KR100238953B1 - Process for the preparation of functionally gradient material tin on carbon steel - Google Patents

Process for the preparation of functionally gradient material tin on carbon steel Download PDF

Info

Publication number
KR100238953B1
KR100238953B1 KR1019970000160A KR19970000160A KR100238953B1 KR 100238953 B1 KR100238953 B1 KR 100238953B1 KR 1019970000160 A KR1019970000160 A KR 1019970000160A KR 19970000160 A KR19970000160 A KR 19970000160A KR 100238953 B1 KR100238953 B1 KR 100238953B1
Authority
KR
South Korea
Prior art keywords
tin
carbon steel
solvent
electron beam
functional material
Prior art date
Application number
KR1019970000160A
Other languages
Korean (ko)
Other versions
KR19980065273A (en
Inventor
이성학
서동우
오승찬
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019970000160A priority Critical patent/KR100238953B1/en
Publication of KR19980065273A publication Critical patent/KR19980065273A/en
Application granted granted Critical
Publication of KR100238953B1 publication Critical patent/KR100238953B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides

Abstract

본 발명은 탄소강 재료의 표면에 TiN 분말 또는 TiN 성분을 포함하는 세라믹 분말을 도포, 가압 후 가속전자빔을 주사하는 것을 포함하는 TiN/탄소강 경사기능재료의 제조하는 방법에 관한 것으로, 본 발명에 의하면 대기중에서도 작업이 가능하고 연속적인 작업을 할 수 있어 제조공정을 단순화시킬 수 있다. 또한 용제의 첨가로 제조시 생기는 기공이나 균열을 방지할 수 있는 이점이 있다.The present invention relates to a method for producing a TiN / carbon steel gradient functional material comprising applying TiN powder or a ceramic powder containing a TiN component to a surface of a carbon steel material and scanning the accelerated electron beam after pressing. Among other things, it is possible to work continuously and to simplify the manufacturing process. In addition, there is an advantage that can prevent the pores and cracks generated during the production by the addition of a solvent.

Description

티아이엔/탄소강 경사기능재료의 제조 방법{PROCESS FOR THE PREPARATION OF FUNCTIONALLY GRADIENT MATERIAL TIN ON CARBON STEEL}PROCESS FOR THE PREPARATION OF FUNCTIONALLY GRADIENT MATERIAL TIN ON CARBON STEEL}

본 발명은 가속전자빔을 이용한 TiN/탄소강 경사기능재료(functionally gradient materials)의 제조 방법에 관한 것이다.The present invention relates to a method for producing TiN / carbon steel functionally gradient materials using an accelerated electron beam.

현재까지 알려진 통상적인 경사기능재료의 제조 방법으로는 화학증착법, 물리증착법, 플라즈마 분사코팅법, 확산결합(diffusion bonding), 레이저용접법 등이 있다.Conventional known methods for producing functional materials include chemical vapor deposition, physical vapor deposition, plasma spray coating, diffusion bonding, laser welding, and the like.

이러한 방법들은 대기중에서 작업이 곤란하고, 제조 공정이 복잡하여 많은 시간과 비용이 들며, 연속적인 제조가 어려운 단점을 가지고 있다. 또 소재가 대기분위기에서 장시간 노출되기 때문에 산화층 형성으로 인한 계면결합력의 저하로 재료물성의 향상을 기대하기가 어렵다.These methods have disadvantages of difficulty in working in the air, complicated manufacturing processes, high time and cost, and difficulty in continuous manufacturing. In addition, since the material is exposed to the air for a long time, it is difficult to expect the improvement of material properties due to the decrease of the interfacial bonding force due to the formation of the oxide layer.

이에 본 발명의 목적은 대기중에서도 작업이 가능하고 연속적인 작업을 할 수 있으며 경사기능층의 재료물성을 향상시킬 수 있고 제조시 생기는 기공이나 균열을 방지할 수 있는 TiN/탄소강 경사기능재료의 제조 방법을 제공하는 것이다.Accordingly, an object of the present invention is to produce a TiN / carbon steel gradient functional material capable of working in the air, can be continuous operation, improve the material properties of the gradient functional layer and can prevent pores or cracks generated during manufacturing To provide.

도 1은 본 발명의 실시예에 따라 제조한 TiN/탄소강 경사기능재료의 표면으로부터의 깊이에 따른 Ti 원소 성분의 함량 변화를 도시한 그래프이다.1 is a graph showing the content change of the Ti element component with the depth from the surface of the TiN / carbon steel gradient functional material prepared according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따라 제조한 TiN/탄소강 경사기능재료의 표면으로부터의 깊이에 따른 경도의 변화를 도시한 그래프이다.2 is a graph showing the change in hardness with depth from the surface of the TiN / carbon steel gradient functional material prepared according to an embodiment of the present invention.

상기 목적을 달성하기 위하여 본 발명에서는 탄소강 재료의 표면에 TiN 분말 또는 TiN 성분을 포함하는 세라믹 분말을 도포, 가압 후 가속전자빔을 주사하는 것을 포함하는 TiN/탄소강 경사기능재료의 제조하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a TiN / carbon steel gradient functional material comprising applying a TiN powder or a ceramic powder containing a TiN component to a surface of a carbon steel material and scanning the accelerated electron beam after pressing. .

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 사용되는 경사기능재료의 모재는 일반 탄소강이며 바람직하게는 0.1-0.4 중량%의 탄소 및 미량의 합금 원소를 포함하는 탄소강이다. 이러한 탄소강 재료의 표면에 TiN 분말 또는 TiN 성분이 포함된 세라믹 분말을 도포한다. 경사기능재료로서의 재료물성을 고려하여 경도가 높고, 내열성, 내마모성 및 내부식성이 우수한 TiN 분말 또는 TiN 성분이 포함된 세라믹 분말을 사용한다. 이와 함께 용제(flux)를 혼합하여 사용할 수 있는데, 이 때 용제는 산화층의 형성과 기공 및 급냉 균열의 발생을 억제하는 작용을 하며, Na2B4O7-10H2O이 바람직하다. TiN 분말과 용제의 혼합 비율에 따라 표면 경화효과가 달라지는데, TiN 분말의 함량 비율이 높아지면 경화 효과는 커질 수 있으나 기공, 급냉 균열, TiN 분말의 부분적 용해 및 불균일 혼합등이 발생하고, 용제의 혼합비가 높아지면 경사기능층의 두께는 증가하나 최대 경도값은 감소한다. 그러므로 TiN /용제의 혼합비는 경화효과, 경사기능층의 두께 및 제조 결함의 발생에 크게 영향을 미친다는 것을 알 수 있으며, 혼합체에 대하여 용제가 50 % 이하인 것이 바람직하다.The base material of the inclined functional material used in the present invention is ordinary carbon steel, and preferably carbon steel containing 0.1-0.4% by weight of carbon and trace amounts of alloying elements. TiN powder or ceramic powder containing a TiN component is applied to the surface of the carbon steel material. Considering the material properties as the warp functional material, a TiN powder or a ceramic powder containing a TiN component having high hardness and excellent heat resistance, abrasion resistance, and corrosion resistance is used. In addition, a solvent (flux) can be mixed and used, in which the solvent acts to suppress the formation of an oxide layer and the generation of pores and quench cracks, preferably Na 2 B 4 O 7 -10H 2 O. The surface curing effect varies according to the mixing ratio of the TiN powder and the solvent.As the content ratio of the TiN powder increases, the curing effect may be increased, but porosity, quenching cracks, partial dissolution of the TiN powder, and heterogeneous mixing occur. When is increased, the thickness of the inclined functional layer increases, but the maximum hardness value decreases. Therefore, it can be seen that the mixing ratio of TiN / solvent greatly affects the curing effect, the thickness of the inclined functional layer, and the occurrence of manufacturing defects, and it is preferable that the solvent is 50% or less with respect to the mixture.

제조공정의 단순화를 위해 TiN/용제 혼합시 건식혼합방식을 사용하는 것이 바람직하며, 균일한 밀도를 유지하기 위해 가압하에 탄소강 위에 도포하는 것이 좋다[대한금속학회지, 31권(1993), 921 페이지 등의 문헌 참조].To simplify the manufacturing process, it is preferable to use a dry mixing method when mixing TiN / solvent, and to apply uniform pressure on carbon steel under pressure to maintain uniform density [Korean Journal of Metals, Vol.31 (1993), p. 921, etc. See literature.

상기와 같이 탄소강 재료 위에 TiN 또는 TiN/용제를 도포한 다음 가속전자빔을 사용한다. 고전압 가속기를 사용하면 대기중에서의 작업이 가능하고 연속적으로 제조할 수있다. 전자빔을 가속시켜 얻은 고출력 집속에너지를 재료에 직접 전달하면 이 에너지는 순간적으로 열에너지로 바뀌게 되어 강력한 열원으로 사용할 수 있다. 따라서 높은 에너지를 가진 가속전자빔을 TiN 분말이 도포된 탄소강에 투사시키면, TiN 분말과 탄소강의 표면 일부분이 용융되어 짧은 시간내에 합금화가 이루어지게 된다. 이 때 1.0 내지 2.5 MeV 범위의 가속전자빔을 1-40 cm2/sec의 속도로 주사하는 것이 바람직하며, 특히 3 cm2/sec의 속도가 바람직하다.As described above, TiN or TiN / solvent is coated on the carbon steel material, and then an accelerated electron beam is used. The use of high voltage accelerators makes it possible to work in the atmosphere and to manufacture continuously. When the high-output focusing energy obtained by accelerating the electron beam is directly transmitted to the material, this energy is instantly converted into thermal energy, which can be used as a powerful heat source. Therefore, when the accelerated electron beam having a high energy is projected onto the TiN powder coated carbon steel, the TiN powder and a portion of the surface of the carbon steel are melted and alloyed in a short time. At this time, it is preferable to scan the accelerated electron beam in the range of 1.0 to 2.5 MeV at a speed of 1-40 cm 2 / sec, particularly preferably a speed of 3 cm 2 / sec.

상기와 같이 제조된 경사기능재료의 경사기능층의 Ti 함량은 1-25 %인 것이 바람직하다.The Ti content of the inclined functional layer of the inclined functional material prepared as described above is preferably 1-25%.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited only to the following examples.

실시예Example

화학조성이 다음과 같은 탄소강을 준비하였다.Chemical composition prepared the carbon steel as follows.

원소element CC SiSi MnMn CuCu NiNi CrCr MoMo PP SS FeFe 함량(중량%)Content (% by weight) 0.2800.280 0.1930.193 0.6700.670 0.3660.366 0.1510.151 0.1950.195 0.0110.011 0.0230.023 0.0230.023 나머지Remainder

TiN 분말을 용제인 Na2B4O7-10H2O 분말과 혼합하였으며, 혼합체내의 용제비율을 0, 15, 30 및 50 %로 변화시켜 네 종류의 TiN/용제 혼합체를 제조하였다. TiN/용제 혼합체를 상기 탄소강 판재표면에 약 1 mm 두께로 균일하게 도포시키고 가압한 후 고에너지 전자빔을 투사하여 TiN/탄소강 경사기능재료를 제조하였다. 편의상 0, 15, 30 및 50 %의 용제비율을 갖는 혼합체를 이용한 시편을 각각 샘플 A, B, C 및 D로 지칭하였다. 이 때 사용된 전자빔 가속기는 러시아 버드커 핵물리 연구소의 고전압 전자가속기이며, 전자가속기의 에너지 범위는 1.0-2.5 MeV, 최대 전력은 80 kW, 최대 전자빔 전류는 60 mA, 최대 전자빔 직경은 1.27 cm이었다. 전자빔 투사조건은 빔 전력, 빔 이동속도 등과 같은 공정 변수와 비열, 열전도도 등과 같은 재료변수에 의해 결정되며, 본 연구에서 사용된 빔에너지는 1.4 MeV, 투입전력 5-10 kW, 빔이동속도 3 cm2/sec였다.TiN powder was mixed with Na 2 B 4 O 7 -10H 2 O powder, which was a solvent, and four kinds of TiN / solvent mixtures were prepared by changing solvent ratios in the mixture to 0, 15, 30, and 50%. The TiN / solvent mixture was uniformly applied to the surface of the carbon steel sheet with a thickness of about 1 mm, pressurized, and the TiN / carbon steel gradient functional material was prepared by projecting a high energy electron beam. For convenience, specimens using mixtures having solvent ratios of 0, 15, 30, and 50% were referred to as Samples A, B, C, and D, respectively. The electron beam accelerator used at this time was the high voltage electron accelerator of the Bucharer Institute of Nuclear Physics, the energy range of the electron accelerator was 1.0-2.5 MeV, the maximum power was 80 kW, the maximum electron beam current was 60 mA, and the maximum electron beam diameter was 1.27 cm. . The electron beam projection conditions are determined by process variables such as beam power, beam travel speed, and material variables such as specific heat and thermal conductivity. The beam energy used in this study is 1.4 MeV, input power 5-10 kW, beam travel speed 3 cm 2 / sec.

전자빔이 투사된 시편의 표면부를 투사방향과 평행하게 절단한 후 시편표면으로부터의 거리에 따라 화학조성과 미세경도의 변화를 조사하였다. 화학조성을 주사전자현미경에 장착된 에너지분산분석기를 이용하여 시편표면으로부터의 거리에 따라 화학조성과 미세경도의 변화를 조사하였다. 화학조성을 주사전자현미경에 장착된 에너지분산분석기를 이용하여 시편표면으로부터의 거리에 따라 정량적으로 측정하였으며 그 결과를 도 1에 나타내었다. 도 1에서 볼 수 있듯이 Ti 원소의 성분은 투사층의 밑으로 내려갈수록 감소된다. 또한 투사전후의 미세경도의 변화를 비커스 미소경도기로 측정하였으며 이를 도 2에 나타내었다. 도 2에서 알 수 있듯이 본 발명에 따르면 용제 첨가량에 따라 경사기능층의 두께가 증가함을 알 수 있으며 경사기능층의 경도 변화가 거의 직선적으로 변화됨을 알 수 있다.After cutting the surface portion of the specimen projected by the electron beam in parallel with the projection direction, the change of chemical composition and microhardness was investigated according to the distance from the surface of the specimen. The chemical composition was investigated by changing the chemical composition and microhardness according to the distance from the surface of the specimen using an energy dispersive analyzer mounted on the scanning electron microscope. The chemical composition was quantitatively measured according to the distance from the surface of the specimen using an energy dispersing analyzer mounted on the scanning electron microscope. The results are shown in FIG. As can be seen in FIG. 1, the component of the Ti element decreases downwards under the projection layer. In addition, the change of the microhardness before and after the projection was measured with a Vickers microhardness, which is shown in FIG. 2. As can be seen in Figure 2 according to the present invention it can be seen that the thickness of the inclined functional layer increases according to the amount of solvent added, the hardness change of the inclined functional layer can be seen to change almost linearly.

도 1과 도 2로부터 알 수 있는 것처럼 TiN 분말과 탄소강의 일부가 용융된 후 혼합됨으로써 표면으로부터의 깊이에 따라 Ti 성분이 감소되며 도 2에서 보여지는 것처럼 표면 경도층의 경도는 원래 기지에 비해 2-3 배 증가하고 표면으로부터의 거리에 따라 경도값이 점차 감소하는 경사기능재료를 제조할 수 있다.As can be seen from FIG. 1 and FIG. 2, the TiN powder and a portion of the carbon steel are melted and mixed to reduce the Ti component according to the depth from the surface. As shown in FIG. 2, the hardness of the surface hardness layer is 2 compared to the original matrix. It is possible to produce warp functional material which increases by -3 times and gradually decreases the hardness value with distance from the surface.

이러한 가속전자빔 투사에 의한 경사기능재료 제조는 일반적인 제조방법과는 달리 단순한 공정으로 대기중에서 연속적인 작업이 가능하고 이로 인해 제조원가 절감이 예상되어 경사기능재료의 사용범위를 넓힐 수 있다.Unlike the general manufacturing method, manufacturing the inclined functional material by the accelerated electron beam projection is a simple process, which enables continuous operation in the air, and thus, manufacturing cost is expected to be reduced, thereby widening the use range of the inclined functional material.

Claims (5)

대기 조건하에서 탄소강 재료의 표면에 TiN 분말 또는 TiN 성분을 포함하는 세라믹 분말을 도포하고 가압한 후, 도포면에 대해 가속전자빔을 주사하는 것을 포함하는, TiN/탄소강 경사기능재료의 제조방법.A method of manufacturing a TiN / carbon steel gradient functional material, comprising applying TiN powder or a ceramic powder containing a TiN component to a surface of a carbon steel material under atmospheric conditions, and then pressurizing and then scanning an accelerated electron beam to the coated surface. 제 1 항에 있어서,The method of claim 1, 상기 TiN 분말 또는 TiN 성분을 포함하는 세라믹 분말은 용제와의 혼합체로 만들어 도포하고 이때 용제는 상기 혼합체에 대하여 50 % 이하로 혼합하는 것을 특징으로 하는 방법.The TiN powder or the ceramic powder containing the TiN component is made of a mixture with a solvent and applied, wherein the solvent is mixed to 50% or less with respect to the mixture. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 탄소강 재료가 0.1-0.4 중량%의 탄소를 포함하는 것을 특징으로 하는 방법.Wherein said carbon steel material comprises 0.1-0.4 weight percent carbon. 제 2 항에 있어서,The method of claim 2, 상기 TiN 분말 또는 TiN 성분을 포함하는 세라믹 분말에 용제를 건식혼합하여 혼합체를 형성하는 것을 특징으로 하는 방법.And dry mixing the solvent with the TiN powder or the ceramic powder containing the TiN component to form a mixture. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 경사기능재료의 경사기능층의 Ti 함량이 1-25 %인 것을 특징으로 하는 방법.Ti content of the inclined functional layer of the inclined functional material is 1-25%.
KR1019970000160A 1997-01-07 1997-01-07 Process for the preparation of functionally gradient material tin on carbon steel KR100238953B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970000160A KR100238953B1 (en) 1997-01-07 1997-01-07 Process for the preparation of functionally gradient material tin on carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970000160A KR100238953B1 (en) 1997-01-07 1997-01-07 Process for the preparation of functionally gradient material tin on carbon steel

Publications (2)

Publication Number Publication Date
KR19980065273A KR19980065273A (en) 1998-10-15
KR100238953B1 true KR100238953B1 (en) 2000-01-15

Family

ID=19494173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970000160A KR100238953B1 (en) 1997-01-07 1997-01-07 Process for the preparation of functionally gradient material tin on carbon steel

Country Status (1)

Country Link
KR (1) KR100238953B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003521A (en) 2014-07-01 2016-01-11 부산대학교 산학협력단 Manufacturing methods of functionally graded objects Induced by Direct Laser Melting of Compositionally Selected Metallic Powders and freedom in 3D design

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699277B1 (en) * 2005-06-07 2007-03-27 학교법인 포항공과대학교 Process for preparing carbon steel surface alloys by using boride ceramic powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125557A (en) * 1991-10-30 1993-05-21 Kobe Steel Ltd Coating method using laser beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125557A (en) * 1991-10-30 1993-05-21 Kobe Steel Ltd Coating method using laser beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003521A (en) 2014-07-01 2016-01-11 부산대학교 산학협력단 Manufacturing methods of functionally graded objects Induced by Direct Laser Melting of Compositionally Selected Metallic Powders and freedom in 3D design

Also Published As

Publication number Publication date
KR19980065273A (en) 1998-10-15

Similar Documents

Publication Publication Date Title
CN1196810C (en) Method for depositing paint-coat of metal surface, especially for gradient paint-coat
JPS5913064A (en) Formation of hard anti-wear surface layer on metal material
RU2447012C1 (en) Method of producing steel nanostructured surface by laser-induced plasma processing
Morimoto et al. Some properties of boronized layers on steels with direct diode laser
KR100238953B1 (en) Process for the preparation of functionally gradient material tin on carbon steel
KR100712612B1 (en) Surface composite and fabrication method of the same
CN111074271A (en) Method for obtaining high-hardness NbTiZrx refractory intermediate entropy alloy coating on surface of zirconium alloy
KR100266966B1 (en) Process for the preparation of surface alloyed material with tib powder
KR100400084B1 (en) Method of manufacturing stainless steel composites
KR100307666B1 (en) Method for alloying surfce of carbon steel with vc
CN112962095A (en) Method for preparing ceramic-reinforced laser-cladding refractory high-entropy alloy coating on surface of titanium alloy and application
KR100639117B1 (en) Wear resistant thermal spray coating compound with high electrical conductivity and the method thereof
KR100296396B1 (en) Method for formation Surface-alloying layer using high energy electron beam
Kang et al. Plasma diode electron beam heat treatment of cast iron: effect of direct preheating
JP3722088B2 (en) Aluminum surface hardening method
Piekoszewski et al. Introduction of nitrogen into metals by high intensity pulsed ion beams
KR0160012B1 (en) Process for hardening the surface of carbon steel by irradiating accelerated electron beam
RU2786263C1 (en) Method for laser alloying of tool steel with boron carbide and aluminum powders
KR20030050637A (en) Method for manufacturing surface composite, using high energy accelerated electron beam
Zimogliadova et al. Structure and mechanical properties of NiCrSiB coatings, reinforced by hard Nb-based particles, cladded by electron beam, revealed in the air
Bolotov et al. APPLICATION OF GLOW DISCHARGE PLASMA FOR CLEANING (ACTIVATION) AND MODIFICATION OF METAL SURFACES WHILE WELDING, BRAZING, AND COATING DEPOSITION.
KR100699277B1 (en) Process for preparing carbon steel surface alloys by using boride ceramic powder
Mishigdorzhiyn et al. Surface Alloying of 3Cr2V8F and 5CrNM Die Steels by Means of an Electron Beam in Vacuum with B4C and Al Treatment Pastes
KR20050080566A (en) A fabrication method of amorphous surface composites by high energy accelerated electron beam and amorphous surface composites fabricated by the method
Vanhille et al. Electron beam and laser surface alloying of Al-Si base alloys

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081020

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee