KR20030058237A - Method for fabricating inplane switching mode liquid crystal display device - Google Patents

Method for fabricating inplane switching mode liquid crystal display device Download PDF

Info

Publication number
KR20030058237A
KR20030058237A KR1020010088633A KR20010088633A KR20030058237A KR 20030058237 A KR20030058237 A KR 20030058237A KR 1020010088633 A KR1020010088633 A KR 1020010088633A KR 20010088633 A KR20010088633 A KR 20010088633A KR 20030058237 A KR20030058237 A KR 20030058237A
Authority
KR
South Korea
Prior art keywords
liquid crystal
layer
substrate
crystal display
display device
Prior art date
Application number
KR1020010088633A
Other languages
Korean (ko)
Inventor
김덕녕
Original Assignee
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지.필립스 엘시디 주식회사 filed Critical 엘지.필립스 엘시디 주식회사
Priority to KR1020010088633A priority Critical patent/KR20030058237A/en
Publication of KR20030058237A publication Critical patent/KR20030058237A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background

Abstract

PURPOSE: A method for manufacturing an in-plane switching mode liquid crystal display is provided to simplify a manufacturing process of a thin film array substrate by patterning an active layer and data patterns in a lump, thereby reducing time and cost for the manufacturing process. CONSTITUTION: Gate lines, gate electrodes, and a common electrode are formed on a first substrate. A gate insulating film(117) is formed on a front surface including the gate lines. A silicon layer(140) and a metal layer(141) are formed on the gate insulating film. An active layer and data patterns are formed by patterning the silicon layer and the metal layer in a lump. A passivation layer is formed on a front surface including the data patterns. A liquid crystal layer is formed between the first substrate and a second substrate facing the first substrate.

Description

횡전계방식 액정표시소자의 제조방법{METHOD FOR FABRICATING INPLANE SWITCHING MODE LIQUID CRYSTAL DISPLAY DEVICE}Method for manufacturing transverse electric field liquid crystal display device {METHOD FOR FABRICATING INPLANE SWITCHING MODE LIQUID CRYSTAL DISPLAY DEVICE}

본 발명은 액정표시소자(LCD ; Liquid Crystal Display Device)에 관한 것으로, 특히 공정을 간소화한 횡전계방식 액정표시소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device (LCD), and more particularly, to a method of manufacturing a transverse electric field type liquid crystal display device with a simplified process.

최근, 액티브 매트릭스 액정표시소자의 성능이 급속하게 발전함에 따라, 평판 TV, 휴대용 컴퓨터, 고정보량이 요구되는 모니터 등에 광범위하게 사용되고 있다.Background Art In recent years, as the performance of active matrix liquid crystal display devices has rapidly developed, they have been widely used in flat panel TVs, portable computers, monitors requiring a high information amount, and the like.

상기 액티브 매트릭스 액정표시소자 중 트위스티드 네마틱(TN : Twisted Nematic) 방식의 액정표시소자를 현재 주로 사용하고 있는데, 트위스티드 네마틱 방식은 두 기판에 각각 전극을 설치하고 액정 방향자가 90°트위스트 되도록 배열한 다음, 전극에 전압을 가하여 액정 방향자를 구동하는 기술이다.Among the active matrix liquid crystal display devices, twisted nematic (TN) type liquid crystal display devices are mainly used. In the twisted nematic method, electrodes are installed on two substrates and the liquid crystal directors are arranged to be twisted by 90 °. Next, a technique of driving a liquid crystal director by applying a voltage to the electrode.

그러나, 상기 TN방식 액정표시소자는 좁은 시야각과 그레이 스케일 동작에서의 늦은 응답특성 등과 같은 근본적인 문제점을 갖는다.However, the TN type liquid crystal display device has fundamental problems such as a narrow viewing angle and a late response characteristic in gray scale operation.

응답특성이 느린 TN방식을 보완하기 위해 제안된 OCB 방식(Optically Compensated Birefringence Mode)은 보상필름을 기판 외주면에 부착하여 빛의 진행방향에 따른 빛의 위상변화를 보상하는 방식으로, 액정분자를 탄성계수가 큰 벤드(bend) 구조로 초기 리셋(reset)시켜 액정분자간의 저항을 최소화함으로써 구동시 응답속도가 빠르도록 하는 형태이다.The OCB method (Optically Compensated Birefringence Mode) proposed to compensate for the slow response TN method is to compensate the phase change of light according to the direction of light by attaching a compensation film to the outer peripheral surface of the substrate. It is a type that makes the response speed during driving by minimizing the resistance between liquid crystal molecules by initial reset with a large bend structure.

그러나, 벤드 구조를 이용한 OCB형 소자일 경우 시야각이 나쁘고, 액정셀 수율이 낮으며, 액정의 벤드형태의 배향을 유지하기 위해 초기 리셋을 수행해야 한다는 문제점이 있다.However, in the case of an OCB type device using a bend structure, the viewing angle is poor, the liquid crystal cell yield is low, and there is a problem in that an initial reset should be performed to maintain the bend alignment of the liquid crystal.

OCB형 소자의 시야각을 개선하기 위해 상,하부 기판 외주면에 이축성 필름(bi-axial film) 또는 와이드뷰 필름(wide view film)과 같은 보상필름을 더 부착하는데, 보상필름으로 틸트 복굴절을 보상하는 데에도 한계가 있다.In order to improve the viewing angle of the OCB type device, a compensation film such as a bi-axial film or a wide view film is further attached to the upper and lower substrate outer surfaces, and the compensation film compensates for the tilt birefringence. There is a limit.

따라서, 시야각 개선을 위해 횡전계방식 액정표시소자(In-Plane Switching Mode)가 제안되었다.Accordingly, in order to improve the viewing angle, a transverse electric field type liquid crystal display device (In-Plane Switching Mode) has been proposed.

횡전계방식은 한 기판 상에 두개의 전극을 형성한 후, 상기 두 전극 사이에 전압을 인가하여 기판에 대해서 수평방향으로 전계를 발생시켜 액정의 방향자가 배향막의 나란한 평면에서 꼬이게 하는 형태이다.In the lateral electric field method, two electrodes are formed on a substrate, and a voltage is applied between the two electrodes to generate an electric field in a horizontal direction with respect to the substrate so that the directors of the liquid crystal are twisted in parallel planes of the alignment layer.

이하, 첨부된 도면을 참조하여 종래 기술의 횡전계방식 액정표시소자의 제조방법을 설명하면 다음과 같다.Hereinafter, a method of manufacturing a transverse electric field type liquid crystal display device according to the related art will be described with reference to the accompanying drawings.

도 1은 일반적인 횡전계방식 액정표시소자의 평면도이고, 도 2a 내지 2e는 종래기술에 의한 횡전계방식 액정표시소자의 공정단면도이다.1 is a plan view of a general transverse electric field liquid crystal display device, and FIGS. 2A to 2E are cross-sectional views of a conventional transverse electric field liquid crystal display device.

그리고, 도 3은 횡전계방식 액정표시소자의 전압분포도이고, 도 4a 및 도 4b는 종래 기술에 의한 전압 무인가/인가시에서의 횡전계방식 액정표시소자의 평면도이다.3 is a voltage distribution diagram of a transverse electric field liquid crystal display device, and FIGS. 4A and 4B are plan views of a transverse electric field liquid crystal display device in the case where no voltage is applied or applied according to the prior art.

서로 대향 배치된 컬러필터 기판 및 박막 어레이 기판과 그 사이에 형성된 액정층으로 구성된 종래의 횡전계방식 액정표시소자에 있어서, 상기 컬러필터 기판에는 빛샘을 방지하기 위한 블랙 매트릭스와, 상기 블랙 매트릭스 상에 색상을 구현하기 위한 R,G,B의 컬러필터층과, 상기 컬러필터층을 보호하기 위한 오버코트층이 형성되어 있고, 상기 박막 어레이 기판에는 도 1에서와 같이, 교차되어 화소를 정의하는 게이트 배선(10) 및 데이터 배선(11)과, 상기 두 배선의 교차 지점에 형성된 박막트랜지스터(20)와, 상기 게이트 배선과 평행하는 공통전극(12)과, 상기 공통전극(12)에서 연장되어 상기 데이터 배선(11)에 평행하는 공통배선(13)과, 상기 공통전극(13)과 교번하는 데이터 전극(14)이 형성되어 있다.A conventional transverse electric field type liquid crystal display device comprising a color filter substrate and a thin film array substrate disposed opposite to each other, and a liquid crystal layer formed therebetween, wherein the color filter substrate includes a black matrix for preventing light leakage and a black matrix on the black matrix. A color filter layer of R, G, and B for realizing color and an overcoat layer for protecting the color filter layer are formed, and the thin film array substrate has a gate line 10 intersecting to define pixels as shown in FIG. ) And the data wiring 11, the thin film transistor 20 formed at the intersection of the two wirings, the common electrode 12 parallel to the gate wiring, and the common electrode 12. The common wiring 13 parallel to 11 and the data electrode 14 which alternate with the said common electrode 13 are formed.

첨부된 도 2a 내지 도 2e룰 참고하여, 상기 박막 어레이 기판의 제조방법을 살펴보면 다음과 같다.Referring to the accompanying Figures 2a to 2e, look at the manufacturing method of the thin film array substrate as follows.

먼저, 도 2a에서와 같이, 제 1 기판(2) 상에 게이트 배선과, 상기 게이트 배선에서 분기하는 게이트 전극(10a)과, 상기 게이트 배선과 평행하는 공통배선과, 상기 공통배선에서 분기하는 공통전극(13)을 형성하고 상기 게이트 배선을 포함한 전면에 게이트 절연막(17)을 형성한다.First, as shown in FIG. 2A, a gate wiring on the first substrate 2, a gate electrode 10a branching from the gate wiring, a common wiring parallel to the gate wiring, and a common branching on the common wiring are provided. An electrode 13 is formed and a gate insulating film 17 is formed on the entire surface including the gate wiring.

그리고, 도 2b에서와 같이, 상기 게이트 전극(10a) 상부의 게이트 절연막(17) 상에 액티브층(19)을 형성한다.As shown in FIG. 2B, the active layer 19 is formed on the gate insulating layer 17 on the gate electrode 10a.

다음, 도 2c에서와 같이, 상기 게이트 절연막 상에 데이터 배선(11)과, 상기 데이터 배선(11)에서 분기하는 소스/드레인 전극(11a,11b)과, 상기 공통전극(13)과교번하며 상기 데이터 배선(11)에 평행하는 데이터 전극(14)을 형성한다.Next, as shown in FIG. 2C, the data line 11, the source / drain electrodes 11a and 11b branching from the data line 11, and the common electrode 13 are alternately disposed on the gate insulating layer. A data electrode 14 parallel to the data line 11 is formed.

이상에서, 상기 게이트 전극(10a)과, 게이트 절연막(17)과, 액티브층(19)과, 소스전극(11a) 및 드레인 전극(11b)은 박막트랜지스터(20)를 구성한다.In the above description, the gate electrode 10a, the gate insulating layer 17, the active layer 19, the source electrode 11a and the drain electrode 11b constitute the thin film transistor 20.

계속하여, 도 2d에서와 같이, 상기 데이터 배선(11)을 포함한 전면에 기판 상의 패턴들을 보호하는 보호막(18)을 형성한다.Subsequently, as shown in FIG. 2D, a protective film 18 is formed on the entire surface including the data line 11 to protect the patterns on the substrate.

이 때, 상기 게이트 배선을 포함한 게이트 패턴 및 데이터 배선을 포함한 데이터 패턴은 저저항의 금속 물질을 재료로 한다.At this time, the gate pattern including the gate wiring and the data pattern including the data wiring are made of a low resistance metal material.

다만, 횡전계방식 액정표시소자의 개구율을 향상시키기 위해 상기 공통전극(13) 및 데이터 전극(14)을 투명한 도전물질인 ITO(Indium Tin Oxide)로 형성하여도 된다.However, in order to improve the aperture ratio of the transverse electric field type liquid crystal display device, the common electrode 13 and the data electrode 14 may be formed of indium tin oxide (ITO), which is a transparent conductive material.

또한, 상기 공통전극(13) 및 데이터 전극(14)은 상기에서와 같이 절연막을 사이에 두고 서로 다른 평면상에 형성하여도 되고, 전기적 단락(short)이 일어나지 않는 범위 내에서 동일 평면상에 형성하여도 된다.In addition, the common electrode 13 and the data electrode 14 may be formed on different planes with the insulating film interposed therebetween as described above, or may be formed on the same plane within a range where no electric short occurs. You may also do it.

마지막으로, 도 2e에서와 같이, 상기 제 1 기판(2)에 블랙 매트릭스(21), 컬러필터층(22), 오버코트층(23)이 형성되어 있는 제 2 기판(1)을 대향합착하고, 두 기판 사이에 액정층(3)을 형성함으로써 횡전계방식 액정표시소자를 완성한다.Finally, as shown in FIG. 2E, the second substrate 1 having the black matrix 21, the color filter layer 22, and the overcoat layer 23 formed on the first substrate 2 is bonded to each other. By forming the liquid crystal layer 3 between the substrates, a transverse electric field type liquid crystal display element is completed.

이와같이 형성된 횡전계 액정표시소자는 공통전극(13)에 5V를 걸어주고 화소전극(14)에 0V를 걸어주면 도 3에서와 같이, 등전극 바로 위의 부분에서는 등전위면이 평행하게 분포하고 두 전극 사이의 영역에서는 오히려 등전위면이 수직에 가깝도록 분포한다.In the transverse electric field liquid crystal display device formed as described above, when 5V is applied to the common electrode 13 and 0V is applied to the pixel electrode 14, as shown in FIG. Rather, the equipotential plane is distributed close to vertical in the area between them.

따라서, 전기장의 방향은 등전위면에 수직하므로 공통전극(13)과 데이터 전극(14) 사이에서는 수직전기장보다는 수평전기장이, 각 전극 상에서는 수직전기장이, 그리고 전극 모서리 부분에서는 수평 및 수직전기장이 복합적으로 형성된다.Therefore, since the direction of the electric field is perpendicular to the equipotential surface, the horizontal electric field rather than the vertical electric field, the vertical electric field on each electrode, and the horizontal and vertical electric fields are complex between the common electrode 13 and the data electrode 14. Is formed.

횡전계방식 액정표시소자는 이러한 전기장을 이용하여 액정분자의 배열을 조절한다.The transverse electric field type liquid crystal display device uses the electric field to control the arrangement of liquid crystal molecules.

일예로, 도 4a에서와 같이, 어느 한 편광판의 투과축과 동일한 방향으로 초기 배향된 액정분자(35)에 충분한 전압을 걸어주면, 도 4b에서와 같이 액정분자(35)의 장축이 전기장에 나란하도록 배열된다. 만일, 액정의 유전율 이방성이 음이면 액정분자의 단축이 전기장에 나란하게 배열된다.For example, as shown in FIG. 4A, when a sufficient voltage is applied to the liquid crystal molecules 35 initially oriented in the same direction as the transmission axis of one polarizer, the long axis of the liquid crystal molecules 35 is aligned with the electric field as shown in FIG. 4B. Is arranged to. If the dielectric anisotropy of the liquid crystal is negative, the short axis of the liquid crystal molecules is arranged side by side in the electric field.

구체적으로, 제 1 ,제 2 기판의 외주면에 부착된 제 1 ,제 2 편광판은 그 투과축이 직교하도록 배치하고, 제 1 기판 상에 형성된 배향막의 러빙방향은 어느 한 편광판의 투과축과 나란하게 함으로써 노말리-블랙(nomally black)이 되게 한다.Specifically, the first and second polarizing plates attached to the outer circumferential surface of the first and second substrates are arranged such that their transmission axes are perpendicular to each other, and the rubbing direction of the alignment layer formed on the first substrate is parallel to the transmission axes of any one polarizing plate. By doing so, it becomes normally black.

즉, 소자에 전압을 인가하지 않으면 액정분자(35)가 도 4a에서와 같이 배열되어 블랙(black) 상태를 표시하고, 소자에 전압을 인가하면 도 4b에서와 같이 액정분자(35)가 전기장에 나란하게 배열되어 화이트(white)를 표시한다.That is, when no voltage is applied to the device, the liquid crystal molecules 35 are arranged as shown in FIG. 4A to show a black state. When voltage is applied to the device, the liquid crystal molecules 35 are applied to the electric field as shown in FIG. 4B. Arranged side by side to show white.

하지만, 종래 기술에 의한 횡전계 방식 액정표시소자는 최소한 4개의 마스크를 사용하여야 박막 어레이 기판을 제작할 수 있다.However, in the transverse electric field type liquid crystal display device according to the related art, at least four masks may be used to manufacture a thin film array substrate.

마스크의 수를 저감하여 공정을 간소화하는 것은 제품의 제조원가를 절감시켜 생산성 및 제품의 경쟁력을 향상시키는 원인이 되므로 많은 관심이 도모되고 있다.Simplifying the process by reducing the number of masks has been attracting much attention because it reduces the manufacturing cost of the product to improve the productivity and competitiveness of the product.

이에 본 발명은 3개의 마스크를 사용하여 박막 어레이 기판의 패턴을 형성하는 횡전계방식 액정표시소자의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a transverse electric field type liquid crystal display device in which a pattern of a thin film array substrate is formed using three masks.

도 1은 일반적인 횡전계방식 액정표시소자의 평면도.1 is a plan view of a typical transverse electric field type liquid crystal display device.

도 2a 내지 2e는 종래기술에 의한 횡전계방식 액정표시소자의 공정단면도.2A through 2E are cross-sectional views of a transverse electric field type liquid crystal display device according to the related art.

도 3은 횡전계방식 액정표시소자의 전압분포도.3 is a voltage distribution diagram of a transverse electric field type liquid crystal display device.

도 4a 및 도 4b는 종래 기술에 의한 전압 무인가/인가시에서의 횡전계방식 액정표시소자의 평면도.4A and 4B are plan views of a transverse electric field type liquid crystal display device in the case where no voltage is applied or applied according to the prior art.

도 5a 내지 5e는 본 발명에 의한 횡전계 액정표시소자의 제조방법을 설명하기 위한 공정단면도,5A to 5E are cross-sectional views illustrating a method of manufacturing a transverse electric field liquid crystal display device according to the present invention;

도 6은 본 발명에 적용되는 3성분계 마스크의 단면도 및 그 투광에너지의 분포도.6 is a cross-sectional view of a three-component mask applied to the present invention and a distribution diagram of light emission energy thereof.

*도면의 주요 부분에 대한 부호설명* Explanation of symbols on the main parts of the drawings

100, 101 : 제 1 ,제 2 기판 110a : 게이트 전극100, 101: first and second substrate 110a: gate electrode

111 : 데이터 배선 111a : 소스 전극111: data wiring 111a: source electrode

111b : 드레인 전극 113 : 공통전극111b: drain electrode 113: common electrode

114 : 화소 전극 117 : 게이트 절연막114: pixel electrode 117: gate insulating film

118 : 보호막 119 : 액티브층118: protective film 119: active layer

120 : 배향막 121 : 블랙 매트릭스120: alignment film 121: black matrix

122 : 컬러필터층 123 : 오버코트층122: color filter layer 123: overcoat layer

125 : 마스크 130 : 액정층125 mask 130 liquid crystal layer

131, 132 : 제 1 ,제 2 편광판 135 : 액정분자131 and 132: first and second polarizers 135 liquid crystal molecules

상기와 같은 목적을 달성하기 위한 본 발명의 횡전계방식 액정표시소자의 제조방법은 제 1 기판 상에 게이트 배선, 게이트 전극 및 공통전극을 형성하는 단계와, 상기 게이트 배선을 포함한 전면에 게이트 절연막을 형성하는 단계와, 상기 게이트 절연막 상에 실리콘층 및 금속층을 적층하는 단계와, 상기 실리콘층 및 금속층을 일괄 패터닝하여 액티브층 및 데이터 패턴을 형성하는 단계와, 상기 데이터 패턴을 포함한 전면에 보호막을 형성하는 단계와, 상기 제 1 기판과 대향하는 제 2 기판과의 사이에 액정층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다.Method of manufacturing a transverse electric field type liquid crystal display device of the present invention for achieving the above object comprises the steps of forming a gate wiring, a gate electrode and a common electrode on a first substrate, a gate insulating film on the entire surface including the gate wiring Forming a layer; forming a silicon layer and a metal layer on the gate insulating layer; patterning the silicon layer and the metal layer in a batch to form an active layer and a data pattern; and forming a protective layer on the entire surface including the data pattern. And forming a liquid crystal layer between the first substrate and the second substrate facing the first substrate.

이하, 첨부된 도면을 참조하여 본 발명에 따른 횡전계방식 액정표시소자의 제조방법을 상세히 설명하면 다음과 같다.Hereinafter, a method of manufacturing a transverse electric field type liquid crystal display device according to the present invention will be described in detail with reference to the accompanying drawings.

도 5a 내지 5e는 본 발명에 의한 횡전계 액정표시소자의 제조방법을 설명하기 위한 공정단면도이고, 도 6은 본 발명에 적용되는 3성분계 마스크의 단면도 및 그 투광에너지의 분포도이다.5A to 5E are process cross-sectional views for explaining a method for manufacturing a transverse electric field liquid crystal display device according to the present invention, and FIG. 6 is a cross-sectional view of a three-component mask applied to the present invention and a distribution diagram of light transmission energy thereof.

색상을 제어하는 컬러필터 기판과 액정분자의 배열을 제어하기 위해 횡전계를 제공하는 박막 어레이 기판과 상기 두 기판 사이에 형성된 액정층으로 구성된 횡전계방식 액정표시소자의 제조방법을 살펴보면 다음과 같다.A method of manufacturing a transverse electric field type liquid crystal display device comprising a color filter substrate for controlling color and a thin film array substrate for providing a transverse electric field to control an arrangement of liquid crystal molecules and a liquid crystal layer formed between the two substrates is as follows.

먼저, 도 5a에서와 같이, 제 1 기판(100) 상에 스퍼터링 방법으로 저저항 금속을 증착한 후 패터닝하여, 게이트 배선과, 상기 게이트 배선에서 분기되는 박막트랜지스터의 게이트전극(110a)과, 상기 게이트 배선과 평행하는 공통배선과, 상기 공통배선에서 연장되는 복수개의 공통전극(113)을 형성한다.First, as shown in FIG. 5A, a low resistance metal is deposited on the first substrate 100 by a sputtering method and then patterned to form a gate wiring, a gate electrode 110a of a thin film transistor branched from the gate wiring, and A common wiring parallel to the gate wiring and a plurality of common electrodes 113 extending from the common wiring are formed.

계속하여, 상기 게이트 배선을 포함한 전면에 실리콘질화막(SiNx)을 적층하여 게이트 절연막(117)을 형성한다.Subsequently, a silicon insulating film (SiNx) is stacked on the entire surface including the gate wiring to form a gate insulating film 117.

다음, 상기 게이트 절연막(117) 상에 액티브층(119) 및 데이터 패턴을 일괄 형성한다.Next, the active layer 119 and the data pattern are collectively formed on the gate insulating layer 117.

즉, 도 5b에서와 같이, 상기 게이트 절연막(117)을 포함한 전면에 아몰퍼스실리콘(140) 및 저저항 금속층(141)을 증착하고, 그 위에 포토레지스트(142)를 도포하고 마스크(125)를 얼라인시켜 노광하여 상기 포토레지스트(142)를 패터닝한다.That is, as shown in FIG. 5B, the amorphous silicon 140 and the low resistance metal layer 141 are deposited on the entire surface including the gate insulating layer 117, the photoresist 142 is applied thereon, and the mask 125 is frozen. The photoresist 142 is patterned by exposure.

이 때, 상기 마스크(125)는 투광부와 차광부와 가간섭부로 구성된 3성분계 마스크로서, 헬프-톤 마스크(half-tone mask) 등으로 한다.In this case, the mask 125 is a three-component mask composed of a light transmitting portion, a light blocking portion, and an interference interference portion, and may be a help-tone mask.

상기 3성분계 마스크는 도 6에서와 같이, 석영과 같은 투명 기판(51) 상에 MoSix계의 물질과 같이 수 %의 투과율을 갖는 위상반전 물질(52)과 차광막으로서의 크롬층(53)이 선택적으로 형성되는데, 투명기판만으로 이루어진 영역이 투광부(Ⅰ)가 되고, 위상반전 물질(52)과 크롬층(53)이 적층된 영역이 차광부(Ⅱ)가 되고, 위상반전 물질(52)만 형성된 영역이 가간섭부(Ⅲ)가 되어, 도 6에 도시된 바와 같은 에너지 분포(E)를 보인다.In the three-component mask, as shown in FIG. 6, a phase inversion material 52 having a transmittance of several percent, such as a MoSix-based material, and a chromium layer 53 as a light shielding film are selectively formed on a transparent substrate 51 such as quartz. The transparent substrate consists of only the transparent substrate (I), and the region in which the phase inversion material 52 and the chromium layer 53 are stacked becomes the light shielding part (II), and only the phase inversion material 52 is formed. The region becomes the interference portion III, showing an energy distribution E as shown in FIG.

액티브층과 데이터 패턴 형성시 상기 마스크의 가간섭부가 채널영역에 위치하도록 하여 채널 영역의 포토레지스트가 완전히 노광되지 않도록 함으로써 이후, 액티브층 및 데이터 패턴의 일괄식각시 채널영역의 액티브층이 제거되지 않도록 한다.When the active layer and the data pattern are formed, the interference portion of the mask is positioned in the channel region so that the photoresist of the channel region is not completely exposed so that the active layer of the channel region is not removed during the batch etching of the active layer and the data pattern. do.

그리고, 패턴된 포토레지스트를 마스크로 하여 아몰퍼스실리콘(140) 및 금속층(141)을 일괄 식각하여 도 5c에서와 같이, 액티브층(119) 및 데이터 패턴을 형성한다.The amorphous silicon 140 and the metal layer 141 are collectively etched using the patterned photoresist as a mask to form the active layer 119 and the data pattern as shown in FIG. 5C.

여기서, 데이터 패턴은 상기 게이트 배선과 교차되어 단위 화소를 구분짓는 데이터 배선(111)과, 상기 데이터 배선(111)에서 분기하는 소스/드레인 전극(111a,111b)과, 상기 데이터 배선(111)과 평행하면서 상기 드레인 전극(111b)에 연결되는 복수개의 데이터 전극(114)을 말한다.The data pattern may include a data line 111 intersecting the gate line to distinguish unit pixels, source / drain electrodes 111a and 111b branching from the data line 111, and the data line 111. A plurality of data electrodes 114 connected in parallel with the drain electrode 111b are referred to.

상기 데이터 전극(114)은 상기 공통전극(113) 사이에 형성하며 공통전극(113)과 서로 교번한다.The data electrode 114 is formed between the common electrode 113 and alternates with the common electrode 113.

계속하여, 도 5d에서와 같이, 상기 데이터 패턴을 포함한 전면에 실리콘질화막 또는 유기 절연막인 BCB를 도포하여 보호막(118)을 형성한다.Subsequently, as shown in FIG. 5D, the protective film 118 is formed by coating BCB, which is a silicon nitride film or an organic insulating film, on the entire surface including the data pattern.

상기 보호막(118)을 형성한 후에, 보호막에 콘택홀을 형성하는 공정을 추가할 수 있는데, 이와 같은 콘택홀은 게이트 신호와 데이터 신호를 인가하는 외부회로로부터 신호를 인가받는 패드부를 노출시키기 위해서 어레이 외곽부에서의 보호막의 일부를 제거하여 형성한 것이다.After forming the passivation layer 118, a process of forming a contact hole in the passivation layer may be added. The contact holes may be arrayed to expose a pad part receiving a signal from an external circuit applying a gate signal and a data signal. It is formed by removing part of the protective film at the outer portion.

이후, 도 5e에서와 같이, 제 2 기판(101) 상에 액정을 제어할 수 없는 부분에서의 빛샘을 방지하기 위해 크롬(Cr) 등과 같은 반사율이 높은 금속을 이용하여블랙 매트릭스(121)를 형성한다. 그리고, 상기 블랙 매트릭스(121) 사이에 전착법, 안료분산법, 도포법 등을 이용하여 색상 구현을 위한 R,G,B의 컬러필터층(122)을 형성하고, 상기 컬러필터층(122)을 보호하기 위해 컬러필터층(122)을 포함한 전면에 오버코트층(123)을 형성한다.Thereafter, as shown in FIG. 5E, the black matrix 121 is formed on the second substrate 101 by using a metal having high reflectance such as chromium (Cr) to prevent light leakage at a portion where the liquid crystal cannot be controlled. do. In addition, a color filter layer 122 of R, G, and B for color realization is formed between the black matrix 121 using an electrodeposition method, a pigment dispersion method, a coating method, and the like, and the color filter layer 122 is protected. In order to form the overcoat layer 123 on the entire surface including the color filter layer 122.

마지막으로, 상기 제 1 기판(100)과 제 2 기판(101)을 대향 합착하고, 상기 두 기판 사이에 액정(130)을 주입한 뒤, 상기 제 1 ,제 2 기판(100,101)의 외주면에 제 1 ,제 2 편광판(131,132)을 각각 부착하여 횡전계방식 액정표시소자를 완성한다.Finally, the first substrate 100 and the second substrate 101 are opposed to each other, the liquid crystal 130 is injected between the two substrates, and then the first and second substrates 100 and 101 are formed on the outer circumferential surfaces of the first and second substrates 100 and 101. The first and second polarizing plates 131 and 132 are attached, respectively, to complete the transverse electric field type liquid crystal display device.

이 때, 제 1 ,제 2 편광판(131,132)은 각 편광축의 투과축이 수직이 되도록 하고, 어느 한 투과축이 전기장 방향과 동일하도록 부착한다.At this time, the first and second polarizing plates 131 and 132 are attached so that the transmission axis of each polarization axis is perpendicular, and one transmission axis is the same as the electric field direction.

상기 실시예에서와 같이, 액티브층 및 데이터 패턴을 일괄 패터닝할 경우, 총 2∼3 마스크를 사용하여 박막 어레이 기판을 제작할 수 있으므로 공정을 간소화할 수 있다.As in the above embodiment, when the active layer and the data pattern are collectively patterned, a thin film array substrate may be manufactured using a total of 2-3 masks, thereby simplifying the process.

상기와 같은 본 발명의 횡전계방식 액정표시소자의 제조방법은 다음과 같은 효과가 있다.The method of manufacturing the transverse electric field type liquid crystal display device of the present invention as described above has the following effects.

즉, 3성분계 마스크를 이용하여 액티브층 및 데이터 패턴을 일괄 패터닝함으로써 횡전계 방식 액정표시소자의 박막 어레이 기판의 제조 공정을 간소화한다.That is, by collectively patterning the active layer and the data pattern using a three-component mask, the manufacturing process of the thin film array substrate of the transverse electric field type liquid crystal display device is simplified.

따라서, 공정 시간을 크게 줄일 수 있고, 그에 따른 장치비용이 줄어들어 공정 단가를 줄일 수 있으므로 결국, 생산성이 향상된다.Therefore, the process time can be greatly reduced, and thus the apparatus cost can be reduced, thereby reducing the process cost, so that the productivity is improved.

Claims (7)

제 1 기판 상에 게이트 배선, 게이트 전극 및 공통전극을 형성하는 단계;Forming a gate wiring, a gate electrode, and a common electrode on the first substrate; 상기 게이트 배선을 포함한 전면에 게이트 절연막을 형성하는 단계;Forming a gate insulating film on the entire surface including the gate wiring; 상기 게이트 절연막 상에 실리콘층 및 금속층을 적층하는 단계;Depositing a silicon layer and a metal layer on the gate insulating layer; 상기 실리콘층 및 금속층을 일괄 패터닝하여 액티브층 및 데이터 패턴을 형성하는 단계;Collectively patterning the silicon layer and the metal layer to form an active layer and a data pattern; 상기 데이터 패턴을 포함한 전면에 보호막을 형성하는 단계;Forming a protective film on the entire surface including the data pattern; 상기 제 1 기판과 대향하는 제 2 기판과의 사이에 액정층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.And forming a liquid crystal layer between the first substrate and the second substrate opposite to the first substrate. 제 1 항에 있어서, 상기 패터닝시, 상기 액티브층의 채널영역은 식각하지 않는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.The method of claim 1, wherein the channel region of the active layer is not etched during the patterning. 제 1 항에 있어서, 상기 실리콘층 및 금속층의 일괄 패터닝시, 3성분계 마스크를 사용하는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.The method of manufacturing a transverse electric field type liquid crystal display device according to claim 1, wherein a three-component mask is used when collectively patterning the silicon layer and the metal layer. 제 3 항에 있어서, 상기 3성분계 마스크는 헬프-톤 마스크로 하는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.The method of manufacturing a transverse electric field liquid crystal display device according to claim 3, wherein the three-component mask is a help-tone mask. 제 1 항에 있어서, 상기 데이터 패턴은,The method of claim 1, wherein the data pattern, 상기 게이트 배선과 교차하는 데이터 배선과,A data line crossing the gate line; 상기 공통전극과 교번하는 데이터 전극과,A data electrode alternate with the common electrode; 상기 데이터 배선에서 분기하는 소스/드레인 전극을 포함하는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.And a source / drain electrode branching from the data line. 제 1 항에 있어서, 상기 게 이트 전극, 액티브층, 소스/드레인 전극의 적층막은 상기 게이트 배선 및 데이터 배선의 교차 지점에 형성되어 박막트랜지스터를 이루는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.The method of manufacturing a transverse electric field liquid crystal display device according to claim 1, wherein the laminated film of the gate electrode, the active layer, and the source / drain electrode is formed at the intersection of the gate wiring and the data wiring to form a thin film transistor. . 제 1 항에 있어서, 상기 금속층은 알루미늄, 몰리브덴, 크롬, 구리, 알루미늄 합금의 단일층으로 하거나 또는 상기 금속을 선택적으로 적층한 이중층으로 형성하는 것을 특징으로 하는 횡전계방식 액정표시소자의 제조방법.The method of claim 1, wherein the metal layer is formed of a single layer of aluminum, molybdenum, chromium, copper, or an aluminum alloy, or a double layer in which the metal is selectively laminated.
KR1020010088633A 2001-12-29 2001-12-29 Method for fabricating inplane switching mode liquid crystal display device KR20030058237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010088633A KR20030058237A (en) 2001-12-29 2001-12-29 Method for fabricating inplane switching mode liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010088633A KR20030058237A (en) 2001-12-29 2001-12-29 Method for fabricating inplane switching mode liquid crystal display device

Publications (1)

Publication Number Publication Date
KR20030058237A true KR20030058237A (en) 2003-07-07

Family

ID=32216147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010088633A KR20030058237A (en) 2001-12-29 2001-12-29 Method for fabricating inplane switching mode liquid crystal display device

Country Status (1)

Country Link
KR (1) KR20030058237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107711B1 (en) * 2005-04-19 2012-01-25 엘지디스플레이 주식회사 Method for fabricating liquid crystal display device of in-plane switching
US9679921B2 (en) 2014-08-27 2017-06-13 Samsung Display Co., Ltd. Display substrate and method of fabricating the same
US9704890B2 (en) 2014-08-27 2017-07-11 Samsung Display Co., Ltd. Display substrate including direct contact part and method of fabricating the same
US9871061B2 (en) 2014-08-27 2018-01-16 Samsung Display Co., Ltd. Display substrate and method of fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107711B1 (en) * 2005-04-19 2012-01-25 엘지디스플레이 주식회사 Method for fabricating liquid crystal display device of in-plane switching
US9679921B2 (en) 2014-08-27 2017-06-13 Samsung Display Co., Ltd. Display substrate and method of fabricating the same
US9704890B2 (en) 2014-08-27 2017-07-11 Samsung Display Co., Ltd. Display substrate including direct contact part and method of fabricating the same
US9871061B2 (en) 2014-08-27 2018-01-16 Samsung Display Co., Ltd. Display substrate and method of fabricating the same

Similar Documents

Publication Publication Date Title
US6459465B1 (en) Liquid crystal panel for IPS mode liquid crystal display device and method for fabricating the same
EP1621924B1 (en) Liquid crystal display and panel therefor
US6661492B2 (en) In-plane switching LCD device
US20020126246A1 (en) In-plane switching mode liquid crystal display device
US20050078256A1 (en) In plane switching mode liquid crystal display device and fabrication method thereof
US7969519B2 (en) Liquid crystal display device and method of fabricating the same
KR100606410B1 (en) Thin film transistor array substrate and fabricating method thereof
KR20080071001A (en) Liquid crystal display panel and method of manufacturing the same
KR20010104067A (en) A liquid crystal display and a substrate for the same
US7460192B2 (en) Liquid crystal display, thin film diode panel, and manufacturing method of the same
US7061566B2 (en) In-plane switching mode liquid crystal display device and method of fabricating the same
US6587173B2 (en) Multidomain liquid crystal display device
US20040263751A1 (en) Liquid crystal display device of a horizontal electronic field applying type and fabricating method thereof
JPH0954341A (en) Active matrix type liquid crystal display element
KR101423909B1 (en) Display substrate and liquid crystal display device having the same
KR20030058237A (en) Method for fabricating inplane switching mode liquid crystal display device
KR20070072275A (en) Vertical alignment mode liquid crystal display device and method of fabricating thereof
KR100958036B1 (en) Mask device for exposure of alignment film for multi domain photo alignment
KR101186009B1 (en) fabrication method for In-Plane Switching mode LCD and the alignment layer forming method
KR100413485B1 (en) Inplane switching mode liquid crystal display device and method for fabricating the same
KR101163396B1 (en) In plane switching mode liquid crystal display device and method of fabricating thereof
WO2006114933A1 (en) Liquid crystal display device
US6972818B1 (en) In-plane switching mode liquid crystal display device
KR20040107189A (en) Liquid crystal display panel and fabricating method thereof
KR100835969B1 (en) In Plane Switching mode Liquid crystal display device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination