어서, 상기 1차 열처리후 미반응 물질을 제거하는 공정을 포함하되, 이 제거공정은 습식용액을 이용하여 진행하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 11, further comprising removing the unreacted material after the first heat treatment, wherein the removing is performed using a wet solution. 제12항에 있어서, 상기 미반응물질 제거공정은 SC-1 용액(NH4OH:H2O2:H2O=0.2:1:10)을 이용하여 50±5℃로 10 내지 15분동안 진행한후 SC-2용액 (HCl:H2O2:H2O=1:1:5)을 이용하여 50±5℃로 5 내지 10분동안 진행하는 것을 특징으로하는 반도체소자의 제조방법.The method of claim 12, wherein the unreacted material removal process is performed for 10 to 15 minutes at 50 ± 5 ℃ using an SC-1 solution (NH 4 OH: H 2 O 2 : H 2 O = 0.2: 1:10) After proceeding using a SC-2 solution (HCl: H 2 O 2 : H 2 O = 1: 1: 5) at 50 ± 5 ℃ for a semiconductor device manufacturing method characterized in that for 5 to 10 minutes.
KR1020020011814A 2002-03-06 2002-03-06 Method for fabricating semiconductor device KR100855281B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020011814A KR100855281B1 (en) 2002-03-06 2002-03-06 Method for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020011814A KR100855281B1 (en) 2002-03-06 2002-03-06 Method for fabricating semiconductor device

Publications (2)

Publication Number Publication Date
KR20030072671A true KR20030072671A (en) 2003-09-19
KR100855281B1 KR100855281B1 (en) 2008-09-01

Family

ID=32223585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020011814A KR100855281B1 (en) 2002-03-06 2002-03-06 Method for fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR100855281B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950551B1 (en) 2007-06-27 2010-03-30 주식회사 하이닉스반도체 Semiconductor device prevented gate leaning and method for fabricating the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434942A (en) * 1990-05-30 1992-02-05 Nec Corp Manufacture of semiconductor device
US6313505B2 (en) * 1998-09-02 2001-11-06 Advanced Micro Devices, Inc. Method for forming shallow source/drain extension for MOS transistor
US6242312B1 (en) * 1999-09-03 2001-06-05 Taiwan Semiconductor Manufacturing Company Advanced titanium silicide process for very narrow polysilicon lines
KR20020056643A (en) * 2000-12-29 2002-07-10 박종섭 Device and method for manufacturing the same

Also Published As

Publication number Publication date
KR100855281B1 (en) 2008-09-01

Similar Documents

Publication Publication Date Title
US6184097B1 (en) Process for forming ultra-shallow source/drain extensions
KR20010004720A (en) Transistor in a semiconductor device and method of manufacuring the same
US20040104442A1 (en) Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers
CN110034067B (en) Semiconductor device and method of forming the same
US6972222B2 (en) Temporary self-aligned stop layer is applied on silicon sidewall
US7151032B2 (en) Methods of fabricating semiconductor devices
CN116504718B (en) Manufacturing method of semiconductor structure
KR20030049441A (en) method for manufacturing of semiconductor device
KR20080079052A (en) Method of forming semiconductor device having offset spacer and related device
KR100752201B1 (en) Manufacturing method of semiconductor device
KR100749373B1 (en) Method of making shallow junction semiconductor devices
EP1565934A1 (en) Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers
US6069046A (en) Transistor fabrication employing implantation of dopant into junctions without subjecting sidewall surfaces of a gate conductor to ion bombardment
KR100855281B1 (en) Method for fabricating semiconductor device
JPH023935A (en) Manufacture of mos device having self-aligned silicide and low impurity concentration doped drain
KR100431301B1 (en) Method for fabricating semiconductor device
KR100705233B1 (en) Method of manufacturing a semiconductor device
KR101024639B1 (en) Method of manufacturing a semiconductor device
KR100588784B1 (en) Fabricating method of semiconductor device
KR100940438B1 (en) Method of manufacturing a semiconductor device
KR100720405B1 (en) Method for manufacturing of semiconductor device
KR100598284B1 (en) Fabricating method of semiconductor device
KR100268865B1 (en) Method for fabricating semiconductor device
KR101079873B1 (en) Forming Method of Semiconductor Device
KR100824661B1 (en) Method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130821

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160718

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170719

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180717

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190716

Year of fee payment: 12