KR0160012B1 - Process for hardening the surface of carbon steel by irradiating accelerated electron beam - Google Patents

Process for hardening the surface of carbon steel by irradiating accelerated electron beam Download PDF

Info

Publication number
KR0160012B1
KR0160012B1 KR1019950000568A KR19950000568A KR0160012B1 KR 0160012 B1 KR0160012 B1 KR 0160012B1 KR 1019950000568 A KR1019950000568 A KR 1019950000568A KR 19950000568 A KR19950000568 A KR 19950000568A KR 0160012 B1 KR0160012 B1 KR 0160012B1
Authority
KR
South Korea
Prior art keywords
electron beam
hardening
carbon steel
present
carbon
Prior art date
Application number
KR1019950000568A
Other languages
Korean (ko)
Other versions
KR960029485A (en
Inventor
이성학
구양모
Original Assignee
정명식
학교법인포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인포항공과대학교 filed Critical 정명식
Priority to KR1019950000568A priority Critical patent/KR0160012B1/en
Publication of KR960029485A publication Critical patent/KR960029485A/en
Application granted granted Critical
Publication of KR0160012B1 publication Critical patent/KR0160012B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

본 발명은 0.18 내지 0.4 중량%의 탄소 및 미량의 합금 원소를 포함하는 탄소강 재료의 표면에 1.0 내지 2.5 Mev 범위의 전자빔을 20 내지 40㎠/sec 의 속도로 주사하여 재료 표면을 경화시키는 방법에 관한 것이며, 본 발명에 의하면, 대기중에서도 작업이 가능하고, 균일한 가열과 냉각이 이루어지므로 기공이나 균열이 거의 형성되지 않으며, 시료가 가열되는 시간이 매우 짧기 때문에 재료 표면의 산화를 막을 수 있을 뿐만 아니라 표면이 경화되는 이외에 재료의 내부 조직에 존재하던 철 성분과 합금을 이루는 나머지 합금 성분이 재료의 표면으로 이동하여 표면 경화 효과가 훨씬 커진다는 잇점이 있다.The present invention relates to a method of curing a material surface by scanning an electron beam in the range of 1.0 to 2.5 Mev at a rate of 20 to 40 cm 2 / sec to a surface of a carbon steel material containing 0.18 to 0.4 wt% carbon and a trace amount of alloying elements. According to the present invention, it is possible to work in the atmosphere, uniform heating and cooling is performed, so that little pores or cracks are formed, and because the sample is heated for a short time, it is possible to prevent oxidation of the material surface. In addition to the hardening of the surface, the remaining alloying elements, which form alloys with the iron components present in the internal structure of the material, migrate to the surface of the material, which makes the surface hardening effect much larger.

Description

전자빔을 이용한 탄소강 재료의 표면 경화 방법Surface hardening method of carbon steel material using electron beam

제1도는 본 발명의 실시예 1에 따라 전자빔을 주사한 후 표면으로부터의 깊이에 따른 경도의 변화를 도시한 그래프이다.1 is a graph showing a change in hardness with depth from a surface after scanning an electron beam according to Embodiment 1 of the present invention.

본 발명은 전자빔을 이용한 탄소강 재료의 표면 경화 방법, 구체적으로 탄소강 재료의 표면에 1.0 내지 2.5Mev 범위의 전자빔을 20-40㎠/sec의 속도로 조사하여 재료 표면을 경화시키는 방법에 관한 것이다.The present invention relates to a method of hardening a surface of a carbon steel material using an electron beam, specifically a method of curing a material surface by irradiating an electron beam in the range of 1.0 to 2.5 Mev at a rate of 20-40 cm 2 / sec to the surface of the carbon steel material.

현재까지 알려진 철강 재료의 통상적인 표면 경화법으로는 화염 경화법, 고주파유도 경화법, 레이저 경화법 등이 있다.Conventional surface hardening methods of steel materials known to date include flame hardening, high frequency induction hardening, laser hardening and the like.

한편 전자빔을 가속시켜 얻은 고출력 집속 에너지를 재료에 직접 전달하면 이 에너지는 순간적으로 열에너지로 바뀌게 되어 강력한 열원으로 사용할 수 있음이 공지되어 있으며, 따라서 높은 에너지를 가진 전자빔을 철강 재료에 투사시키면 재료의 표면을 용이하게 경화시킬 수 있으며, 이는 철강 재료의 탄소 및 합금 원소의 화학 조성, 전자빔 주사 방향, 투사시의 입열량 등에 따라 달라질 수 있다는 사실이 최근 알려졌다. (참고 문헌: 대한금속학회 지, 31권 (1993), 921 페이지 등).On the other hand, it is known that if the high-output focusing energy obtained by accelerating the electron beam is directly transmitted to the material, the energy is instantly converted into thermal energy and used as a powerful heat source. Therefore, when the electron beam with high energy is projected on the steel material, the surface of the material It can be easily cured, and it has been recently known that this may vary depending on the chemical composition of carbon and alloy elements of the steel material, the electron beam scanning direction, the amount of heat input during projection, and the like. (Reference literature: Journal of the Korean Metal Society, vol. 31 (1993), p. 921).

따라서 본 발명자들은 제조원가가 적게 들고 대량생산이 가능한 철강 합금 재료의 가속전자빔에 의한 표면처리법에 대해 계속 연구한 결과 특정 범위의 탄소 함량을 가진 탄소강 재료의 표면에 특정량의 전자빔을 조사하여 재료 표면을 경화시키면 표면이 경화되는 이외에 재료의 내부 조직에 존재하던 철 성분과 합금을 이루는 나머지 합금 성분이 재료의 표면으로 이동하여 표면 경화 효과가 훨씬 커짐을 알고 본 발명을 완성하게 되었다.Therefore, the present inventors have continued to study the surface treatment method of the accelerated electron beam of the steel alloy material, which can be produced at a low cost and mass production, and irradiated a specific amount of electron beam on the surface of the carbon steel material having a specific range of carbon content, In addition to curing the surface, the present invention completed the present invention, knowing that the remaining alloying components of the alloy with the iron component present in the internal structure of the material were moved to the surface of the material, and the surface curing effect was much greater.

따라서, 본 발명의 목적은 탄소 함량이 0.18 내지 0.4중량% 범위인 탄소강 재료의 표면에 1.0 내지 2.5 MeV 범위의 전자빔을 20-40㎠/sec의 속도로 주사하여 재료 표면을 경화시키는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method of curing a material surface by injecting an electron beam in the range of 1.0 to 2.5 MeV at a rate of 20-40 cm 2 / sec to a surface of a carbon steel material having a carbon content in the range of 0.18 to 0.4% by weight. will be.

전자빔 주사에 의한 표면 경화의 효과는 탄소강내의 C, Ti, V 등과 같은 합금 원소의 양 및 가속전자빔의 주사 속도 변화에 의한 입열량의 변화에 주로 의존한다. 일반적으로 재료내의 탄소량이 증가할수록 경화 효과는 커질 수 있으나, 어느 한도 이상에서는 급격한 냉각에 의해 균열 (quench crack)이 생길 수 있으므로 이를 방지할 수 있는 전자빔 가속 조건을 사용하여야 한다 또한, 탄소외의 원소 중 V, Ti 등과 같은 강한 탄화물 형성 원소들은 기지내에 미량 첨가되어도 가속 전자빔 투사층에서는 그 양이 크게 증가하여 많은 미세한 탄화물을 형성하므로 전체적인 경도 증가에 크게 기여할 수 있다.The effect of surface hardening by electron beam scanning mainly depends on the amount of alloying elements such as C, Ti, V, etc. in the carbon steel and the change in the amount of heat input due to the change in scanning speed of the accelerated electron beam. In general, as the amount of carbon in the material increases, the curing effect can be increased. However, if the crack is generated by rapid cooling above a certain limit, electron beam acceleration conditions that can prevent this should be used. Strong carbide-forming elements such as V, Ti, and the like are greatly added in the accelerated electron beam projection layer even when added in a small amount to form a large number of fine carbides, which can greatly contribute to the overall hardness increase.

따라서, 본 발명의 방법에 사용하기에 바람직한 탄소강 재료는 탄소함량이 0.18 내지 0.40 중량% 범위인 것이며, 탄소 이외의 합금 금속으로서 예를 들면 티타늄, 몰리브덴 및 바나듐을 각각 미량, 예를 들면 0.01 내지 0.1 중량% 포함하고, 총량이 0.1 내지 0.3 중량%인 것이 더욱 바람직하다.Accordingly, preferred carbon steel materials for use in the process of the present invention are those having a carbon content in the range of 0.18 to 0.40% by weight, with minor amounts of titanium, molybdenum and vanadium as alloy metals other than carbon, respectively, for example 0.01 to 0.1. It is more preferable that the content is 0.1% by 0.3% by weight and the total amount is included.

전자빔은 고전압 전자 가속장치를 이용하여 가속전자빔을 생성시켜 사용한다. 상기 고전압 전자 가속장치에서 입열량을 변화시킬 수 있는 조건은 투입 전력, 시편과의 거리, 주사 속도 등이며, 가장 중요한 것은 주사 속도이다. 입열량이 변화되면 경화층의 깊이를 좌우하게 되어 표면 경화에 큰 영향을 미칠 수 있다. 본 발명에 따르면 1.0 내지 2.5 Mev 범위의 전력을 가진 전자빔을 20 내지 40㎠/sec 의 속도로 조사하여 재료의 표면 경화를 달성한다. 전자빔의 전력이 2.5 MeV 보다 크거나 조사속도가 20㎠/sec보다 느리면 입열량이 너무 커져 전자빔 조사시 재료 표면 온도가 너무 높아지는 것에 의해 재료 표면이 녹아버리게 되고, 전자빔의 전력이 1.0 MeV 보다 작거나 조사속도가 40㎠/sec 보다 빠르면 입열량이 지나치게 작아져 재료의 표면이 미처 경화되지가 않는다는 문제점이 있다.The electron beam is used to generate an accelerated electron beam using a high voltage electron accelerator. Conditions for changing the heat input amount in the high voltage electronic accelerator are input power, distance to the specimen, scanning speed, and the like, and most importantly, scanning speed. When the amount of heat input changes, the depth of the cured layer may be influenced, which may greatly affect the surface hardening. According to the present invention, surface hardening of the material is achieved by irradiating an electron beam having a power in the range of 1.0 to 2.5 Mev at a rate of 20 to 40 cm 2 / sec. If the power of the electron beam is greater than 2.5 MeV or the irradiation speed is less than 20 cm2 / sec, the heat input is too large and the material surface melts due to too high the material surface temperature during electron beam irradiation, and the power of the electron beam is less than 1.0 MeV If the irradiation speed is faster than 40 cm 2 / sec, the heat input amount is too small, there is a problem that the surface of the material does not harden.

가속전자빔을 투사하면 재료 표면의 온도가 급격히 증가한 후 바로 냉각되므로 표면층의 조직도 변화하게 되는데 특히 합금 원소의 함량이 기지에 비해 크게 증가된다.Projecting the accelerated electron beam causes the surface of the material to cool immediately after the temperature of the material surface increases rapidly, thereby changing the structure of the surface layer. In particular, the content of the alloying element is greatly increased compared to the matrix.

본 발명의 이러한 표면 경화 방법은 대기중에서도 작업이 가능하고, 균일한 가열과 냉각이 이루어지므로 기공이나 균열이 거의 형성되지 않으며, 시료가 가열되는 시간이 매우 짧기 때문에 재료 표면의 산화를 막을 수 있다는 잇점이 있다.This surface hardening method of the present invention is capable of working in the air, uniform heating and cooling is performed, almost no pores or cracks formed, and the time that the sample is heated is very short to prevent the oxidation of the material surface There is this.

또한 본 발명의 상기 방법은 철강 재료의 표면 경화외에 금속/세라믹 접합, 금속 용접 등에도 응용될 수 있다.The method of the present invention may also be applied to metal / ceramic bonding, metal welding, etc., in addition to surface hardening of steel materials.

이하 본 발명을 실시예에 의해 보다 구체적으로 예시하며 이들 실시예가 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, which do not limit the present invention.

[실시예]EXAMPLE

화학조성이 다음과 같은 탄소강을 준비하였다.Chemical composition prepared the carbon steel as follows.

상기 탄소강의 표면에 러시아 부드커(Budker) 핵물리연구소의 고전압 전자가속기를 이용하여 가속전자빔을 투사하였다. 이 전자가속기의 시험조건은 빔 에너지 1.4 MeV, 투입 전력 약 75㎾, 분출구와 시편과의 거리 약 7.5㎝, 전자빔 주사속도 약 30㎠/sec 였다.The accelerated electron beam was projected onto the surface of the carbon steel using a high voltage electron accelerator of the Budker Nuclear Physics Research Institute of Russia. The test conditions of the electron accelerator were 1.4 MeV of beam energy, about 75 kW of input power, about 7.5 cm between the ejection opening and the specimen, and about 30 cm 2 / sec of electron beam scanning speed.

투사시험 후 강재의 표면층을 투사방향과 평행하게 절단한 후 표면 및 표면으로부터 0.1㎜ 깊이의 기지의 화학 조성을 분광광도계를 사용하여 조사 및 비교하였다. 그 결과는 다음과 같다.After the projection test, the surface layer of the steel was cut parallel to the projection direction, and then a known chemical composition 0.1 mm deep from the surface and the surface was investigated and compared using a spectrophotometer. the results are as follow.

상기 표2로부터 알 수 있듯이, 투사된 재료 표면에서의 모든 합금 원소의 양은 기지에 비해 크게 증가하는데, 기지내에 미량 첨가된 Ti, V, Mo 등은 원래 조성에 비해 약 3 내지 100 배 까지 증가한다. 특히 강한 탄화물 형성 원소인 V 은 기지에는 미량 첨가되었으나, 표면층에는 많은 미세한 탄화물을 형성함으로써 표면층의 경화에 크게 기여한다.As can be seen from Table 2, the amount of all alloying elements on the projected material surface is greatly increased compared to the matrix, and the amount of Ti, V, Mo, etc. added in the matrix is increased by about 3 to 100 times compared to the original composition. . In particular, a very strong carbide forming element V was added in a small amount to the matrix, but by forming many fine carbides in the surface layer, it greatly contributed to the hardening of the surface layer.

또한, 표면으로부터의 거리에 따른 비커스(Vickers) 경도값을 측정하였으며 이를 제1도에 나타내었다. 제1도에서 알 수 있듯이, 본 발명에 따르면 표면으로부터 약 1㎜ 깊이까지 약 650 내지 700의 비커스 경도값을 유지할 수 있다.In addition, Vickers hardness values were measured with distance from the surface and are shown in FIG. As can be seen in FIG. 1, the present invention can maintain a Vickers hardness value of about 650 to 700 up to a depth of about 1 mm from the surface.

Claims (3)

0.18 내지 0.4 중량%의 탄소 및 미량의 합금 원소를 포함하는 탄소강 재료의 표면에 1.0 내지 2.5 Mev 범위의 전자빔을 20 내지 40㎠/sec 의 속도로 주사하여 재료 표면을 경화시키는 방법.A method of curing a material surface by injecting an electron beam in the range of 1.0 to 2.5 Mev at a rate of 20 to 40 cm 2 / sec onto a surface of a carbon steel material comprising 0.18 to 0.4 wt% carbon and trace amounts of alloying elements. 제1항에 있어서, 상기 합금 원소가 V, Ti, Mo, Cr 또는 이들의 혼합물인 것을 특징으로 하는 방법.The method of claim 1 wherein the alloying element is V, Ti, Mo, Cr or a mixture thereof. 제1항에 있어서, 상기 합금 원소의 총량이 0.1 내지 0.3 중량% 인 것을 특징으로 하는 방법.The method of claim 1 wherein the total amount of alloying elements is from 0.1 to 0.3% by weight.
KR1019950000568A 1995-01-14 1995-01-14 Process for hardening the surface of carbon steel by irradiating accelerated electron beam KR0160012B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950000568A KR0160012B1 (en) 1995-01-14 1995-01-14 Process for hardening the surface of carbon steel by irradiating accelerated electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950000568A KR0160012B1 (en) 1995-01-14 1995-01-14 Process for hardening the surface of carbon steel by irradiating accelerated electron beam

Publications (2)

Publication Number Publication Date
KR960029485A KR960029485A (en) 1996-08-17
KR0160012B1 true KR0160012B1 (en) 1999-01-15

Family

ID=19406744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950000568A KR0160012B1 (en) 1995-01-14 1995-01-14 Process for hardening the surface of carbon steel by irradiating accelerated electron beam

Country Status (1)

Country Link
KR (1) KR0160012B1 (en)

Also Published As

Publication number Publication date
KR960029485A (en) 1996-08-17

Similar Documents

Publication Publication Date Title
RU2711389C1 (en) Method of increasing wear resistance of working elements from high-strength cast iron with co2-laser
Yilbas et al. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface
Shulov et al. Termomechanical processing of titanium alloys by high power pulsed ion beams
Kusinski Laser melting of T1-high speed tool steel
KR0160012B1 (en) Process for hardening the surface of carbon steel by irradiating accelerated electron beam
Abd Ali et al. Effect of fibre laser surface treatment on wear resistance of gray cast iron ASTM A48
Hlinka et al. Analysis of laser treated copper surfaces
Yao et al. Laser surface hardening
Khashan et al. Features of spot-matrix surface hardening of low-carbon steel using pulsed laser
Ferriere et al. Surface hardening of steel using highly concentrated solar energy process
Ghera et al. Improvement of Cavitation Erosion Resistance of a Low Alloyed Steel 16MnCr5 Through Work Hardening
Fayyadh et al. Enhancement of Mechanical Properties and Corrosion Resistance of Cast Iron Alloy Using CO2 Laser Surface Treatment
Fauzun et al. Laser Surface Modification of AISI 1025 Low Carbon Steel Using Pulsed Nd: YAG Laser for Enhance Surface Properties
Yu et al. A preliminary investigation of surface hardening of steel and iron by solar energy
KR100238953B1 (en) Process for the preparation of functionally gradient material tin on carbon steel
KR100266966B1 (en) Process for the preparation of surface alloyed material with tib powder
Marinin et al. Increasing the intensity of cementation process of tool low-alloy steels by surface laser treatment
Yilbas et al. Laser surface treatment of high‐speed tool steel (AISI M2)
JPS59166619A (en) Stainless steel having excellent oxidation resistance and preparation thereof
Karamis et al. Laser melting of plasma-nitrided steel samples
Jianglong et al. Tempering behaviour of hardened surface of T1 high speed tool steel after laser heating
Xu et al. Influence of high-intensity pulsed ion beams irradiation on oxidation behavior of 316L stainless steel at 700° C
Petrov et al. Theoretical analysis of heat flow and structural changes during electron beam irradiation of steel
RU1767886C (en) Steel pieces hardening method
KR100307666B1 (en) Method for alloying surfce of carbon steel with vc

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080814

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee