KR20030053122A - A method for manufacturing TMCP heavy plate using soft reduction - Google Patents

A method for manufacturing TMCP heavy plate using soft reduction Download PDF

Info

Publication number
KR20030053122A
KR20030053122A KR1020010083162A KR20010083162A KR20030053122A KR 20030053122 A KR20030053122 A KR 20030053122A KR 1020010083162 A KR1020010083162 A KR 1020010083162A KR 20010083162 A KR20010083162 A KR 20010083162A KR 20030053122 A KR20030053122 A KR 20030053122A
Authority
KR
South Korea
Prior art keywords
steel
temperature
slab
tmcp
rolling
Prior art date
Application number
KR1020010083162A
Other languages
Korean (ko)
Other versions
KR100765114B1 (en
Inventor
우국제
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010083162A priority Critical patent/KR100765114B1/en
Publication of KR20030053122A publication Critical patent/KR20030053122A/en
Application granted granted Critical
Publication of KR100765114B1 publication Critical patent/KR100765114B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing TMCP steel plate is provided to manufacture TMCP steel plate with 350 MPa class yield strength having superior weldability and internal quality by controlling steel constituents, and applying soft reduction and optimizing hot rolling and cold rolling conditions during continuous casting. CONSTITUTION: The method for manufacturing TMCP (thermo-mechanical controlled process) steel plate with 350 MPa class yield strength comprises a step of preparing molten steel having a composition comprising 0.06 to 0.11 wt.% of C, 0.20 to 0.50 wt.% of Si, 1.30 to 1.50 wt.% of Mn, 0.020 wt.% or less of P, 0.005 wt.% or less of S, 0.015 to 0.050 wt.% of Al, 0.005 to 0.025 wt.% of Nb, 0.1 to 0.2 wt.% of Cu, 0.1 to 0.2 wt.% of Ni, 0.005 to 0.015 wt.% of Ti, 50 ppm or less of N, and a balance of Fe and other inevitable impurities; a step of manufacturing a steel slab by soft reducing the slab to 2.43 mm after continuously casting molten steel having the composition in a continuous casting machine; a step of reheating the air cooled steel slab to a temperature of 1,050 to 1,150 deg.C after air cooling the steel slab to an ordinary temperature; a step of second finish rolling the first finish rolled steel slab at a temperature of 720 to 780 deg.C after first finish rolling the reheated steel slab at a temperature of 780 to 850 deg.C to obtain a residual reduction ratio of 45%; and a step of air cooling the resulting steel plate after cooling the rolled steel plate to the temperature range of 500 to 580 deg.C.

Description

경압하(Soft Reduction)를 이용한 후물 TMCP강 제조방법{A method for manufacturing TMCP heavy plate using soft reduction}A method for manufacturing TMCP heavy plate using soft reduction} using light pressure under reduced pressure (S method for manufacturing TMCP steel)

본 발명은 선박(콘테이너선)의 상갑판의 Hatch Coaming용에 사용되는 YP 350Mpa급 TMCP형 조선용강 제조방법에 관한 것으로써, 보다 상세하게는, 강성분을 제어하고 연속주조시 경압하를 적용함과 아울러, 열연조건 및 냉연조건을 최적화 함으로써 용접성 및 우수한 내부품질을 갖는 항복강도 350Mpa급 후물TMCP강 제조방법에 관한 것이다.The present invention relates to a YP 350Mpa TMCP type shipbuilding steel manufacturing method used for the Hatch Coaming of upper deck of a ship (container ship), and more specifically, to control the steel components and apply light pressure during continuous casting. In addition, the present invention relates to a method of manufacturing 350 Mpa thick TMCP steel having a yield strength of weldability and excellent internal quality by optimizing hot rolling and cold rolling conditions.

최근, 물류비 절감 및 규모의 경제를 위해 컨테이너선 대형화가 가속화 됨에 따라 국,내외 조선사에서는 건조생산성을 향상시키기 위해 콘테이너 상갑판(UPPER DECK)부에 저CEQ (탄소당량지수), 저Pcm (용접균열 감수성지수)화가 가능한 TMCP(Thermo-Meechanical Controlled Process) 후물강의 적용이 요구되고 있다.Recently, as container ships are accelerated to reduce logistics costs and economies of scale, domestic and overseas shipbuilders have low CEQ (carbon equivalent index) and low Pcm (welding crack susceptibility) in the container deck to improve dry productivity. It is required to apply TMCP (Thermo-Meechanical Controlled Process) thick steel that can be made exponentially.

그러나 후물재의 경우, 소재내부에 존재하는 개재물, 중심부 편석, 내부기공 및 내부크랙등이 압연과정에서 충분히 압착되거나 완화되지 않아 가공후 저온에서취화의 기점으로 작용하여 소재사용상 여러 문제점을 유발시키기 때문에, 성분제어후 P,S,불순물을 저감시키기 위한 노외정련처리를 실시하는 기존강으로는 요구품질을 만족시키기에 제약사항이 발생하는 문제가 있다. 따라서 내부품질을 획기적으로 개선한 후물 TMCP 강재의 제조기술이 현실적으로 요구되고 있다.However, in the case of thick materials, inclusions, central segregation, internal pores, and internal cracks in the material are not sufficiently compressed or mitigated during the rolling process, which acts as a starting point for embrittlement at low temperature after processing, causing various problems in using the material. However, there is a problem that the existing steel that performs the external furnace refining treatment to reduce the P, S and impurities after the component control has a problem in satisfying the required quality. Therefore, the manufacturing technology of the thick TMCP steel material which has drastically improved the internal quality is required.

따라서 본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, 연속주조시 경압하를 적용하여 수축에 의해 발생하는 기공을 압착시킴과 아울러, 열연조건 및 냉연조건을 최적화 함으로써 용접성 및 우수한 내부품질이 연속주조시 우수한 내부품질을 가지는 후물 TMCP 강을 제조방법을 제공함에 그 목적이 있다.Therefore, the present invention is to solve the problems of the prior art, by applying light pressure during continuous casting, while squeezing the pores generated by the shrinkage, by optimizing the hot rolling conditions and cold rolling conditions continuous weldability and excellent internal quality Its purpose is to provide a method for producing thick TMCP steel with excellent internal quality during casting.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C: 0.06~0.11%, Si:0.20~0.50%, Mn:1.30~1.50%, P:0.020% 이하, S:0.005% 이하, Al:0.015~0.050%, Nb:0.005~0.025%, Cu:0.1~0.2%, Ni:0.1~0.2%, Ti:0.005~0.015%, N: 50ppm이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 용강을 마련하는 단계; 상기 조성의 용강을 연속주조기에서 연속주조한후 주조된 주편을 2.43mm로 경압하하여 강 슬라브를 제조하는 단계; 상기 강 슬라브를 상온까지 공냉한후, 1050~1150℃의 온도로 재가열하는 단계; 상기 재가열된 강 슬라브를 잔압하율이 45%이 되도록 780~850℃에서 1차 사상압연을 완료한 후, 이어 720~780℃ 에서 2차 사상압연을 완료하는 단계; 및 상기 압연된 강판을 500~580℃의 온도범위까지 냉각한 후 공냉하는단계;를 포함하는 항복강도 350Mpa급 후물 TMCP강의 제조방법에 관한 것이다.The present invention for achieving the above object, in weight%, C: 0.06 ~ 0.11%, Si: 0.20 ~ 0.50%, Mn: 1.30 ~ 1.50%, P: 0.020% or less, S: 0.005% or less, Al: 0.015 ~ 0.050%, Nb: 0.005 ~ 0.025%, Cu: 0.1 ~ 0.2%, Ni: 0.1 ~ 0.2%, Ti: 0.005 ~ 0.015%, N: 50ppm or less, to provide molten steel composed of residual Fe and other unavoidable impurities step; Manufacturing molten steel slab by continuously casting molten steel of the composition in a continuous casting machine and then reducing the cast slab to 2.43 mm; Cooling the steel slab to room temperature and then reheating it to a temperature of 1050 to 1150 ° C .; Completing the primary finishing rolling at the reheated steel slab at 780 to 850 ° C. such that the residual pressure reduction rate is 45%, and then completing the secondary finishing rolling at 720 to 780 ° C .; It relates to a method of producing a yield strength of 350Mpa thick TMCP steel, including; and the step of cooling the rolled steel sheet to a temperature range of 500 ~ 580 ℃ and air-cooled.

이하, 본 발명의 강 조성성분을 설명한다.Hereinafter, the steel composition component of this invention is demonstrated.

탄소[C]는 강의 강도를 확보하기 위한 원소로서, 후판압연중 강의 조직내에서 퍼얼라이트(Pearlite) 분율 증가로 강도를 증가시키는 효과가 있다. 그러나, 과잉 첨가되면 모재의 냉각종료후 또는 용접부의 냉각후 발생하는 침상형 마르텐사이트(Lath Martensite), 상부베이나이트(Upper Bainite), 세멘타이트(Cementite) 등의 경화조직을 형성하여 모재 및 용접부 인성을 열화시키므로 압연 후 가속냉각(TMCP) 제조방법을 적용하는 본 발명에서는 탄소함량을 0.06~0.11%로 제한한다.Carbon [C] is an element for securing the strength of steel, and has an effect of increasing strength by increasing the fraction of Pearlite in the steel structure during thick plate rolling. However, when excessively added, hardened materials such as needle martensite, upper bainite, cementite, etc., formed after cooling of the base material or cooling of the welded part, form toughness of the base material and weld part. In the present invention to apply the accelerated cooling (TMCP) manufacturing method after rolling to limit the carbon content is limited to 0.06 ~ 0.11%.

규소[Si]은 탄화물을 형성하여 페라이트(Ferrite)상에 고용해서 경도,탄성한계,인장강도를 높이는 역할을 하는 원소로서, 본 발명에서는 Si의 함유량을 0.20~0.50%로 제한한다. 만일 그 함량이 0.50%를 초과하면 페라이트 분율감소 및 비금속개재물 (Nonmetallic Inclusion)이 과다 형성되어 인성이 저하되고 소성가공성도 악화될 수 있는 반면에, 용접후 조직열화에 의한 인장강도 감소를 보상하기 위해서는 0.20%이상 함유해야 하기 때문이다.Silicon [Si] is an element that forms carbide to form a solid solution on a ferrite to increase hardness, elastic limit, and tensile strength. In the present invention, the Si content is limited to 0.20 to 0.50%. If the content exceeds 0.50%, the ferrite fraction decreases and the nonmetallic inclusions are excessively formed, thereby reducing the toughness and deteriorating the plastic workability, while to compensate for the decrease in tensile strength due to tissue degradation after welding. It is because it should contain 0.20% or more.

망간[Mn]은 강중에 탄화물(Mn3C)을 형성해 결정립성장을 억제하여 조직을 미세화하는 원소이다. 또한, 오스테나이트영역을 확대시켜 Ar3온도를 강화하여 제어압연의 영역을 확대시킴으로써, 압연에 의한 입자미세화를 도와 인성 및 강도의 향상에 기여한다.Manganese [Mn] is an element that forms carbide (Mn 3 C) in the steel to suppress grain growth and refine the structure. In addition, by expanding the austenite region and strengthening the Ar 3 temperature to enlarge the region of the control rolling, it helps the particle fineness by rolling and contributes to the improvement of toughness and strength.

본 발명에서는 Mn을 1.30~1.50%로 첨가하는데, 이는 그 첨가량이 1.30%미만 이면 2상(페라이트+펄라이트)형성이 부족하여 강도향상에 기여하지 못하게 되며, 1.5%를 초고하면 오히려 강중 Sulphur등과 결합하여 MnS등의 개재물을 형성하여 용접부 충격인성 및 내부품질을 열화시킬 수 있기 때문이다.In the present invention, Mn is added in a range of 1.30 to 1.50%, which is less than 1.30%, which is insufficient to form a two-phase (ferrite + pearlite) and thus does not contribute to the improvement of strength. This is because the inclusion of MnS and the like can deteriorate the impact toughness and the internal quality of the weld.

인[P]은 강중에 Fe3P를 형성하여 충격저항을 감소시키며, 이로 인한 상온 및 저온취성을 유발하여 충격인성을 해치는 원소이다. 또한, 고온에서도 쉽게 확산되지 않아 압연시 형성된 퍼얼라이트 밴드구조 (Pearlite Band Structure)가 길이방향으로 연신되어 내부품질을 열화시키므로 그 함량을 0.020%이하로 제한한다.Phosphorus [P] is an element that forms Fe 3 P in steel to reduce impact resistance, thereby causing room temperature and low temperature brittleness and thus impair impact toughness. In addition, since the pearlite band structure (Pearlite Band Structure) formed during rolling does not easily diffuse even at high temperature is extended in the longitudinal direction to degrade the internal quality, the content is limited to less than 0.020%.

황(S)은 강중에서 MnS, Fe3P등의 개재물에 의한 편석대를 형성시켜 강재를 취화시키고, 저온인성 및 용접성을 저하시키므로 그 함량을 0.005%이하로 제한한다.Sulfur (S) embrittles the steel by forming segregation zones by inclusions such as MnS, Fe 3 P in the steel, and lowers the low-temperature toughness and weldability, so the content is limited to 0.005% or less.

알루미늄(Al)은 강탈산제로서, AlN을 석출하여 결정립미세화 효과를 나타낸다. 그러나, 과잉첨가되면 수지상의 탄화물을 형성하여 강을 취약하게 만들고, 연주 슬라브의 표면크랙을 발생시키며 충격인성을 저해하므로 그 첨가량을 0.015~0.050%로 제한한다.Aluminum (Al) is a strong deoxidizer, which precipitates AlN and shows a grain refinement effect. However, when excessively added, dendritic carbides are formed, which makes the steel brittle, generates surface cracks of the slabs, and impairs impact toughness, thereby limiting the addition amount to 0.015 to 0.050%.

본 발명에서 니오븀(Nb) 첨가량이 0.005%이상이면 압연시 입계에 편석된 Nb(C,N)석출물이 결정립 성장을 억제하여 결정립미세화에 의한 강도를 확보하는 역할을 한다. 그러나 과잉 첨가되면 용접부 충격인성을 저해할 수 있으므로, 본 발명에서는 Nb의 첨가량을 0.005~0.025%로 제한한다.In the present invention, when the niobium (Nb) addition amount is 0.005% or more, Nb (C, N) precipitates segregated at grain boundaries during rolling inhibit grain growth and thus play a role of securing strength by grain refinement. However, excessive addition may impair the impact toughness of the weld zone, so the amount of Nb added is limited to 0.005% to 0.025%.

구리(Cu)는 0.10% 이상 첨가되면, 고용강화 효과를 나타내어 강의 강도, 경도 및 내식성을 증가시킨다. 그러나 과잉첨가되면 열간가공시 Fe보다 산화속도가 낮아 표면에 산재후 내부로 침투하여 적열취성을 일으키므로 본 발명에서는 그 첨가량을 0.10~0.20%로 제한한다.When copper (Cu) is added 0.10% or more, it has a solid solution strengthening effect to increase the strength, hardness and corrosion resistance of the steel. However, if excessively added, the oxidation rate is lower than that of Fe during hot working, so that the surface penetrates into the interior after being scattered on the surface, causing red brittleness.

니켈(Ni)은 강의 조직을 미세화 시키고 오스테나이트(Austenite) 또는 페라이트(Ferrite)와 고용되어 기지를 강화시키며, 특히,저온에서 인성을 향상시켜 저온취성을 방지하는 유효한 성분이다. 또한 Cu의 적열취성을 방지하는 역할을 하므로 그 함량을 Cu와 동일 함량인 0.10~0.20% 로 설정하는 것이 바람직하다.Nickel (Ni) is an effective ingredient to refine the structure of the steel and solidify the matrix by solidifying with austenite or ferrite, and in particular, to improve the toughness at low temperatures to prevent low temperature embrittlement. In addition, since it serves to prevent the thermal embrittlement of Cu, it is preferable to set the content to 0.10 to 0.20% of the same content as Cu.

티타늄(Ti)은 강의 응고과정에서 미세한 탄화물 및 질화물을 형성하여 오스테나이트의 결정립성장을 억제하여 페라이트의 미세화에 기여하는 원소이다. 그러나, 강중 함량이 높아지면, 질화물(TiN) 석출입자의 조대화 및 질화물에 비하여 조대하게 석출되는 탄화물(TiC)의 석출로 오스테나이트의 결정립성장을 억제하기 어렵고 입계에 석출된 TiC로 인해 지나친 조직의 취화가 발생하게 되므로, 그 함량의상한은 0.015% 로 제한하는 것이 바람직하다.Titanium (Ti) is an element contributing to the refinement of ferrite by forming fine carbides and nitrides during the solidification process of steel to suppress grain growth of austenite. However, when the content of steel increases, it is difficult to suppress grain growth of austenite due to coarsening of nitride (TiN) precipitated particles and precipitation of carbide (TiC) that is coarse precipitated compared to nitride, and excessive tissue due to TiC precipitated at grain boundaries. Since embrittlement of is generated, the upper limit of the content is preferably limited to 0.015%.

또한, 소량 첨가시 TiN의 석출이 어렵기 때문에, 최소 0.005%는 첨가하는 것이 바람직하다.In addition, it is preferable to add at least 0.005% because TiN is difficult to precipitate when a small amount is added.

질소(N)는 강중에서 개재물을 발생시켜 강의 내부품질 및 용접시 가공성을 저해하므로 극저관리가 유리하나, 현 공정상 관리비용이 과다하고, 관리의 어려움이 따르므로 50ppm이하의 범위내에서 관리하는 것이 바람직하다.Nitrogen (N) generates inclusions in the steel, impairing the internal quality of the steel and workability during welding, so it is extremely low in management, but it is managed within the range of 50ppm or less because of excessive management cost and difficulty in management. It is preferable.

상기와 같은 조성의 용강은 연속주조기에서 연속주조되기 전에 노외전련공정을 거침이 바람직하다.Molten steel of the composition as described above is preferably subjected to an outside furnace refining process before continuous casting in a continuous casting machine.

본 발명에서는 상기 조성의 용강을 탈린을 위해 탈린로에서 취련한 다음 구상화 처리를 실시한다. 즉, 용강중 생석회(CaO)를 투입하여 염기도(CaO/SiO2)를 적정치로 한 다음, 여기에 불활성가스(아르곤:Ar)을 취입후 교반하면 용강중의 황은 대부분 분리부상된다. 그러나 일부 잔류하는 S은 MnS 개재물을 형성하여 열간압연시 압연방향으로 길게 연신되어 저온시 충격인성을 열화시킨다. 이를 방지하기 위한 방법으로 MnS개재물을 구상화처리시키기 위해 Ca계 구상화제인 Ca-Si를 0.8~1.3kg/용강ton 범위로 투입하는 것이 바람직하다.In the present invention, the molten steel of the composition is blown in a Tallinn furnace for Tallinn, and then subjected to a spheroidizing treatment. In other words, when the quicklime (CaO) in molten steel is added to make the basicity (CaO / SiO 2 ) an appropriate value, and then inert gas (argon: Ar) is blown therein and stirred, sulfur in the molten steel is mostly separated and injured. However, some remaining S forms MnS inclusions and is elongated in the rolling direction during hot rolling to deteriorate impact toughness at low temperatures. In order to prevent this, it is preferable to add Ca-Si, which is a Ca-based spheroidizing agent, in the range of 0.8 to 1.3 kg / tonton in order to spheroidize the MnS inclusions.

이와 같이 구상화처리된 용강은 진공설비에서 20~25분 환류시키게 되는데, 이는 용강의 청정성을 높이기 위해 필요하다.The spheroidized molten steel is refluxed in a vacuum facility for 20 to 25 minutes, which is necessary to increase the cleanliness of the molten steel.

다음으로, 본 발명에서는 상기 조성의 용강을 연속주조기에서 주조하여 주편을 제조하고, 제조된 주편에 2.43mm로 경압하함으로써 강 슬라브를 제조한다.Next, in the present invention, the molten steel of the composition is cast in a continuous casting machine to produce a cast, and the steel slab is manufactured by reducing the pressure to 2.43 mm to the produced cast.

본 발명에서는 이러한 경압하를 주조말기에 적용하기 위해 연소주조속도를 0.95~1.0m/분으로 설정하는 것이 바람직하다. 왜냐하면 그 주조속도가 0.95m/분 미만이면 경압하 설비사양상 제어가 불가능하고, 1.0m/분을 초과하면 슬라브 중심부 편석증가로 인한 경압하 효과가 감소할 수 있기 때문이다.In the present invention, in order to apply such light pressure at the end of the casting, it is preferable to set the combustion casting speed at 0.95 to 1.0 m / min. This is because if the casting speed is less than 0.95m / min, it is impossible to control the equipment specifications under light pressure, and if it exceeds 1.0m / min, the light pressure effect due to increased segregation of the center of slab may be reduced.

본 발명에서는 연속주조 말기에 주조된 주편의 중심부를 압착하여 내부기공 및 편석을 저감시키기 위해 ASTC(Automatic Strand Taper Control) System을 적용하여, 3mm의 Taper를 가한후, 소정의 경압하(Soft-Reduction)를 가하여, 적정두께의 강스라브를 제조한다.In the present invention, by applying the ASTC (Automatic Strand Taper Control) system to compress the center of the cast slab at the end of continuous casting to reduce internal pores and segregation, after applying a 3mm Taper, a predetermined soft-reduction ) To prepare a steel slab of proper thickness.

본 발명에서는 ASTC에서 2.43mm의 경압하를 부여하는데, 이는 경압하의 조건중 Taper량은 연주설비에서 고정된 조건이고, 경압하량은 Taper량을 포함하여 7mm 이상을 적용하면, 설비사양상 제어가 불가하므로 2.43mm의 경압하량을 설정하는 것이 바람직하기 때문이다.In the present invention, the ASTC gives a low pressure of 2.43 mm, which is a condition in which the amount of taper is a fixed condition in the performance equipment under the condition of low pressure, and the amount of low pressure is applied to 7 mm or more, including the amount of taper, to control the equipment specifications. This is because it is preferable to set a pressure reduction amount of 2.43 mm since it is impossible.

상기에서 제조된 강 슬라브는 다단적치된후 상온까지 공냉시킨 다음, 다시 재가열된다.The steel slabs prepared above are air-cooled to room temperature after being placed in multiple stages and then reheated again.

일반적으로 열처리재의 경우는 압연후 재결정온도(900℃)구역까지 재가열한 후 강중에 탄질화물을 석출시켜 냉각후 페라이트(Ferrite)의 입자 미세화를 통하여 강도를 확보하므로 압연전 재가열온도를 통상 1250℃정도의 고온에서 가열하나, 본발명은 압연후 추가 열처리를 실시하지 않으므로 재가열온도를 약 1050~1150℃의 범위로 제한한다. 만일 상기 재가열온도가 1050℃ 미만이면 강 슬라브가 재결정화 되기에 불충분하고, 1150℃를 초과하면 압연중 온도제어를 위한 압연대기시간의 과다로 생산성이 하락되어 바람직하지 않기 때문이다.In general, in the case of heat treatment material, after reheating to recrystallization temperature (900 ℃) zone after rolling, carbonitride is precipitated in steel and the strength is secured by refining the grains of ferrite after cooling, so the reheating temperature before rolling is usually about 1250 ℃. Although heated at a high temperature of the present invention, since the additional heat treatment is not performed after rolling, the reheating temperature is limited to the range of about 1050 ~ 1150 ℃. If the reheating temperature is less than 1050 ° C, the steel slab is insufficient to recrystallize, if it exceeds 1150 ° C it is not preferable because the productivity decreases due to excessive rolling waiting time for temperature control during rolling.

상기 재가열된 슬라브를 추출한 후 조압연한 다음 사상압연하는데, 본 발명에서는 이러한 사상압연 조건을 제어하는데 특징이 있다.After the reheated slab is extracted and roughly rolled, followed by filament rolling, the present invention is characterized in controlling such filamentous rolling conditions.

상세하게 설명하면, 본 발명에서는 사상압연이 2 단계로 이루어지는데, 먼저 1차 사상압연은, 이후 2차 사상압연을 미재결정역내에서 실시하기 위하여, 잔압하율이 45%로 되도록 780~850℃에서 종료한다. 상기 1차 사상압연종료온도가 780~850℃의 범위를 벗어날 경우 2차 압연후 압연종료 목표온도 확보가 불가능 하기 때문이다.Specifically, in the present invention, the finishing finishing is composed of two stages. First, the primary finishing rolling is performed at 780 to 850 ° C. so that the residual reduction ratio is 45% in order to carry out the secondary finishing rolling in the unrecrystallized zone. Terminate at. If the first finishing rolling end temperature is out of the range of 780 ~ 850 ℃ it is impossible to secure the target temperature of the end of rolling after the second rolling.

이후, 2차 사상압연은, 재결정 정지온도보다 40~70℃ 낮은 온도인, 720~780℃에서 마무리한다. 왜냐하면 상기 2차 사상압연을 종료하는 온도가 720℃ 미만이면 경화조직 과다발생에 의한 강도증가, 인성저하가 발생하고, 780℃를 초과하면 항복강도가 과도하게 저하되기 때문이다.Thereafter, the secondary finishing rolling is finished at 720 to 780 ° C, which is 40 to 70 ° C lower than the recrystallization stop temperature. This is because when the temperature for finishing the secondary finishing rolling is less than 720 ° C., an increase in strength and a decrease in toughness occur due to excessive generation of hardened tissue, and when the temperature exceeds 780 ° C., the yield strength is excessively lowered.

상기 제어압연 종료후, 압연후의 결정립성장을 방지하고 잔류 오스테나이트를 가속냉각(수냉)에 의해 베이나이트로 변태시켜 고강도를 얻기 위해 500~580℃의 온도범위까지 냉각시킨다.After the end of the controlled rolling, the grain growth after rolling is prevented and the residual austenite is transformed into bainite by accelerated cooling (water cooling) to cool to a temperature range of 500 to 580 ° C to obtain high strength.

본 발명에서 가속냉각 종료온도를 500~580℃로 규정한 것은, 만일 그 온도가 500℃미만이면 설비냉각능력상 제한이 있고, 580℃를 초과하면 요구 인장강도 (Tensile Strength)를 확보하기 어렵기 때문이다.In the present invention, the accelerated cooling end temperature is defined as 500 ~ 580 ℃, if the temperature is less than 500 ℃ is limited in the cooling capacity of the equipment, if it exceeds 580 ℃ it is difficult to secure the required tensile strength (Tensile Strength) Because.

이때, 상기 압연된 강판을 상기 종료온도까지 4~7℃/sec의 속도로 냉각함이 바람직하다. 왜냐하면 상기 냉각속도가 7℃/sec 보다 빠르면 베이나이트 분율이 증가하여 강도상승효과에 기여하나 저온충격인성이 열화되고, 4℃/sec 보다 느리면 결정립성장이 촉진되어 강도가 저하될 수 있어 바람직하지 않기 때문이다.At this time, it is preferable to cool the rolled steel sheet at a rate of 4 ~ 7 ℃ / sec to the end temperature. If the cooling rate is faster than 7 ℃ / sec, the bainite fraction is increased to contribute to the strength increase effect, but the low temperature impact toughness is deteriorated, if it is slower than 4 ℃ / sec grain growth is promoted to decrease the strength is undesirable Because.

상술한 바와 같이 강조성 성분을 제저하고, 그 연속주조조건 및 열연조건등을 제어함으로써 용접성 및 내부품질이 우수한 YP 350Mpa급 후물 TMCP강을 효과적으로 제조할 수 있는 것이다.As described above, it is possible to effectively manufacture YP 350Mpa thick TMCP steel having excellent weldability and internal quality by removing the emphasis component and controlling the continuous casting conditions and hot rolling conditions.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

표 1과 같이 조성되는 용강을 각각 마련하여 탈린로에서 취련한 후 Ca-Si를 투입하여 MnS개재물 구상화 처리를 행하였다. 이렇게 정련된 용강을 0.98m/분의 속도로 연속주조한 후 표 2와 같이 경압하(2.43mm)요건을 달리하여 두께가 244mm인 강 슬라브를 제조하였다. 한편, 표 1에서 강종(1~7)은 본 발명범위에 속하는 강종이며, 강종(8~9)는 본 발명범위를 벗어난 강종이다.Molten steels prepared as shown in Table 1 were prepared and blown in a Tallinn furnace, and then Ca-Si was added to perform spheroidization treatment of MnS inclusions. The molten steel thus refined was continuously cast at a rate of 0.98 m / min, and then steel slabs having a thickness of 244 mm were manufactured by varying the requirements under light pressure (2.43 mm) as shown in Table 2. On the other hand, in Table 1, steel grades 1 to 7 are steel grades belonging to the scope of the present invention, and steel grades 8 to 9 are steel grades outside the scope of the present invention.

다음으로, 제조된 강스라브를 1130℃에서 재가열한 다음, 표 2와 같이 그 압연 및 냉각조건을 달리하여 두께가 60mm인 후물 강판을 제조하였다. 이렇게 제조된 강판에 대해서 기계적강도와 충격인성을 측정하여 그 결과를 표 3에 나타내었으며, 또한 제조된 모든 강판에 대하여 비파괴검사(UST)를 실시하여, 내부품질불량수준을 측정하여, 그 결과를 또한 표 3에 나타내었다. 한편, 표 2에서 T4는 2차 사상압연 개시온도, T5는 사상압연온도, SCT는 냉각시작온도, FCT는 냉각종료온도, 그리고 CR은 냉각속도를 의미한다.Next, after reheating the prepared steel slab at 1130 ℃, as shown in Table 2 to prepare a thick steel sheet having a thickness of 60mm by varying the rolling and cooling conditions. The mechanical strength and impact toughness of the steel sheets manufactured as described above are shown in Table 3, and all the manufactured steel sheets were subjected to nondestructive testing (UST) to measure internal quality defect levels. Also shown in Table 3. Meanwhile, in Table 2, T4 is the secondary finishing rolling start temperature, T5 is the finishing rolling temperature, SCT is the cooling start temperature, FCT is the cooling end temperature, and CR is the cooling rate.

강종Steel grade CC SiSi MnMn PP SS Sol-AlSol-Al CuCu NiNi NbNb TiTi NN 1One 0.0840.084 0.250.25 1.331.33 0.0170.017 0.0030.003 0.0350.035 0.160.16 0.140.14 0.020.02 0.0090.009 37ppm37 ppm 22 0.0960.096 0.250.25 1.341.34 0.0150.015 0.0020.002 0.0330.033 0.140.14 0.130.13 0.020.02 0.0110.011 33ppm33 ppm 33 0.0860.086 0.240.24 1.391.39 0.0150.015 0.0020.002 0.0330.033 0.150.15 0.140.14 0.020.02 0.0120.012 40ppm40 ppm 44 0.0860.086 0.240.24 1.391.39 0.0150.015 0.0020.002 0.0330.033 0.150.15 0.140.14 0.020.02 0.0120.012 40ppm40 ppm 55 0.0860.086 0.240.24 1.391.39 0.0150.015 0.0020.002 0.0330.033 0.150.15 0.140.14 0.020.02 0.0120.012 40ppm40 ppm 66 0.0860.086 0.240.24 1.391.39 0.0150.015 0.0020.002 0.0330.033 0.150.15 0.140.14 0.020.02 0.0120.012 40ppm40 ppm 77 0.0860.086 0.240.24 1.391.39 0.0150.015 0.0020.002 0.0330.033 0.150.15 0.140.14 0.020.02 0.0120.012 40ppm40 ppm 88 0.1010.101 0.450.45 1.441.44 0.0190.019 0.0020.002 0.0430.043 0.130.13 0.140.14 0.0180.018 0.0120.012 51ppm51 ppm 99 0.1160.116 0.260.26 1.301.30 0.0180.018 0.0050.005 0.0350.035 0.010.01 0.030.03 0.0020.002 0.0110.011 --

구분division 두께(mm)Thickness (mm) 제어압연(℃)Control Rolling (℃) 가속냉각(℃)Accelerated Cooling (℃) 경압하Under light pressure T4(잔압하율)T4 (Residual Pressure Reduction Rate) T5T5 SCTSCT FCTFCT CRCR 발명강(1)Inventive Steel (1) 6060 820(45%)820 (45%) 750750 740740 550550 5℃/s5 ℃ / s 실시(2.43mm)Conduct (2.43mm) 비교강(2)Comparative Steel (2) 6060 820(45%)820 (45%) 750750 740740 550550 5℃/s5 ℃ / s 미실시Not carried 비교강(3)Comparative Steel (3) 6060 950(50%)950 (50%) 754754 709709 614614 2℃/s2 ℃ / s 실시(2.43mm)Conduct (2.43mm) 비교강(4)Comparative Steel (4) 6060 807(45%)807 (45%) 758758 715715 601601 2.4℃/s2.4 ℃ / s 실시(2.43mm)Conduct (2.43mm) 비교강(5)Comparative Steel (5) 6060 723(40%)723 (40%) 700700 688688 490490 5.1℃/s5.1 ℃ / s 실시(2.43mm)Conduct (2.43mm) 비교강(6)Comparative Steel (6) 6060 973(50%)973 (50%) 800800 749749 533533 4.1℃/s4.1 ℃ / s 실시(2.43mm)Conduct (2.43mm) 비교강(7)Comparative Steel (7) 6060 779(45%)779 (45%) 747747 706706 561561 4℃/s4 ℃ / s 실시(2.43mm)Conduct (2.43mm) 비교강(8~9)Comparative Steel (8 ~ 9) 6060 830(45%)830 (45%) 750750 720720 570570 5℃/s5 ℃ / s 실시(2.43mm)Conduct (2.43mm)

구분division 기계적강도(Mpa)Mechanical strength (Mpa) 충격인성(Ve-40℃,J)Impact Toughness (Ve-40 ℃, J) UST불량율(%)UST Defective Rate (%) YPYP TSTS EL(%)EL (%) 발명강(1)Inventive Steel (1) 395395 519519 3030 324324 00 비교강(2)Comparative Steel (2) 414414 517517 2424 247247 27.927.9 비교강(3)Comparative Steel (3) 284284 484484 2828 308308 -- 비교강(4)Comparative Steel (4) 374374 481481 3333 258258 -- 비교강(5)Comparative Steel (5) 416416 543543 1818 112112 -- 비교강(6)Comparative Steel (6) 441441 595595 2828 3838 -- 비교강(7)Comparative Steel (7) 496496 628628 2222 159159 -- 비교강(8)Comparative Steel (8) 403403 556556 3030 3939 -- 비교강(9)Comparative Steel (9) 388388 510510 2424 4646 --

표 2 및 표 3에 나타난 바와 같이, 그 강 조성성분 뿐만 아니라 경압연조건열연조건등이 최적으로 제어된 발명강(1)은 항복강도, 인장강도, 연신율등 기계적특성이 우수하고, 그 충격인성이 우수할 뿐 아니라 소재의 내부품질도 우수함을 알 수 있다.As shown in Table 2 and Table 3, the invention steel (1) having optimal control of not only the steel composition but also the light rolling condition and the hot rolling condition is excellent in mechanical properties such as yield strength, tensile strength and elongation, and its impact toughness. Not only is this excellent but also the internal quality of the material is excellent.

이에 반하여, 그 조성성분 및 압연조건등은 본 발명범위내이나 경압연을 실시하지 않은 비교강(1)은 그 충격인성이 나쁘며, 아울러 UST불량율이 높아 소재의 내부품질이 열악함을 알 수 있다.On the contrary, the compositional components and rolling conditions are within the scope of the present invention, but the comparative steel (1) which is not subjected to light rolling has poor impact toughness and high UST defect rate, which indicates that the internal quality of the material is poor. .

또한, 그 조성성분은 본 발명범위내이나 압연조건이나 냉연조건이 본 발명범위를 벗어난 비교강(3~7)은 대체로 그 충격인성이 열화되고, 그 기계적특성도 열화되었으며, 조성성분 자체가 본 발명범위를 벗어난 비교예(8~9)는 충격인성이 좋지 않음을 알 수 있다.In addition, the composition is within the scope of the present invention, but the comparative steels (3 to 7) in which the rolling conditions or cold rolling conditions are outside the scope of the present invention, the impact toughness is generally deteriorated, the mechanical properties are also deteriorated, and the composition itself is Comparative Examples 8 to 9 outside the scope of the invention can be seen that the impact toughness is not good.

상술한 바와 같이, 본 발명은, 강성분을 제어함과 아울러, 열연조건 및 냉연조건을 최적화 함으로써 용접성 및 내부품질이 우수한 후물 TMCP 강을 제공할 수 있어, 이를 콘테이너선등에 적용할 수 있는 효과가 있다.As described above, the present invention can provide a thick TMCP steel with excellent weldability and internal quality by controlling steel components and optimizing hot rolling conditions and cold rolling conditions. have.

Claims (3)

중량%로, C: 0.06~0.11%, Si:0.20~0.50%, Mn:1.30~1.50%, P:0.020% 이하, S:0.005% 이하, Al:0.015~0.050%, Nb:0.005~0.025%, Cu:0.1~0.2%, Ni:0.1~0.2%, Ti:0.005~0.015%, N: 50ppm이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 용강을 마련하는 단계;By weight%, C: 0.06 to 0.11%, Si: 0.20 to 0.50%, Mn: 1.30 to 1.50%, P: 0.020% or less, S: 0.005% or less, Al: 0.015 to 0.050%, Nb: 0.005 to 0.025% Preparing a molten steel composed of Cu: 0.1 to 0.2%, Ni: 0.1 to 0.2%, Ti: 0.005 to 0.015%, N: 50 ppm or less, balance Fe and other unavoidable impurities; 상기 조성의 용강을 연속주조기에서 연속주조한후 주조된 주편을 2.43mm로 경압하하여 강 슬라브를 제조하는 단계;Manufacturing molten steel slab by continuously casting molten steel of the composition in a continuous casting machine and then reducing the cast slab to 2.43 mm; 상기 강 슬라브를 상온까지 공냉한후, 1050~1150℃의 온도로 재가열하는 단계; 상기 재가열된 강 슬라브를 잔압하율이 45%이 되도록 780~850℃에서 1차 사상압연을 완료한 후, 이어 720~780℃ 에서 2차 사상압연을 완료하는 단계; 및Cooling the steel slab to room temperature and then reheating it to a temperature of 1050 to 1150 ° C .; Completing the primary finishing rolling at the reheated steel slab at 780 to 850 ° C. such that the residual pressure reduction rate is 45%, and then completing the secondary finishing rolling at 720 to 780 ° C .; And 상기 압연된 강판을 500~580℃의 온도범위까지 냉각한 후 공냉하는단계;를 포함하는 항복강도 350Mpa급 후물 TMCP강의 제조방법.Yield strength 350Mpa grade TMCP steel production method comprising the step of cooling the rolled steel sheet to a temperature range of 500 ~ 580 ℃ and air-cooled. 제 1항에 있어서, 상기 연속주조는 0.95~1.0m/분의 주조속도로 실시됨을 특징으로 하는 항복강도 350Mpa급 후물 TMCP강의 제조방법.The method of claim 1, wherein the continuous casting is performed at a casting speed of 0.95 to 1.0 m / min. 제 1항에 있어서, 상기 열연된 강판을 500~580℃의 온도범위까지 4~7℃/sec의 속도로 냉각함을 특징으로 하는 항복강도 350Mpa급 후물 TMCP강의 제조방법.The method of claim 1, wherein the hot rolled steel sheet is cooled to a temperature range of 500 to 580 ° C at a rate of 4 to 7 ° C / sec.
KR1020010083162A 2001-12-22 2001-12-22 A method for manufacturing TMCP heavy plate using soft reduction KR100765114B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083162A KR100765114B1 (en) 2001-12-22 2001-12-22 A method for manufacturing TMCP heavy plate using soft reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083162A KR100765114B1 (en) 2001-12-22 2001-12-22 A method for manufacturing TMCP heavy plate using soft reduction

Publications (2)

Publication Number Publication Date
KR20030053122A true KR20030053122A (en) 2003-06-28
KR100765114B1 KR100765114B1 (en) 2007-10-08

Family

ID=29577733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083162A KR100765114B1 (en) 2001-12-22 2001-12-22 A method for manufacturing TMCP heavy plate using soft reduction

Country Status (1)

Country Link
KR (1) KR100765114B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039290A (en) * 2018-10-12 2020-04-21 中国科学院金属研究所 Method for preparing transition metal carbide powder in situ by molten salt disproportionation reaction
CN114682746A (en) * 2022-04-07 2022-07-01 首钢京唐钢铁联合有限责任公司 Production method of super-thick steel plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
KR100241306B1 (en) * 1995-08-11 2000-03-02 이구택 The manufacturing method for low temperature steel with hot working
KR20010017295A (en) * 1999-08-10 2001-03-05 이구택 A Method for Manufacturing Cr-Mo Steels with Excellent Strength and Toughness
KR20020050449A (en) * 2000-12-21 2002-06-27 이구택 A METHOD FOR MANUFACTURING TMCP TYPE YP 350MPa GRADE STEEL FOR OCEAN STRUCTUREING

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039290A (en) * 2018-10-12 2020-04-21 中国科学院金属研究所 Method for preparing transition metal carbide powder in situ by molten salt disproportionation reaction
CN114682746A (en) * 2022-04-07 2022-07-01 首钢京唐钢铁联合有限责任公司 Production method of super-thick steel plate

Also Published As

Publication number Publication date
KR100765114B1 (en) 2007-10-08

Similar Documents

Publication Publication Date Title
KR20090070484A (en) High-strength and high-toughness thick steel plate and method for producing the same
KR101917453B1 (en) Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
KR20030021965A (en) a hot-rolled steel sheet wiht good ultra low temperature toughness and the method of the same
KR20110000395A (en) Steel sheet having ultra-high strength, and method for producing the same
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR20100070639A (en) Steel with excellent low-temperature toughness for construction and manufacturing method thereof
KR102397583B1 (en) High Strength Hot Rolled Steel Sheet with Excellent Elongation and Method of Manufacturing Thereof
KR100765114B1 (en) A method for manufacturing TMCP heavy plate using soft reduction
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
KR101546132B1 (en) Extremely thick steel sheet and method of manufacturing the same
KR102164097B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR100435482B1 (en) A METHOD FOR MANUFACTURING TS 50kgf/㎟ GRADE EXTRA THICK STEEL SHEET
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
JPS642647B2 (en)
KR101249044B1 (en) High strength steel sheet having excellent bulletproof property, and method for producing the same
KR100470670B1 (en) Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate
KR100452303B1 (en) Manufacturing method of high-tension steel for line pipe having excellent tenacity at low temperature
KR20130034205A (en) Shape steel and method of manufacturing the shape steel
KR100544638B1 (en) A method for manufacturing high strength plate having the superior fracture arrest
KR101344610B1 (en) Steel sheet and method of manufacturing the same
KR100340557B1 (en) A method of manufacturing steel in the 50Kgf/mm2 grade for shipbuilding
KR100360090B1 (en) A METHOD FOR MANUFACTURING 55kg/㎟ GRADE STEEL FOR LINE PIPE
KR20020050449A (en) A METHOD FOR MANUFACTURING TMCP TYPE YP 350MPa GRADE STEEL FOR OCEAN STRUCTUREING
KR20230089770A (en) Steel plate having excellent toughness at center of thickness and method for manufacturing the same
KR20220161891A (en) Thick steel plate and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121004

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160923

Year of fee payment: 10