KR20030050637A - Method for manufacturing surface composite, using high energy accelerated electron beam - Google Patents

Method for manufacturing surface composite, using high energy accelerated electron beam Download PDF

Info

Publication number
KR20030050637A
KR20030050637A KR1020010081122A KR20010081122A KR20030050637A KR 20030050637 A KR20030050637 A KR 20030050637A KR 1020010081122 A KR1020010081122 A KR 1020010081122A KR 20010081122 A KR20010081122 A KR 20010081122A KR 20030050637 A KR20030050637 A KR 20030050637A
Authority
KR
South Korea
Prior art keywords
surface composite
electron beam
titanium alloy
high energy
layer
Prior art date
Application number
KR1020010081122A
Other languages
Korean (ko)
Inventor
이성학
오준철
이창섭
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020010081122A priority Critical patent/KR20030050637A/en
Publication of KR20030050637A publication Critical patent/KR20030050637A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide

Abstract

PURPOSE: A method for manufacturing surface composite material using high energy accelerated electron beam is provided to simplify surface composite material process by using high energy accelerated electron beam and greatly improve wear resistance by enabling formation of single layer and multilayer surface composite materials. CONSTITUTION: The method comprises first step of coating a mixed body(10) in which ceramic powder of vanadium carbide (VC) is mixed with calcium fluoride (CaF2) solvent on titanium alloy(12); second step of pressing the mixed body so that the mixed body is closely adhered to the titanium alloy; and third step of forming a surface composite layer on the titanium alloy by uniformly projecting high energy electron beam onto the mixed body coated surface, wherein the method further comprises a step of forming a multilayer of surface composite material by repeating the first to third steps for one or more times, wherein the titanium alloy(12) is Ti-6Al-4V, wherein a ratio of VC ceramic powder to solvent CaF2 is 6:4 in the mixed body(10), and wherein electron energy of the high energy electron beam is 1.4 MeV.

Description

고에너지 가속전자빔을 이용한 표면복합재료 제조 방법{Method for manufacturing surface composite, using high energy accelerated electron beam}Method for manufacturing surface composite, using high energy accelerated electron beam

본 발명은 다층 VC(바나듐 카바이드)/Ti(타이타늄) 표면복합재료의 제조방법에 관한 것으로서, 특히 가속전자빔 투사방법에 의한 단층 및 다층 VC/Ti 표면복합재료의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multilayer VC (vanadium carbide) / Ti (titanium) surface composite material, and more particularly to a method for producing single layer and multilayer VC / Ti surface composite materials by an accelerated electron beam projection method.

현재까지 알려진 타이타늄 합금의 통상적인 표면처리 방법으로는 도금, 탄화처리, 플라즈마 스프레이 등이 있으나, 이러한 방법들은 표면층과 모재금속과의 계면결합이 양호하지 못하고 표면층의 두께가 얇게 형성되는 단점이 있었다. 또한, 주로 가스를 외부로부터 반응실로 유입하고 인입된 반응 기체의 화합물을 열이나 레이저 또는 자외선의 광 에너지가 이용하여 분해한 후, 화학적 반응에 의하여 가열된 모재 위에 박막을 형성하는 화학기상증착(CVD) 방법이 있으나, 이 경우 고온에서 박막을 형성하므로 모재 금속이 뒤틀리거나 물성이 약해지는 단점이 있다. 이에 따라 보다 단순한 공정으로서 상기 단점을 개선한 Ti 합금의 표면처리 방법이 요구되어 왔다.Conventional surface treatment methods of titanium alloys known to date include plating, carbonization treatment, plasma spray, etc., but these methods have a disadvantage in that an interfacial bonding between the surface layer and the base metal is not good and the thickness of the surface layer is thin. In addition, chemical vapor deposition (CVD), which mainly introduces gas into the reaction chamber from outside and decomposes the compound of the introduced reaction gas using heat, laser or ultraviolet light energy, and then forms a thin film on the base material heated by chemical reaction. ), But in this case, since the thin film is formed at a high temperature, the base metal is warped or the physical properties are weak. Accordingly, there has been a demand for a surface treatment method of Ti alloy which has improved the disadvantage as a simpler process.

본 발명은 상술한 요구에 부응하기 위해 창출된 것으로서, 모재금속과의 계면결합이 양호하며, 모재금속의 물성이 약화시키지 않으며 간단한 공정으로 내마모성이 우수한 표면복합재료를 형성하는 방법을 제공하는 데에 기술적 과제가 있다.SUMMARY OF THE INVENTION The present invention has been made to meet the above-mentioned demands, and provides a method for forming a surface composite material having good interfacial bonding with a base metal, having no weakening of physical properties of the base metal, and having excellent wear resistance in a simple process. There is a technical problem.

도 1a는 본 발명의 실시예에 사용된 모재인 타이타늄 합금인 Ti-6Al-4V의 광학현미경 사진이다.Figure 1a is an optical microscope photograph of Ti-6Al-4V, a titanium alloy as a base material used in the embodiment of the present invention.

도 1b는 본 발명의 실시예에 도포제로서 적용된 VC 세라믹 분말을 나타낸 주사전자현미경(SEM) 사진이다.1B is a scanning electron microscope (SEM) photograph showing VC ceramic powder applied as a coating agent in an embodiment of the present invention.

도 2a 내지 도 2c는 고에너지 가속 전자빔을 투사하여 다층 표면복합재료를 제조하는 과정을 설명하는 도면이다.2A to 2C are views illustrating a process of manufacturing a multilayer surface composite material by projecting a high energy accelerated electron beam.

도 3a는 도 2d에 도시된 단층 표면복합재료의 전자빔 투사방향과 평행한 절단면의 저배율 광학사진이다.FIG. 3A is a low magnification optical photograph of a cut plane parallel to the electron beam projection direction of the monolayer surface composite material shown in FIG. 2D.

도 3b는 도 2e에 도시된 다층(2층) 표면복합재료의 전자빔 투사방향과 평행한 절단면의 저배율 광학사진이다.FIG. 3B is a low magnification optical photograph of a cut plane parallel to the electron beam projection direction of the multilayer (two layer) surface composite material shown in FIG. 2E.

도 4a는 도 2c에 도시된 단층 표면복합재료에 있어서 표면복합층에 대한 미세조직을 관찰한 광학현미경 사진이다.FIG. 4A is an optical microscope photograph of the microstructure of the surface composite layer in the single layer surface composite material illustrated in FIG. 2C.

도 4b는 도 2e에 도시된 다층(2층) 표면복합재료에 있어서 표면복합층에 대한 미세조직을 관찰한 광학현미경 사진이다.4B is an optical microscope photograph of the microstructure of the surface composite layer in the multilayer (two layer) surface composite material shown in FIG. 2E.

도 5는 본 발명의 제조 방법에 따라 제조한 표면복합재료의 표면으로부터의깊이에 따른 경도 변화를 도시한 그래프이다.5 is a graph showing the change in hardness according to the depth from the surface of the surface composite material prepared according to the production method of the present invention.

도 6은 본 발명의 제조 방법에 따라 제조한 표면복합재료의 표면층의 마모량을 도시한 그래프이다.6 is a graph showing the amount of wear of the surface layer of the surface composite material prepared according to the production method of the present invention.

본 발명에 따른 고에너지 가속전자빔을 이용한 표면복합재료 제조 방법은,Method for producing a surface composite material using a high energy accelerated electron beam according to the present invention,

바나듐 카바이드(VC)의 세라믹분말과 칼슘플로라이드(CaF2)용제가 혼합된 혼합체를 타이타늄 합금상에 도포하는 제1단계; 상기 혼합체를 상기 타이타늄 합금에 밀착되도록 가압하는 제2단계; 및 상기 VC 세라믹분말과 용제의 혼합체가 도포된 면에 고에너지 전자빔으로 균등하게 투사하여 상기 타이타늄 합금 상에 표면복합층을 형성하는 제3단계;를 포함함을 특징으로 한다.A first step of applying a mixture of a ceramic powder of vanadium carbide (VC) and a calcium fluoride (CaF 2 ) solvent onto a titanium alloy; Pressurizing the mixture to be in close contact with the titanium alloy; And a third step of forming a surface composite layer on the titanium alloy by uniformly projecting a high energy electron beam onto the surface of the mixture of the VC ceramic powder and the solvent.

또한, 상기 제1단계 내지 3단계를 1회 이상 반복하여 다층의 표면복합층을 형성하는 단계를 더 포함함을 특징으로 한다.The method may further include repeating the first to third steps one or more times to form a multilayer surface composite layer.

또한, 상기 타이타늄 합금은 Ti-6Al-4V임을 특징으로 한다.In addition, the titanium alloy is characterized in that Ti-6Al-4V.

또한, 상기 혼합체에서 VC세라믹 분말과 용제인 CaF2의 비율이 6 : 4임을 특징으로 한다.In addition, the VC ceramic powder and the solvent CaF 2 in the mixture is characterized in that the ratio of 6: 4.

또한, 상기 고에너지 전자빔의 전자에너지는 1.4 MeV임을 특징으로 한다.In addition, the electron energy of the high energy electron beam is characterized in that 1.4 MeV.

이하, 첨부 도면을 참조하여 본 발명의 일실시예를 상세히 설명하기로 한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1a 및 도 1b는 각각 본 발명의 실시예에 적용된 타이타늄 합금인 Ti-6Al-4V와, 용제로서 사용된 VC(바나듐 카바이드) 성분인 세라믹 분말의 광학형미경 사진과 주사전자현미경(SEM) 사진이며, 도 1a의 타이타늄 합금에서 Equiaxed α는 등방향성 재질을 나타내며, intergraular β는 경계조직을 나타낸다.1A and 1B are optical micrographs and scanning electron microscopy (SEM) photographs of Ti-6Al-4V, a titanium alloy applied in an embodiment of the present invention, and ceramic powder, a VC (vanadium carbide) component, used as a solvent, respectively. In the titanium alloy of FIG. 1A, Equiaxed α represents an isotropic material, and intergraular β represents a boundary structure.

도 2a 내지 도 2d는 고에너지 가속 전자빔을 투사하여 다층 표면복합재료를 제조하는 과정을 설명하는 도면이다.2A to 2D illustrate a process of manufacturing a multilayer surface composite material by projecting a high energy accelerated electron beam.

먼저 도 2a에 도시한 바와 같이 경도가 2000 내지 3000kg/mm2으로 높고, 내열성, 내마모성, 내부식성이 우수한 VC 세라믹 분말(용융온도; 2700)을 용제인 CaF2(용융온도; 1423)분말과 6 : 4의 비율로 혼합한 분말혼합체를 타이타늄합금(12)상에 도포한다. 여기서, 모재로 사용된 타이타늄 합금(12)은 항공기 구조용 재료 및 국방재료로 가장 널리 사용되는 Ti-6Al-4V 합금을 적용하였으며, 이의 화학조성은 표 1과 같다.First, as shown in FIG. 2A, VC ceramic powder having a high hardness of 2000 to 3000 kg / mm 2 and excellent heat resistance, abrasion resistance, and corrosion resistance (melting temperature; 2700). ) As a solvent CaF 2 (melting temperature; 1423 A powder mixture mixed with powder in a ratio of 6: 4 is applied onto the titanium alloy 12. Here, the titanium alloy 12 used as the base material was applied to the Ti-6Al-4V alloy most widely used as aircraft structural materials and defense materials, the chemical composition thereof is shown in Table 1.

원소element AlAl VV FeFe OO CC NN HH TiTi 함량(중량 %)Content (% by weight) 6.276.27 3.283.28 0.170.17 0.170.17 0.010.01 O.O1O.O1 0.00060.0006 BAL.BAL.

도 2b에 도시된 바와 같이 고에너지의 전자가속기를 이용하여 가속전자빔을 모재인 타이타늄 합금(12)에 도포된 VC(바나듐 카바이드)+CaF2(칼슘 플로라이드)의 VC/용제혼합체(10)에 투사한다. 고정된 고에너지 전가가속빔 내에 타이타늄 합금(12)이 좌측 방향으로 일정한 속도로 이동하게 됨으로써 VC/용제혼합체(10)를 균일하게 투사하게 된다. 전자빔을 가속시켜 얻은 고출력 집속 에너지를 타이타늄 합금에 직접 전달하면 이 에너지는 순간적으로 열에너지로 바뀌게 되어 강력한 열원으로 작용한다.As shown in FIG. 2B, the VC / solvent mixture 10 of VC (vanadium carbide) + CaF 2 (calcium fluoride) applied to the titanium alloy 12, which is the base material, is accelerated using a high energy electron accelerator. Project. The titanium alloy 12 is moved at a constant speed in the left direction in the fixed high energy full acceleration beam to uniformly project the VC / solvent mixture 10. When the high-output focusing energy obtained by accelerating the electron beam is directly transferred to the titanium alloy, the energy is instantly converted into thermal energy, which acts as a powerful heat source.

고에너지 전자가속기의 투사조건은 표 2와 같다.The projection conditions of the high energy electron accelerator are shown in Table 2.

전자빔 투사 변수Electron beam projection parameters 단 층Monolayer 다층(2층)Multilayer (2 layers) 전자 에너지Electronic energy 1.4 MeV1.4 MeV 1.4 MeV1.4 MeV 빔 이동 속도Beam moving speed 2.45 cm/sec2.45 cm / sec 2.45 cm/sec2.45 cm / sec 빔 주사폭Beam scan width 5 cm5 cm 5 cm5 cm 빔 전류Beam current 26 mA26 mA 31 mA31 mA 빔 크기(지름)Beam size (diameter) 1.1 cm1.1 cm 1.1 cm1.1 cm 분위기atmosphere 대기 중Waiting 대기 중Waiting 입열량Heat input 2.73kJ/cm2 2.73kJ / cm 2 3.26 kJ/cm2 3.26 kJ / cm 2

여기서, 타이타늄 합금(12)과 VC/용제 혼합체(10)가 받은 입열량은 빔전력(전자빔 에너지 X 빔전류)에 비례하며, 전자빔 이동속도, 주사폭(scanning width)에 반비례한다. 특정한 재료에 대하여 금속기지의 표면 용융이 일어나기 위해서는 일정량 이상의 입열량이 필요한데, 본 발명의 실시예와 같이 타이타늄 합금과 VC/용제 혼합체를 이용하여 단층의 표면복합층을 형성할 경우는 입열량이 2.73 kJ/cm2, 2층(다층)의 표면복합층을 형성하는 경우는 보다 큰 3.26 kJ/cm2의 입열량이 요구된다.Here, the heat input received by the titanium alloy 12 and the VC / solvent mixture 10 is proportional to the beam power (electron beam energy X beam current), and is inversely proportional to the electron beam moving speed and scanning width. A certain amount of heat input is required in order for the surface melting of the metal base to occur with respect to a specific material. In the case of forming a single surface composite layer using a titanium alloy and a VC / solvent mixture as in the embodiment of the present invention, the heat input is 2.73 When forming the kJ / cm <2> , two-layer (multilayer) surface composite layer, larger heat input amount of 3.26 kJ / cm <2> is calculated | required.

높은 에너지를 가진 가속 전자빔을 VC/용제 혼합분말이 도포된 타이타늄 합금 위에 투사시키면, 우선적으로 용융온도가 낮은 Ti 합금 표면 일부와 용제가 용융되고 VC 세라믹 분말이 용해되면서 짧은 시간 내에 표면복합화가 이루어지게 된다.Projecting a high-energy accelerated electron beam onto a titanium alloy coated with a VC / solvent mixture, preferentially results in surface compounding in a short period of time, with the melting of some of the low alloy temperature Ti alloy and the solvent melting and VC ceramic powder melting. do.

도 2c에 도시된 단층 표면복합재료(18)는 1회 가속전자빔이 투사되면 VC/용제혼합체(10)가 용융되어 기공이나 균열이 없는 약 1.2mm의 단층 표면복합층(16)이 형성되어 이루어진다. 또한, 표면복합층 위에 미도시된 슬래그가 형성되기는 하지만 간단히 제거될 수 있다. 도면의 열영향부는 타이타늄 합금(12)의 표면 및 표면과 인접한 영역에서 고에너지 전자빔의 열에너지에 의해 영향을 받는 부분을 나타낸다.In the single-layer surface composite material 18 shown in FIG. 2C, when the accelerated electron beam is projected, the VC / solvent mixture 10 is melted to form a single-layer surface composite layer 16 of about 1.2 mm without pores or cracks. . In addition, although not shown slag is formed on the surface composite layer can be simply removed. The heat affected zone in the figure shows the portion affected by the thermal energy of the high energy electron beam in the surface of the titanium alloy 12 and in the region adjacent to the surface.

도 2d와 같이 다시 VC 세라믹 분말과 CaF2의 혼합체(10)를 타이타늄 합금(12)에 도포하고 VC/용제혼합체(10)와 타이타늄 합금(12) 사이가 서로 밀착되도록 가압한 후에 고에너지 전자빔을 투사하게 되면, 도 2e와 같이 2층의 다층표면복합층(20)이 형성된 다층표면복합재료(24)가 제조된다. 여기서, 용제 CaF2는 표면복합재료를 제조시에 표면복합층에 산화층의 형성과 기공 및 균열의 발생을 억제하기 위해 적용된다.As shown in FIG. 2D, the mixture 10 of VC ceramic powder and CaF 2 is applied to the titanium alloy 12, and the high energy electron beam is applied after pressurizing the VC / solvent mixture 10 and the titanium alloy 12 to be in close contact with each other. When projecting, a multilayer surface composite material 24 having two multilayer surface composite layers 20 formed as shown in FIG. 2E is produced. Here, the solvent CaF 2 is applied to suppress the formation of the oxide layer and the generation of pores and cracks in the surface composite layer at the time of manufacturing the surface composite material.

표면복합층의 두께는 전자빔 전류의 크기에 비례하는 데, 전자빔이 투과할 수 있는 적층되는 VC 세라믹 분말(10)의 두께의 제한으로 전류를 크게 하면 할수록 경도와 내마모성 향상에 중요한 세라믹 성분 원소의 밀도가 낮아지게 된다. 따라서, 전자빔을 수차례 투사하여 다층으로 표면복합층을 형성할 경우, 표면복합층이 받는 입열량이 증가되어 표면복합층의 미세조직이 균일하게 되고, 세라믹 성분 원소 밀도의 증가로 표면복합층의 세라믹 입자의 부피 분율이 증가하여 더 우수한 경도와 내마모성을 갖는 표면복합층을 형성할 수 있다. 다층의 표면복합층을 제조하는 경우, 도 2c에 도시된 단층 표면복합층(16)보다 두꺼운 1.5mm의 균일한 표면복합층(20)이 형성된다.The thickness of the surface composite layer is proportional to the magnitude of the electron beam current, and the density of the ceramic component important for improving hardness and wear resistance is increased as the current is increased due to the limitation of the thickness of the laminated VC ceramic powder 10 through which the electron beam can pass. Will be lowered. Therefore, in the case of forming the surface composite layer in multiple layers by projecting the electron beam several times, the heat input amount received by the surface composite layer is increased, so that the microstructure of the surface composite layer is uniform, and the density of the ceramic component element is increased. The volume fraction of the ceramic particles may be increased to form a surface composite layer having better hardness and wear resistance. In the case of manufacturing the multilayer surface composite layer, a 1.5 mm uniform surface composite layer 20 thicker than the single layer surface composite layer 16 shown in FIG. 2C is formed.

도 3a 및 도 3b는 도 2c 및 도 2e에 도시된 각각의 단층 및 2층 표면복합재료를 전자빔 투사방향과 평행한 절단면의 저배율 광학사진이다.3A and 3B are low magnification optical photographs of cut planes parallel to the electron beam projection direction of the single layer and two layer surface composite materials shown in FIGS. 2C and 2E, respectively.

고에너지 전자빔의 투사방향과 평행하게 절단하고 연마하여 Kroll용액(100㎖ H2O + 10㎖ HNO3+ 5㎖ HF)으로 에칭하여 관찰하면 도 3a 및 도 3b에 도시된 바와 같이 표면복합층, 열영향부, 모재인 타이타늄 합금으로 구성되어 있는 것을 알 수 있다.When cut and polished in parallel with the projection direction of the high energy electron beam and etched with a Kroll solution (100 ml H 2 O + 10 ml HNO 3 + 5 ml HF), the surface composite layer as shown in FIGS. 3a and 3b, It turns out that it is comprised from the heat-affected part and the titanium alloy which is a base material.

도 4a는 단층 표면복합층의 미세조직을 보여주는 광학현미경 사진으로서, 미처 녹지 않은 VC 세라믹재질의 덩어리와 약 23 vol. %의 초정 및 공정(Ti, V)C의 조직이 β- Ti과 마르텐사이트 기지에 불균일하게 분포하고 있음을 알 수 있다. 또한, 도 4a의 사진을 통하여 구별되지는 않지만, 단층 표면복합층에서는 기지 조성의 불균일로 인하여 일부 기지는 마르텐사이트로 이루어져 있음을 알 수 있었다.Figure 4a is an optical micrograph showing the microstructure of the single-layer surface composite layer, the lump of undissolved VC ceramic material and about 23 vol. It can be seen that the percentage of primary and process (Ti, V) C structures are unevenly distributed between β-Ti and martensite matrix. In addition, although it is not distinguished from the photograph of FIG. 4A, it can be seen that in the single-layer surface composite layer, some substrates are composed of martensite due to the nonuniformity of the matrix composition.

반면 도 4b의 광학현미경 사진에서 보이는 바와 같이 다층(2층)으로 제조된 표면복합층의 미세조직에는 VC 세라믹의 덩어리가 존재하지 않으며, 약 40 vol. %의 초정 및 공정(Ti, V)C의 조직이 다량 분포하고 있음을 알 수 있다. 또한, 다층(2층) 표면복합층의 탄화물의 크기가 단층 표면복합층에 비해 약 2배 정도 큰값(4.5㎛)으로 나타나고 있으며, CaF2용제의 사용으로 도 4a 및 도 4b에 도시된 바와 같이 두 타이타늄 합금의 표면복합층에서는 기공이나 균열이 거의 관찰되지 않음을 알 수 있다.On the other hand, as shown in the optical microscope picture of FIG. It can be seen that a large amount of the structure of the primary and process (Ti, V) C of% is distributed. In addition, the carbide size of the multilayer (two-layer) surface composite layer is shown to be about two times larger (4.5 μm) than that of the single-layer surface composite layer, and as shown in FIGS. 4A and 4B using CaF 2 solvent. It can be seen that no pores or cracks are observed in the surface composite layer of the two titanium alloys.

가속전자빔이 투사된 타이타늄 합금의 표면부를 투사방향과 평행하게 절단한 후, 시편 표면으로부터의 깊이에 따른 미세경도의 변화를 조사하고, 긁힘 마모시험을 Dry sand/rubber wheel abrasive wear 테스터를 사용하여 측정하였다. 도 5a 및 도 5b는 본 발명의 표면복합재료를 제조한 후에 가속전자빔 투사 전후의 깊이에 따른 미세경도의 변화를 비커스(Vickers) 미소경도기(하중 500gf)로 측정하여 도시한 그래프이다.After cutting the surface of the titanium alloy projected by the accelerated electron beam in parallel with the projection direction, the change of the microhardness according to the depth from the surface of the specimen was examined, and the scratch wear test was measured using a dry sand / rubber wheel abrasive wear tester. It was. 5A and 5B are graphs illustrating the change in microhardness according to the depth before and after the acceleration electron beam projection after the surface composite material of the present invention is measured with a Vickers microhardness (load 500gf).

도 6은 본 발명에 따른 표면 복합재료를 제조한 후에 표면층의 마모량을 도시한 그래프이며, 내마모 시험은 직경 0.5mm, 가압 하중 20kg, 마모거리 600 m의 마모시험조건으로 ASTM Standard G65에 의거하여 마모 시험한 후 마모시편의 무게감량으로 내마모성을 비교 평가하였다.6 is a graph showing the amount of wear of the surface layer after manufacturing the surface composite material according to the present invention, the wear resistance test is based on the ASTM standard G65 under the wear test conditions of 0.5mm diameter, 20kg pressure, 600m wear distance After the abrasion test, the wear resistance was compared and evaluated by the weight loss of the wear specimen.

2층 표면복합층의 경도는 원 모재인 타이타늄 합금의 330 VHN으로부터 503 VHN으로 1.5배 증가되었으며, 내마모성은 모재인 타이타늄 합금에 비하여 약 8배 향상되며, 단층 표면복합층에 비하여 2배 가량 향상되었다. 도 4a 및 도 4b에 도시된 미세조직과 도 5a 및 도 5b의 미세경도 그래프를 통하여 알 수 있는 바와 같이 2층 표면복합층의 내마모성의 향상은 40% 이상 형성된 2000VHN 이상의 고경도의 (Ti, V)C 탄화물에 의해 이루어지며, 바나듐(V)이 타이타늄 기지에 다량 고용된 β-Ti 기지의 경도 향상에 기인함을 알 수 있다. 또한, 내마모성이 대략 8배 향상됨으로써 내마모성이 요구되는 부분에 사용이 제한되었던 영역에서의 타이타늄 합금의 사용이 가능하다.The hardness of the two-layer surface composite layer was increased 1.5 times from 330 VHN of the base titanium alloy to 503 VHN, and the abrasion resistance was improved by eight times compared to that of the base titanium alloy, and about twice the improvement of the single layer surface composite layer. . As can be seen from the microstructures shown in FIGS. 4A and 4B and the microhardness graphs of FIGS. 5A and 5B, the improvement in abrasion resistance of the two-layered surface composite layer is higher than 2000 VHN formed of high hardness (Ti, V It is made of) C carbide, it can be seen that the vanadium (V) due to the hardness improvement of the β-Ti matrix dissolved in a large amount of titanium substrate. In addition, the abrasion resistance is improved approximately eight times, thereby enabling the use of titanium alloys in areas where use has been restricted in areas where abrasion resistance is required.

상기 실시예에서는 단층 및 2층 표면복합층을 예시하였으나 VC 세라믹 분말과 용제의 복합체 도포와 고에너지 전자빔 투사를 반복함으로써 2층보다 많은 다층의 표면복합층을 형성할 수도 있다.In the above embodiment, a single layer and a two-layer surface composite layer are exemplified, but more than two layers may be formed by repeating the application of the VC ceramic powder and the solvent and the high energy electron beam projection.

이상, 본 발명의 바람직한 실시예에 대하여 상세히 기술하였으나 본 발명이 속하는 기술 분야에 있어서 통상의 지식을 가진 자가 본 발명의 기술적 사상 또는 특징으로부터 이탈하지 않는 범위로 다른 여러 형태로 실시할 수 있음은 물론이다.As described above, preferred embodiments of the present invention have been described in detail, but those skilled in the art may implement the present invention in various forms without departing from the spirit or features of the present invention. to be.

본 발명에 의하면 고에너지 가속전자빔 투사방법은 전자를 가속시켜 높은 에너지를 갖는 가속전자빔을 이용함으로써 대기 중에서의 전자빔 투과가 가능하고, 제조공정이 간단하며, 열효율이 대략 80%로 매우 높아서 시간과 비용이 적게 들며, 연속적으로 표면복합재료를 제조를 할 수 있다. 또한, 균일한 가열과 냉각이 이루어지므로 기공이나 균열이 거의 형성되지 않으며, 재료가 가열되는 시간이 매우 짧기 때문에 재료 표면의 산화를 방지할 수 있다는 이점이 있다. 또한 표면복합층을 다층으로 제조함으로써 미세조직을 보다 균일하게 하고 내마모성과 표면물성을 크게 향상시킬 수 있다.According to the present invention, the high-energy accelerated electron beam projection method accelerates electrons and uses high-energy accelerated electron beams to allow electron beam transmission in the atmosphere, manufacturing process is simple, and thermal efficiency is about 80%. It is low in cost and can manufacture surface composite material continuously. In addition, since uniform heating and cooling is performed, almost no pores or cracks are formed, and the material is heated for a short time, thereby preventing oxidation of the surface of the material. In addition, by manufacturing the surface composite layer in multiple layers, it is possible to make the microstructure more uniform and to greatly improve wear resistance and surface properties.

Claims (5)

바나듐 카바이드(VC)의 세라믹분말과 칼슘플로라이드(CaF2)용제가 혼합된 혼합체를 타이타늄 합금상에 도포하는 제1단계;A first step of applying a mixture of a ceramic powder of vanadium carbide (VC) and a calcium fluoride (CaF 2 ) solvent onto a titanium alloy; 상기 혼합체를 상기 타이타늄 합금에 밀착되도록 가압하는 제2단계; 및Pressurizing the mixture to be in close contact with the titanium alloy; And 상기 혼합체가 도포된 면에 고에너지 전자빔으로 균등하게 투사하여 상기 타이타늄 합금 상에 표면복합층을 형성하는 제3단계;를 포함함을 특징으로 하는 고에너지 전자빔을 이용한 표면복합재료 제조 방법.And a third step of forming a surface composite layer on the titanium alloy by uniformly projecting a high energy electron beam onto the surface on which the mixture is applied. 2. 제1항에 있어서, 상기 제1단계 내지 3단계를 1회 이상 반복하여 다층의 표면복합층을 형성하는 단계를 더 포함함을 특징으로 하는 고에너지 전자빔을 이용한 표면복합재료 제조 방법.The method of claim 1, further comprising repeating the first to third steps one or more times to form a multi-layered surface composite layer. 제1항에 있어서, 상기 타이타늄 합금은 Ti-6Al-4V임을 특징으로 하는 고에너지 전자빔을 이용한 표면복합재료 제조 방법.The method of claim 1, wherein the titanium alloy is Ti-6Al-4V. 제 1항에 있어서, 상기 혼합체에서 VC세라믹 분말과 용제인 CaF2의 비율이 6 : 4임을 특징으로 하는 고에너지 전자빔을 이용한 표면복합재료 제조 방법.The method of manufacturing a surface composite material using a high energy electron beam according to claim 1, wherein the ratio of CaF 2 to VC ceramic powder and solvent in the mixture is 6: 4. 제 1항에 있어서, 상기 고에너지 전자빔의 전자에너지는 1.4 MeV임을 특징으로 하는 전자빔을 이용한 표면복합재료 제조 방법.The method of claim 1, wherein the electron energy of the high energy electron beam is 1.4 MeV.
KR1020010081122A 2001-12-19 2001-12-19 Method for manufacturing surface composite, using high energy accelerated electron beam KR20030050637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010081122A KR20030050637A (en) 2001-12-19 2001-12-19 Method for manufacturing surface composite, using high energy accelerated electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010081122A KR20030050637A (en) 2001-12-19 2001-12-19 Method for manufacturing surface composite, using high energy accelerated electron beam

Publications (1)

Publication Number Publication Date
KR20030050637A true KR20030050637A (en) 2003-06-25

Family

ID=29576348

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010081122A KR20030050637A (en) 2001-12-19 2001-12-19 Method for manufacturing surface composite, using high energy accelerated electron beam

Country Status (1)

Country Link
KR (1) KR20030050637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621925B1 (en) * 2004-08-10 2006-09-14 학교법인 포항공과대학교 Fabrication of surface composite using self-fluxing ceramic powder
KR100699277B1 (en) * 2005-06-07 2007-03-27 학교법인 포항공과대학교 Process for preparing carbon steel surface alloys by using boride ceramic powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451508A (en) * 1982-06-28 1984-05-29 Union Carbide Corporation Hard facing of metal substrates using material containing VC and improved flux compositions therefor
JPH11140622A (en) * 1997-11-10 1999-05-25 Agency Of Ind Science & Technol Method of hardening surface of titanium alloy
KR20000059377A (en) * 1999-03-03 2000-10-05 정명식 Method for formation Surface-alloying layer using high energy electron beam
KR20000067608A (en) * 1999-04-30 2000-11-25 정명식 Method for alloying surfce of carbon steel with vc
KR20020084344A (en) * 2001-04-30 2002-11-07 학교법인 포항공과대학교 Method of manufacturing stainless steel composites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451508A (en) * 1982-06-28 1984-05-29 Union Carbide Corporation Hard facing of metal substrates using material containing VC and improved flux compositions therefor
JPH11140622A (en) * 1997-11-10 1999-05-25 Agency Of Ind Science & Technol Method of hardening surface of titanium alloy
KR20000059377A (en) * 1999-03-03 2000-10-05 정명식 Method for formation Surface-alloying layer using high energy electron beam
KR20000067608A (en) * 1999-04-30 2000-11-25 정명식 Method for alloying surfce of carbon steel with vc
KR20020084344A (en) * 2001-04-30 2002-11-07 학교법인 포항공과대학교 Method of manufacturing stainless steel composites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621925B1 (en) * 2004-08-10 2006-09-14 학교법인 포항공과대학교 Fabrication of surface composite using self-fluxing ceramic powder
KR100699277B1 (en) * 2005-06-07 2007-03-27 학교법인 포항공과대학교 Process for preparing carbon steel surface alloys by using boride ceramic powder

Similar Documents

Publication Publication Date Title
KR102013391B1 (en) Roughening method of base material, surface treatment method of base material, manufacturing method of thermal spray coating member and thermal spray coating member
JP5324029B2 (en) Ceramic coating for semiconductor processing equipment
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
JP4502475B2 (en) Hard coating, wear-resistant member and method for producing the same
CN108780750B (en) Component for semiconductor manufacturing device
JP5001323B2 (en) White yttrium oxide spray coating surface modification method and yttrium oxide spray coating coating member
JP2006118053A (en) Member for semiconductor fabrication equipment
KR20080028498A (en) Structural member coated with spray coating film excellent in thermal emission properties and the like, and method for production thereof
JP2007217779A (en) Ceramic thermal spray coating member excellent in heat radiation property or the like and its production method
CN107849677B (en) Method for producing surface-modified member
KR100712612B1 (en) Surface composite and fabrication method of the same
KR20030050637A (en) Method for manufacturing surface composite, using high energy accelerated electron beam
Ibrahim et al. Excimer laser surface treatment of plasma sprayed alumina–13% titania coatings
KR100549997B1 (en) A fabrication method of amorphous surface composites by high energy accelerated electron beam
JPS61113755A (en) Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance
JP2000343240A (en) Solid-state diffusion bonded product with small bonding pressure, and its manufacture
JP2012136782A (en) Method for modifying surface of white yttrium oxide thermal-sprayed coating, and coated member with yttrium oxide thermal-sprayed coating
KR100400084B1 (en) Method of manufacturing stainless steel composites
JPH0676265B2 (en) Method for producing surface-coated carbon material
KR100307666B1 (en) Method for alloying surfce of carbon steel with vc
KR100266966B1 (en) Process for the preparation of surface alloyed material with tib powder
KR100238953B1 (en) Process for the preparation of functionally gradient material tin on carbon steel
KR100296396B1 (en) Method for formation Surface-alloying layer using high energy electron beam
RU2776119C1 (en) Method for producing structurally gradient powder materials with a metal core and a shell made of metal-oxide ceramics
KR100699277B1 (en) Process for preparing carbon steel surface alloys by using boride ceramic powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application