KR20030046551A - A composition of flame retarding foams with waste materials and its preparing method - Google Patents

A composition of flame retarding foams with waste materials and its preparing method Download PDF

Info

Publication number
KR20030046551A
KR20030046551A KR1020010076064A KR20010076064A KR20030046551A KR 20030046551 A KR20030046551 A KR 20030046551A KR 1020010076064 A KR1020010076064 A KR 1020010076064A KR 20010076064 A KR20010076064 A KR 20010076064A KR 20030046551 A KR20030046551 A KR 20030046551A
Authority
KR
South Korea
Prior art keywords
weight
parts
waste
flame retardant
rubber
Prior art date
Application number
KR1020010076064A
Other languages
Korean (ko)
Other versions
KR100404768B1 (en
Inventor
조병욱
최재곤
문성철
Original Assignee
조병욱
이화케미칼 주식회사
문성철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조병욱, 이화케미칼 주식회사, 문성철 filed Critical 조병욱
Priority to KR10-2001-0076064A priority Critical patent/KR100404768B1/en
Priority to AU2002365856A priority patent/AU2002365856A1/en
Priority to PCT/KR2002/002281 priority patent/WO2003048242A1/en
Publication of KR20030046551A publication Critical patent/KR20030046551A/en
Application granted granted Critical
Publication of KR100404768B1 publication Critical patent/KR100404768B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/042Mixing disintegrated particles or powders with other materials, e.g. with virgin materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE: A flame retardant foam composition using the waste material and its preparation method are provided, to recycle waste materials effectively and to improve stability, mechanical properties and flame retardancy. CONSTITUTION: The foam composition comprises 100 parts by weight of a resin component comprising 0-100 wt% of waste polyethylene, 0-100 wt% of waste ethylene-vinyl copolymer, 0-30 wt% of waste rubber, 0-40 wt% of waste tire rubber powder, 0-100 wt% of polyethylene, 0-30 wt% of nitrile rubber, and 0-50 wt% of ethylene-propylene copolymer; and 120-290 parts by weight of a flame retardant comprising 20-250 parts by weight of Al(OH)3, 20-120 parts by weight of Mg(OH)2, 0-20 parts by weight of magnesium silicate, 0-50 parts by weight of zinc borate, 0-50 parts by weight of zinc sulfate, 0-30 parts by weight of Sb2O3, 0-30 parts by weight of Sb2O5, 0-50 parts by weight of 3-(hydroxy phenyl phosphinyl)propanoic acid or 9,10-dihydro-9-oxa-10-£2,3-di-(hydroxy ethoxy)carbonyl propyl|-10-phosphaphenanthrene-10-oxide, 0-50 parts by weight of tris(chloroisopropyl)phosphate or tris(2-chloroethyl)phosphate, 0-50 parts by weight of diphenyl cresyl phosphate, 0-10 parts by weight of red phosphorus, 0-50 parts by weight of chlorinated paraffin, and 0-30 parts by weight of yellow soil.

Description

폐자원을 이용한 난연성 발포체 조성물과 그 제조방법{A composition of flame retarding foams with waste materials and its preparing method}A composition of flame retarding foams with waste materials and its preparing method}

본 발명은 폐자원을 이용한 난연성 발포체 조성물과 그 제조방법에 관한 것으로써, 더욱 상세하게는 바탕수지로 폐자원으로서 폐폴리에틸렌(W-PE), 폐에틸렌비닐공중합체(W-EVA), 폐고무(W-RUBBER) 또는 폐타이어고무분말(GTR; Ground tire rubber)를 사용하고, 경우에 따라서는 폴리에틸렌(Virgin-PE), 니트릴고무(NBR) 및 에틸렌 프로필렌 공중합체(EPDM)중에서 하나이상의 성분을 블렌드하며, 여기에 무기계 및 인계 난연제, 발포제, 가교제 또는 기타 첨가제를 혼합하여 만든 조성물로서, 폐플라스틱, 폐고무 및 폐타이어고무분말의 효율적인 재활용을 추구함과 동시에 보다 환경친화성, 안정성, 기계적 물성과, 특히 난연성과 경제성이 우수한 제품에 대한 것이며, 압출성형, 압축성형 또는 사출성형에 의해 각종 건축자재와 자동차 부품, 스포츠 용품, 기타 공산품 등의 광범위한 분야에 적용하는 경우 환경친화성, 안정성, 난연성 및 경제성 등이 확보되어 폐자원을 처리하면서 경제성이 있는 재활용 제품으로 매우 유용하게 이용할 수 있는 난연성 발포체 조성물과 그를 제조하는 방법에 관한 것이다.The present invention relates to a flame-retardant foam composition and a method for producing the same using waste resources, more specifically waste polyethylene as a waste material (W-PE), waste ethylene vinyl copolymer (W-EVA), waste rubber (W-RUBBER) or ground tire rubber (GTR) and optionally one or more of polyethylene (Virgin-PE), nitrile rubber (NBR) and ethylene propylene copolymer (EPDM). Blended with inorganic and phosphorus flame retardants, foaming agents, crosslinking agents or other additives, this product seeks for efficient recycling of waste plastics, waste rubbers and waste tire rubber powders, while also improving environmental friendliness, stability and mechanical properties. And, in particular, products with excellent flame retardancy and economic efficiency, and various extrusion materials, compression molding or injection molding for various building materials, automobile parts, sporting goods and other industrial products. The present invention relates to a flame retardant foam composition and a method of manufacturing the same, which can be used as a recycled product with economical efficiency while securing environmental friendliness, stability, flame retardancy, and economic efficiency when applied to a wide range of fields.

기존 발포체(폴리올레핀 등)의 경우 건축, 건설, 자동차, 스포츠 용품 및 기타 분야에 광범위하게 사용되고 있는 성형조성물로서, 환경 및 안정성에 입각한 세계 각국 및 국내의 각종 규제로 인해 난연성이 요구되어지고 있으나, 그 난연정도가 낮고, 할로겐계 난연제의 사용으로 인해 인체 유해성이 높음에 따라 그 적용범위가 축소되어 가고 있는 실정이다. 또한 현재 이들 관련업계의 난립화와 유사물질의 다변화로 인해 바탕수지로 사용되는 물질에 따라 약간의 차이는 있으나 그 특성에 따라 적용범위가 세분화 되어가고 있으며, 결과적으로는 기존 광범위한 적용분야에서 특정분야로의 적용범위 축소가 이루어지고 있고, 이에 따른 대체유사물질이 개발되는 등 발포체 조성물의 시장은 무한경쟁이 일어나고 있으므로, 경제적이고 물성이 우수한 특히 난연성이 뛰어난 제품개발에 대한 필요성이 대두되고 있다.Existing foams (polyolefin, etc.) are molding compositions widely used in construction, construction, automobiles, sporting goods, and other fields, and are required to be flame retardant due to various regulations around the world and domestically based on environment and stability. The degree of flame retardancy is low, the use of halogen-based flame retardants due to the high human hazard is a situation that is decreasing the scope of application. In addition, there are some differences depending on the materials used as the base resin due to the difficulty of these related industries and diversification of similar substances, but the scope of application is subdivided according to their characteristics. As the scope of application to the furnace is being reduced, and thus, a substitute composition is developed, the market for the foam composition is in an endless competition, and thus, there is a need for development of a product having excellent flame retardancy, particularly economical and physical properties.

따라서, 발포체의 경우 난연성 및 경제성(저단가)이 우선적으로 요구되고 있다. 그러나, 이러한 발포체 생산에 관여하는 업계들은 대부분이 중소기업으로서 연구기반 및 기술력 부족 등으로 인해 이를 만족시키지 못함으로써, 아직까지도 대부분의 생산업체들은 고가의 순수원료(virgin materials) 및 할로겐계 난연제를 사용하여 인체에 유해하고 난연성이 낮은 발포체를 제조 공급함으로써 부가가치의 급격한 감소와 이로 인한 무한경쟁력(국제 경쟁력) 시대에 경쟁력을 잃어가고 있다.Therefore, in the case of foams, flame retardancy and economical efficiency (low cost) are required first. However, most of the industries involved in the production of foams are small and medium-sized companies, which are not satisfied due to the lack of research base and technology, so that most producers still use expensive raw materials and halogen flame retardants. By producing and supplying foams that are harmful to the human body and have low flame retardancy, the company is losing its competitiveness in the era of drastic reduction in added value and the infinite competitiveness (international competitiveness).

이러한 종래의 난연성이 부여되지 않은 폴리에틸렌 발포체 조성물은 그 사양에 따라서 약간의 차이가 있기는 하지만, 그 중에서 한가지 조성을 대표적으로 예시해 보면, 저밀도폴리에틸렌수지 100 중량부에 대해 가교제 0.8∼0.9 중량부, 발포제 22∼24 중량부, 색소 1∼1.5 중량부로 이루어진 발포체 조성물이 사용되고 있으며, 이러한 조성의 발포체는 상기와 같이 관련업계의 난립화 등으로 인해 그 조성이 일반화되어 있다.Although such a conventional flame retardant is not given a slight difference depending on the specifications of the polyethylene foam composition, if one representative composition is exemplarily, 0.8 to 0.9 parts by weight of crosslinking agent, foaming agent based on 100 parts by weight of low density polyethylene resin The foam composition which consists of 22-24 weight part and 1-1.5 weight part of pigment | dyes is used, The foam of such a composition is generalized by the granulation etc. of the related art as mentioned above.

그리고 종래 알려진 난연성 폴리올레핀 발포체로써 ASTM D 2863에 의한 한계산소지수(LOI) 26의 난연성 발포체의 경우 그 조성은 저밀도폴리에틸렌(LDPE)과 에틸렌비닐공중합체(EVA)만을 단독 혹은 블렌드한 수지에다 난연제 및 기타첨가제를 첨가하여 제조한 경우가 개시된 바 있다(국내특허 공개 제10-1997-042714호, 1997).In the case of a flame-retardant foam having a known oxygen-retardant polyolefin foam and having a limiting oxygen index (LOI) of 26 according to ASTM D 2863, the composition is a resin in which only low-density polyethylene (LDPE) and ethylene vinyl copolymer (EVA) are used alone or blended with flame retardant and other It has been disclosed when the additive is prepared by the addition (Korean Patent Publication No. 10-1997-042714, 1997).

이러한 종래의 난연성 폴리올레핀 발포체 조성물은 그 사양에 따라서 약간의 차이가 있기는 하지만, 그 중에서 한가지 조성을 대표적으로 예시해 보면, 저밀도 폴리에틸렌 수지와 에틸렌 비닐 공중합체를 각각 단독 사용하거나 또는 2개이상의 수지를 혼합한후, 고탄성의 물성을 부여하기 위한 기능성 고무를 단독 혹은 2개 이상을 더 혼합하여 구성된 수지조성물 100중량부에 결합제 1∼20 중량부, 발포제 10∼30 중량부, 무기계 난연제 50∼200 중량부, 유기계 할로겐계 난연제 10∼50중량부, 가교제 0.7∼2.0 중량부로 이루어져 있다.Although such a flame retardant polyolefin foam composition is slightly different according to its specifications, one typical composition of the flame retardant polyolefin foam composition may be used alone, or two or more resins may be mixed. Then, 1 to 20 parts by weight of the binder, 10 to 30 parts by weight of the blowing agent, and 50 to 200 parts by weight of the inorganic flame retardant to 100 parts by weight of the resin composition constituted by mixing alone or two or more functional rubbers for imparting high elastic properties. 10 to 50 parts by weight of the organic halogen flame retardant and 0.7 to 2.0 parts by weight of the crosslinking agent.

한편, 종래에 폐플라스틱과 폐타이어고무분말을 이용하여 각종 구조물을 성형 제조하는 폐자원활용 기술이 본 발명자들에 의해 개발되어 한국특허 제 180216호로 공지된 바 있다. 여기서는 폐타이어분말과 폐플라스틱을 블렌드하여 고온에서 라디칼화하는 큐멘히드로퍼옥사이드 및 과산화디큐밀등의 가교제를 적당한 고온에서 순간적으로 가교시켜 사출 또는 압출시켜 저렴한 원가의 보도블럭 또는 장판 바닥하지재나 철근대용 구조물 등으로 활용되도록 한 유용한 기술을 제시하고 있다. 그러나, 이러한 공지기술은 발포성을 전혀 부여하지 아니한 단순 성형 가공물로서 폐플라스틱 등의 수지에 발포성을 부여하는 경우 폐자원으로 인한 물성 저하 등이 상당한 품질 결함으로 연결될 수 있기 때문에 이러한 종래의 조성을 그대로 발포체 조성물로 적용하기 곤란한 문제가 있다. 즉, 이러한 종래 기술은 발포체의구성과는 근본적인 적용 기술분야를 달리하는 것이므로 이렇게 경제적으로 유리한 폐자원 활용기술을 발포체 분야에 그대로 적용할 수도 없었다.On the other hand, in the prior art, waste resources utilization technology for forming and manufacturing various structures using waste plastic and waste tire rubber powder has been developed by the present inventors and has been known as Korean Patent No. 180216. Here, a crosslinking agent such as cumene hydroperoxide and dicumyl peroxide, which is a mixture of waste tire powder and waste plastic and radicalized at high temperature, is instantaneously crosslinked at an appropriate temperature, and injected or extruded to inexpensive press blocks or floorboards or reinforcing rods. It presents useful techniques to be used as a structure. However, such a known technique is a simple molded article that does not impart foamability at all, and thus, when imparting foamability to resins such as waste plastic, deterioration of physical properties due to waste resources can lead to significant quality defects. There is a problem that is difficult to apply. That is, this conventional technology is different from the application of the fundamental technology and the composition of the foam, so this economically advantageous waste resource utilization technology could not be applied to the foam field as it is.

이런 종래의 문제들을 해결하기 위하여 본 발명자들은 한국특허출원 제 10-2001-0011276호로 "폐플라스틱을 이용한 발포체 조성물과 이를 이용한 발포체"를 출원한 바 있다. 여기서는 폐자원의 활용으로서 난연성이 부여되지 않은 경제적인 발포체에 관한 유용한 기술을 제시하고 있으나, 본 발명자들은 이에 그치지 아니하고 폐 고무를 포함한 좀더 다양한 폐 고분자 재료의 재활용을 위한 바람직한 조성물 개발의 일환으로 본 발명을 하게 되었다.In order to solve these conventional problems, the present inventors have applied for a "foam composition using waste plastic and foam using the same" as Korean Patent Application No. 10-2001-0011276. Here, the present invention suggests a useful technique for economical foam that is not imparted with flame retardancy as the use of waste resources. However, the present invention is not limited thereto, and the present invention is part of the present invention as part of the development of a desirable composition for recycling of various waste polymer materials including waste rubber. Was done.

이와 같이, 종래의 폴리올레핀 발포체 조성물은 관련업계의 난립화 및 유사물질의 다변화로 인해 특정분야로의 적용범위 축소 및 대체 유사물질과의 무한경쟁이 야기되고 있으며, 이에 따라서 우선적으로 난연성이 우수하고 경제적으로 유리한 방법으로 제조하는 조성물의 개발이 시급한 실정이다. 그럼에도 불구하고, 현실적으로는 고가의 순수원료 및 인체에 유해한 할로겐계 난연제를 사용하여 부가가치의 급격한 감소가 야기되고 있고 이와 더불어 국제화시대의 경쟁력을 잃어감에 따라 경제적 원료로 대체하는 등 저렴한 가격으로 고품질(고난연 등)의 제품을 개발하는 것이 필요하다.As such, the conventional polyolefin foam composition causes reduction in the scope of application to a specific field and infinite competition with alternative analogues due to the difficulty of granulation and diversification of related materials in the related art, and thus, firstly, excellent flame retardancy and economical efficiency. As a result, development of a composition to be produced in an advantageous manner is urgent. Nevertheless, in reality, the use of expensive pure raw materials and halogen-based flame retardants that are harmful to the human body is causing a drastic reduction in added value. It is necessary to develop a product such as high flame retardancy.

따라서, 본 발명은 종래의 폴리올레핀 발포체 조성에서의 단점들, 특히 난연성 및 경제성을 개선하기 위하여, 그리고 현재 과학발전으로 인한 심각한 환경 오염을 고려하고 폐플라스틱(W-PE, W-EVA), 폐고무(W-RUBBER), 폐타이어고무분말(GTR; Ground tire rubber)를 사용하되 경우에 따라서는 폴리에틸렌(Virgin-PE), 니트릴고무(NBR) 및 에틸렌 프로필렌 공중합체(EPDM)중에서 하나이상을 효과적으로 조합 블렌드하고, 여기에 인체에 유해한 할로겐계 난연제 대신에 무기계 및 인계 난연제 및 기타 첨가제(발포제, 가교제, 활제 등)를 사용하여 조성을 새롭게 구성함으로서 종래의 발포체 조성물에 비하여 특히 난연성과 기계적 물성이 우수하면서도 보다 환경친화적이고 폐자원 재활용으로 인해 제조단가를 낮추어 경제성을 극대화시킨 새로운 난연성 발포체 조성물을 제공하는데 그 목적이 있다.Accordingly, the present invention takes account of the serious disadvantages of conventional polyolefin foam compositions, in particular flame retardancy and economics, and in view of the serious environmental pollution caused by current scientific developments, waste plastics (W-PE, W-EVA), waste rubber (W-RUBBER), ground tire rubber (GTR), but sometimes one or more of polyethylene (Virgin-PE), nitrile rubber (NBR) and ethylene propylene copolymer (EPDM). It is blended and newly composed using inorganic and phosphorus flame retardants and other additives (foaming agents, crosslinking agents, lubricants, etc.) instead of halogen-based flame retardants, which are harmful to the human body. New flame retardant foam composition that is eco-friendly and has reduced manufacturing cost due to waste resource recycling to maximize economic efficiency To have its purpose.

본 발명의 또 다른 목적은 상기 조성물을 이용하여 성형 제조한 난연성 발포체를 제공하는데 있다.Another object of the present invention to provide a flame-retardant foam molded by using the composition.

도1은 본 발명의 실시예 1에 따라 제조한 발포체 시료1에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,1 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive for the foam sample 1 prepared according to Example 1 of the present invention.

도2는 본 발명의 실시예 1에 따라 제조한 발포체 시료4에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,2 is an electron microscope (SEM) photograph confirming the dispersion degree (B) of the cell structure (A) and the additive with respect to the foam sample 4 prepared according to Example 1 of the present invention.

도3은 본 발명의 실시예 1에 따라 제조한 발포체 시료7에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,3 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive for the foam sample 7 prepared according to Example 1 of the present invention.

도4는 본 발명의 실시예 1에 따라 제조한 발포체 시료8에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,4 is an electron microscope (SEM) photograph confirming the cell structure (A) and the degree of dispersion (B) of the additive for the foam sample 8 prepared according to Example 1 of the present invention.

도5는 본 발명의 실시예 1에 따라 제조한 발포체 시료11에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,5 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive for the foam sample 11 prepared according to Example 1 of the present invention.

도6은 본 발명의 실시예 1에 따라 제조한 발포체 시료13에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,6 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive for the foam sample 13 prepared according to Example 1 of the present invention.

도7은 본 발명의 실시예 1에 따라 제조한 발포체 시료14에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,7 is an electron microscope (SEM) photograph confirming the cell structure (A) and the degree of dispersion (B) of the additive with respect to the foam sample 14 prepared according to Example 1 of the present invention.

도8은 본 발명의 실시예 2에 따라 제조한 발포체 시료15에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,8 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive with respect to the foam sample 15 prepared according to Example 2 of the present invention.

도9는 본 발명의 실시예 2에 따라 제조한 발포체 시료17에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,9 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive for the foam sample 17 prepared according to Example 2 of the present invention.

도10은 본 발명의 실시예 2에 따라 제조한 발포체 시료23에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,10 is an electron microscope (SEM) photograph confirming the cell structure (A) and the degree of dispersion (B) of the additive for the foam sample 23 prepared according to Example 2 of the present invention.

도11은 본 발명의 실시예 2에 따라 제조한 발포체 시료28에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,11 is an electron microscope (SEM) photograph confirming the cell structure (A) and the degree of dispersion (B) of the additive for the foam sample 28 prepared according to Example 2 of the present invention.

도12는 본 발명의 실시예 2에 따라 제조한 발포체 시료29에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,12 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive with respect to the foam sample 29 prepared according to Example 2 of the present invention.

도13은 본 발명의 실시예 2에 따라 제조한 발포체 시료32에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,13 is an electron microscope (SEM) photograph confirming the cell structure (A) and the degree of dispersion (B) of the additive with respect to the foam sample 32 prepared according to Example 2 of the present invention.

도14는 본 발명의 실시예 2에 따라 제조한 발포체 시료38에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,14 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive with respect to the foam sample 38 prepared according to Example 2 of the present invention.

도15는 본 발명의 실시예 2에 따라 제조한 발포체 시료39에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,15 is an electron microscope (SEM) photograph confirming the cell structure (A) and the degree of dispersion (B) of the additive for the foam sample 39 prepared according to Example 2 of the present invention.

도16은 본 발명의 실시예 2에 따라 제조한 발포체 시료40에 대해 셀구조(A) 및 첨가제의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,16 is an electron microscope (SEM) photograph confirming the cell structure (A) and the dispersion degree (B) of the additive with respect to the foam sample 40 prepared according to Example 2 of the present invention.

도17은 종래의 발포체에 대해 셀구조(A)와 첨가제 분산정도(B)를 확인한 전자현미경(SEM) 사진이다.17 is an electron microscope (SEM) photograph confirming the cell structure (A) and the additive dispersion degree (B) with respect to the conventional foam.

본 발명은 폐플라스틱, 폐고무 및 폐타이어고무분말을 함유하고, 통상의 첨가제로서 난연제, 가교제, 발포제, 활제, 가소제 및 안정제 중에서 하나이상의 첨가제를 포함하는 난연성 발포체 조성물에 있어서, 수지 성분이 폐폴리에틸렌(W-PE) 0∼100 중량%와 폐에틸렌비닐공중합체(W-EVA) 0∼100 중량%, 폐고무(W-RUBBER) 0∼30 중량%, 폐타이어고무분말(GTR) 0∼40 중량%, 폴리에틸렌(PE) 0∼100 중량%, 니트릴고무(NBR) 0∼30 중량%, 에틸렌 프로필렌 공중합체 0∼50 중량%로 구성되어있고, 상기 수지성분 100중량부에 대하여 난연제로서는 Al(OH)320∼250 중량부, Mg(OH)220∼120 중량부, 마그네슘 실리케이트 0∼20 중량부, 보론산아연 0∼50 중량부, 황산아연 0∼50 중량부, Sb2O30∼30 중량부, Sb2O50∼30 중량부, 3-(하이드록시페닐포스피닐)프로파노익애시드 또는 9,10-디하이드로-9-옥사-10-[2,3-디-(하이드록시에톡시)카르보닐프로필]-10-포스파페난트렌-10-옥사이드 0∼50 중량부, 트리스(클로로이소프로필)포스페이트(TCPP), 또는 트리스(2-클로로에틸)포스페이트(TCEP) 0∼50 중량부, 디페닐크레실포스페이트 0∼50 중량부, 적인 0∼10 중량부, 염소화 파라핀 0∼50 중량부, 황토 0∼30 중량부로 함유되어 있되 상기 난연제가 120∼290 중량부로 함유되어 있으며, 여기에 통상의 첨가제가 함유되어 있는 것을 특징으로 한다.The present invention relates to a flame-retardant foam composition containing waste plastic, waste rubber and waste tire rubber powder and comprising at least one of a flame retardant, a crosslinking agent, a foaming agent, a lubricant, a plasticizer and a stabilizer as a common additive, wherein the resin component is waste polyethylene. (W-PE) 0-100 wt%, waste ethylene vinyl copolymer (W-EVA) 0-100 wt%, waste rubber (W-RUBBER) 0-30 wt%, waste tire rubber powder (GTR) 0-40 Wt%, polyethylene (PE) 0-100% by weight, nitrile rubber (NBR) 0-30% by weight, ethylene propylene copolymer 0-50% by weight, and based on 100 parts by weight of the resin component, Al ( OH) 3 20-250 parts by weight, Mg (OH) 2 20-120 parts by weight, magnesium silicate 0-20 parts by weight, zinc boronic acid 0-50 parts by weight, zinc sulfate 0-50 parts by weight, Sb 2 O 3 0 -30 parts by weight, Sb 2 O 5 0-30 parts by weight, 3- (hydroxyphenylphosphinyl) propanoic acid or 9,10-dihydro-9 0 to 50 parts by weight of oxa-10- [2,3-di- (hydroxyethoxy) carbonylpropyl] -10-phosphazanthrene-10-oxide, tris (chloroisopropyl) phosphate (TCPP), Or 0-50 parts by weight of tris (2-chloroethyl) phosphate (TCEP), 0-50 parts by weight of diphenylcresylphosphate, 0-10 parts by weight of red, 0-50 parts by weight of chlorinated paraffin, and 0-30 parts by weight of ocher. It is contained, but the flame retardant is contained in 120 to 290 parts by weight, characterized in that it contains a conventional additive.

이와 같은 본 발명에 따른 발포체 조성물은 상기 수지와 난연제의 혼합 조성물에다 통상의 첨가제로서 가교제 2∼25 중량부, 발포제 10∼40 중량부 및 활제 0∼10 중량부 가 함유되어 있는 조성을 110∼138℃에서 혼합한 다음 압출, 압축 또는 사출하여 제조할 수 있다.Such a foam composition according to the present invention is a mixture composition of the resin and the flame retardant 110 to 138 ℃ a composition containing 2 to 25 parts by weight of crosslinking agent, 10 to 40 parts by weight of foaming agent and 0 to 10 parts by weight of lubricant as a common additive. It can be prepared by mixing in, then extruding, compressing or injection.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명의 조성물의 성분 구성의 한 예를 구체적으로 예시하면, 수지 성분으로 폐폴리에틸렌(W-PE) 0∼100 중량%와 폐에틸렌비닐공중합체(W-EVA) 0∼100 중량%, 폐고무(W-RUBBER) 0∼30 중량%, 폐타이어고무분말(GTR) 0∼40 중량%, 폴리에틸렌(PE) 0∼100 중량%, 니트릴고무(NBR) 0∼30 중량%, 에틸렌 프로필렌 공중합체 0∼50 중량%로 구성되어 있고, 이러한 수지성분 100중량부에 대하여 난연제로서는 Al(OH)320∼250 중량부, Mg(OH)220∼120 중량부, 마그네슘 실리케이트 0∼20 중량부, 보론산아연(Zinc Borate) 0∼50 중량부, 황산아연(Zinc Sulfide) 0∼50 중량부, Sb2O30∼30 중량부, Sb2O50∼30 중량부, 3-(하이드록시페닐포스피닐)프로파노익애시드[3-(Hydroxyphenylphosphinyl)propanoic acid; H-205] 또는 9,10-디하이드로-9-옥사-10-[2,3-디-(하이드록시에톡시)카르보닐프로필]-10-포스파페난트렌-10-옥사이드[9,10-Dihydro-9-oxa-10-[2,3-di-(hydroxyethoxy)carbonyl propyl]-10-phosphaphenanthrene-10-oxide; H-201] 0∼50 중량부, 트리스(클로로이소프로필)포스페이트[Tris(chloroisopropyl)phosphate; TCPP], 또는 트리스(2-클로로에틸)포스페이트[Tris(2-chloroethyl)phosphate; TCEP] 0∼50 중량부, 디페닐크레실포스페이트[Diphenylchresylphosphate; DPK] 0∼50 중량부, 적인 0∼10 중량부, 염소화 파라핀 0∼50 중량부, 황토 0∼30 중량부로 함유되어 있되 상기 난연제가 120∼290 중량부로 함유되어 있으며, 여기에 가교제 2∼25 중량부, 발포제 10∼40 중량부, 발포조제 0∼2 중량부, 내부이형제 0∼10 중량부, 외부이형제 0∼10 중량부, 안정제 0∼2.5 중량부, 가소제 0∼50 중량부, 열전달촉진제 0∼5 중량부를 포함하는 것으로 제조할 수 있다.Specific examples of the component composition of the composition of the present invention, as a resin component 0-100% by weight of waste polyethylene (W-PE), 0-100% by weight of waste ethylene vinyl copolymer (W-EVA), waste rubber (W-RUBBER) 0-30% by weight, waste tire rubber (GTR) 0-40% by weight, polyethylene (PE) 0-100% by weight, nitrile rubber (NBR) 0-30% by weight, ethylene propylene copolymer 0 It consists of -50 weight%, and as a flame retardant with respect to 100 weight part of such resin components, 20-250 weight part of Al (OH) 3, 20-120 weight part of Mg (OH) 2, 0-20 weight part of magnesium silicates, boron 0-50 parts by weight of zinc borate, 0-50 parts by weight of zinc sulfate, 0-30 parts by weight of Sb 2 O 3, 0-30 parts by weight of Sb 2 O 5 , 3- (hydroxyphenyl Phosphinyl) propanoic acid [3- (Hydroxyphenylphosphinyl) propanoic acid; H-205] or 9,10-dihydro-9-oxa-10- [2,3-di- (hydroxyethoxy) carbonylpropyl] -10-phosphaphenanthrene-10-oxide [9,10 -Dihydro-9-oxa-10- [2,3-di- (hydroxyethoxy) carbonyl propyl] -10-phosphaphenanthrene-10-oxide; H-201] 0-50 parts by weight of tris (chloroisopropyl) phosphate; TCPP], or tris (2-chloroethyl) phosphate [Tris (2-chloroethyl) phosphate; TCEP] 0 to 50 parts by weight, diphenylchresylphosphate; DPK] 0 to 50 parts by weight, 0 to 10 parts by weight of red, 0 to 50 parts by weight of chlorinated paraffin, 0 to 30 parts by weight of ocher, and 120 to 290 parts by weight of the flame retardant. Parts by weight, foaming agent 10-40 parts by weight, foaming aid 0-2 parts by weight, internal mold release agent 0-10 parts by weight, external mold release agent 0-10 parts by weight, stabilizer 0-2.5 parts by weight, plasticizer 0-50 parts by weight, heat transfer accelerator It can manufacture by containing 0-5 weight part.

특히, 폐자원으로서의 W-PE는 예비실험에 의하면 대략 분자량이 5,000??∼ 15,000 정도로서 원래의 순수 PE가 가지는 분자량보다 낮아있고, W-EVA 또한 순수 EVA 분자량의 1/2∼2/3값에 불과할 정도로 낮은 특성을 보이고 있다. 따라서,이와 같은 W-PE, W-EVA는 순수원료에 비하여 가교가 훨씬 쉽게 이루어질 수 있으며 발포공정을 더욱 쉽게 만든다. 그리고, 역시 폐자원으로서의 GTR은 가장 안정한 구조의 가교고무로서 가는 분말상태의 경우 매트릭스 수지 중에 분산을 쉽게 할 수 있으며, 또한 난연효과가 좋고 더욱이 연소상태에서는 챠르(char) 형성이 쉬워 표면에 단열층을 형성하고 내부로의 연소진행을 차단시켜주는 역할을 한다.In particular, the preliminary experiments showed that W-PE as a waste resource has a molecular weight of about 5,000 ?? to 15,000, which is lower than that of the original pure PE, and W-EVA also has a value of 1/2 to 2/3 of the pure EVA molecular weight. It is just too low. Therefore, such W-PE, W-EVA can be made much easier crosslinking than a pure raw material and makes the foaming process easier. In addition, GTR as a waste resource can easily disperse in the matrix resin in the case of powder, which is the most stable crosslinked rubber, and has a good flame retardant effect, and in addition, it is easy to form char in the combustion state, thereby providing a heat insulating layer on the surface. It forms and blocks the combustion process to the inside.

본 발명에 있어서 수지 조성물은 경제성 및 재활용을 감안하여 바람직하게 사용되는 폐자원으로서 전형적으로는 W-PE, W-EVA, W-RUBBER, GTR 및 경우에 따라서는 폴리에틸렌(Virgin-PE), 니트릴고무(NBR), 에틸렌 프로필렌 공중합체(EPDM)의 블렌드로 이루어져 있으며, 특히 본 발명에서 바람직하게 사용되는 GTR(Ground tire rubber)은 폐타이어를 분쇄하여 분말로 만든 것으로, 화학적 안정성이 크고 대기오염 물질의 함유가 적은 점을 감안할 때 폴리올레핀 블렌드 재료의 좋은 충전제(filler)로 작용될 수 있는데, 이는 가교되어 있으면서 카본블랙 함량이 많은 타이어 고무의 강인성이 플라스틱과 조화를 잘 이룰 수 있고, UV 저항이 커 화학안정성이 크고 함유된 활성탄소 등이 입자보강형 복합재료에 알맞기 때문에 적절히 블렌드하여 사용하면 좋다. 이러한 성분은 입자의 크기에 따라 복합재의 기계적 성질에 큰 영향을 주게 되는데, 크기가 커질수록 계면 접착에 문제가 발생할 수 있으며 대부분의 인장 특성이 떨어지게 되므로 분말상태로 사용하는 것이 바람직하다. 따라서, 본 발명에서는 이를 고려하여 0.5mm 이하의 입자크기를 갖는 것을 바람직하게 사용할 수 있으나, 그 입자크기에 크기에 제한을 두지 아니한다.In the present invention, the resin composition is a waste resource that is preferably used in view of economical efficiency and recycling, and typically W-PE, W-EVA, W-RUBBER, GTR, and optionally polyethylene (Virgin-PE), nitrile rubber (NBR), a blend of ethylene propylene copolymer (EPDM), and particularly preferably used in the present invention GTR (Ground tire rubber) is made of a powder by grinding waste tires, chemical stability of the air pollution material Given its low content, it can serve as a good filler for polyolefin blend materials, which is a crosslinked, high carbon black tire rubber with good toughness and a good UV resistance. Since the stability is high and the contained activated carbon is suitable for the grain reinforcement composite material, it may be appropriately blended. These components have a great influence on the mechanical properties of the composite according to the size of the particles, the larger the size may cause problems in the interface adhesion and most tensile properties are degraded, so it is preferable to use the powder state. Therefore, the present invention can be preferably used having a particle size of 0.5mm or less in consideration of this, but the size is not limited to the particle size.

참고로, 본 발명에서 사용하고 있는 GTR의 조성은 일반적으로 다음의 표 1과같다.For reference, the composition of the GTR used in the present invention is generally as shown in Table 1 below.

분석항목Analysis item PCa PC a PC + LTb PC + LT b TBc TB c 고무분Rubber powder 고무분Rubber powder 고무분Rubber powder 고무중합체의 종류Type of rubber polymer 배합비d(%)Compounding ratio d (%) NRNR 2020 4040 7070 SBRSBR 8080 4545 2020 BRBR -- 1515 1010 고무중합체의 양(%)% Of rubber polymer 직접법Direct law 23.723.7 40.240.2 간접법Indirect law 47.647.6 44.644.6 54.154.1 비중importance 1.161.16 1.151.15 1.141.14 아세톤 추출분(%)Acetone Extract (%) 19.419.4 16.916.9 12.512.5 클로로포름 추출분(%)Chloroform Extract (%) 1.401.40 1.201.20 알콜성 KOH 용액Alcoholic KOH Solution 추출물(%)extract(%) 0.50.5 0.40.4 유황분(%)Sulfur content (%) 1.71.7 1.71.7 유기유황e(%)Organic sulfur e (%) 0.020.02 0.030.03 무기유황(%)Inorganic sulfur (%) 0.50.5 회분(%)Ash content (%) 3.13.1 4.24.2 3.83.8 활성탄f(%)Activated carbon f (%) 30.730.7 26.326.3 SiO2(%)SiO 2 (%) 0.50.5 0.40.4 TiO2(%)TiO 2 (%) 0.10.1 ZnO(%)ZnO (%) 1.61.6 1.21.2 CaO(%)CaO (%) 1.61.6 0.40.4 Fe2O3+ Al2O3(%)Fe 2 O 3 + Al 2 O 3 (%) 0.30.3 0.10.1

상기 표 1에서 a는 승용차 타이어, b는 경트럭 타이어, c는 트럭 또는 버스 타이어f를 의미하고, d는 기체 색층분석법에 의한 수치, e는 아황산나트륨법에 의한 수치, f는 질산분석법에 의한 수치를 나타낸 것이다.In Table 1, a denotes a passenger car tire, b denotes a light truck tire, c denotes a truck or bus tire f, d denotes a value obtained by gas chromatography, e denotes a value of sodium sulfite method, and f denotes a value of nitrate analysis method. It is shown.

위 성분 분석에서 보면, 타이어는 주로 천연고무(NB; natural rubber), 스티렌 부타디엔고무(SBR; styrene-butadiene rubber), 부타디엔고무(BR; butadiene rubber) 등이 주성분이며, 타이어부위별 특성에 따라 위 성분들의 조합상태를 승용차와 트럭으로 구분하여 분석해 보면 다음의 표 2와 같이 조성이 정해진다.In the above component analysis, tires are mainly composed of natural rubber (NB), styrene-butadiene rubber (SBR) and butadiene rubber (BR), but according to the characteristics of tire parts The composition of the composition is determined as shown in the following Table 2 by analyzing the combination state of the car and truck.

구분division 승용차car 트럭truck 트레드Tread SBR-BRSBR-BR NRa-BR 또는 SBR-BRNR a -BR or SBR-BR 벨트belt NRNR NRNR 카아카스Caucas NR-SBR-BRNR-SBR-BR NR-BRNR-BR 싸이드 월(흑)Side wall (black) NR-SBR 또는 NR-BRNR-SBR or NR-BR NR-BRNR-BR 싸이드 월(백)Side wall (bag) NR-SBR-EPDM-ⅡRb NR-SBR-EPDM-IIR b -- 라이나Lina NR-SBR 또는 NR-SBR-ⅡRNR-SBR or NR-SBR-IIR NR-ⅡRNR-IIR

상기 표 2에서 a는 폴리이소프렌고무(IR; polyisoprene rubber)를 포함하믐 것이고, b는 할로겐화부틸(ⅡR; isobutylene-isoprene rubber)을 포함하는 것을 의미한다.In Table 2, a will include polyisoprene rubber (IR; polyisoprene rubber), b means butyl halide (IIR; isobutylene-isoprene rubber).

이와 같이, 본 발명에 있어서는 폐자원인 W-PE, W-EVA, W-RUBBER, GTR 및 경우에 따라서는 PE, NBR, EPDM을 블렌드하여 원료수지로 사용함으로서, 폐기물을 처리하는 과정을 거치면서 이를 효과적으로 처리하여 기계적 성질 및 화학안정성 등과 같은 제반 물성을 증진시켜서 유용한 원료인 발포체 조성물로 활용하여 재활용에 따른 환경친화성을 추구하고자 하였으며, 이로 인해 매우 저렴한 가격으로 발포체 조성물을 제조하여 경제성을 극대화할 수 있는 것이다. 그리고 본 발명에서는 상기 수지성분으로서 7가지 성분 중에서 1성분을 사용하는 경우는 물론 1성분 이상 7성분 모두를 사용하는 경우도 포함한다.As described above, in the present invention, W-PE, W-EVA, W-RUBBER, GTR, and in some cases, PE, NBR, and EPDM are blended to be used as raw material resins, thereby treating waste. By treating this effectively, it improves various properties such as mechanical properties and chemical stability, and utilizes it as a foam material, which is a useful raw material, to seek environmental friendliness according to recycling. It can be. In addition, in this invention, the case where one component is used among seven components as said resin component is also included, The case where one or more seven components are used is used.

그리고 본 발명에서는 환경 및 안전성을 고려하여 할로겐계 난연제를 사용하지 아니하고, 무기계 난연제(Al(OH)3등) 및 인계 난연제를 사용함으로써 난연성을 극대화하였다. 일반적으로, 할로겐 화합물은 근본적으로 기체 상에서 발생하는 라디칼을 안정화시켜 난연 효과를 가지게 되는데, 그 매카니즘은 다음 반응식 1과 같은 화학반응으로 추론되고 있다.In the present invention, the flame retardant is maximized by using an inorganic flame retardant (Al (OH) 3 ) and a phosphorus flame retardant without using a halogen flame retardant in consideration of environment and safety. In general, halogenated compounds have a flame retardant effect by fundamentally stabilizing radicals generated in the gas phase, and the mechanism is inferred by a chemical reaction as in Scheme 1 below.

HO· + HX ---> HOH + X· 금지반응HO · + HX ---> HOH + X

X· + RH ---> HX + R· 재생반응 (연쇄반응의 정지)X · + RH ---> HX + R · Regeneration (Stop chain reaction)

XO· + ·OH ---> HX + O2(활성 O·와 ·OH의 농도를 줄이고 연쇄반응을 정지시켜 난연효과)XO · + · OH ---> HX + O 2 (flame retardant effect by reducing the concentration of active O · and · OH and stopping the chain reaction)

X· + O·+ M ---> XO· + M·X + O + M ---> XO + M

X2+ O· ---> XO· + X·(분해시 불연성 가스를 발생 O2를 차단하는 효과) X 2 + O · ---> XO · + X · ( during decomposition effect to block the non-flammable gas generating O 2)

O· + ·OX ---> O2+ X·O + OX ---> O 2 + X

상기 반응식 1에서 연소시 ·OH 라디칼과 같은 활성화 라디칼은 화학반응을 통하여 열을 발생하게 되며, 이때 발생된 잠열은 주위 인화성 물질이 연소하는데 소요되는 에너지원으로 작용하게 된다.In the reaction scheme 1, activating radicals such as OH radicals generate heat through a chemical reaction, and the latent heat generated serves as an energy source required for combustion of surrounding flammable materials.

한편, 난연제는 위 매카니즘처럼 활성 라디칼인 O· 및 ·OH의 농도를 줄이고 연쇄반응을 정지시켜 난연 효과를 부여하게 되는데, 연소시 C-X 결합의 절단은 흡열반응으로 가연성 물질의 연소열을 감소시키는 효과가 있다. 또한 분해시 불연성 기체를 발생시켜 산소를 차단하는 효과도 있다. 그러므로, 실제적인 난연효과는 HX가 부여하게 되며 반응하여 저에너지원의 X라디칼로 전환된다. HX는 가연성 물질의 산화촉매로 작용하고 산화된 물질은 환 구조화되어 결과적으로는 탄소복합화합물인 챠르(char)를 생성하게 된다. 이렇게 생성된 탄소화합물은 산소 및 잠열을 차단하여 가연성 물질이 연소영역 이하에 있도록 도와주는 역할을 하게된다.On the other hand, the flame retardant gives a flame retardant effect by reducing the concentration of active radicals O · and · OH and stopping the chain reaction as in the above mechanism, the cleavage of the CX bond during combustion is an endothermic reaction to reduce the heat of combustion of the combustible material have. It also has the effect of blocking oxygen by generating incombustible gases during decomposition. Therefore, the actual flame retardant effect is given by HX and reacts and is converted into X radical of low energy source. HX acts as an oxidation catalyst of the combustible material, and the oxidized material is ring-structured, resulting in char, a carbon compound. The carbon compound thus produced serves to help prevent the combustible material from below the combustion zone by blocking oxygen and latent heat.

본 발명에서는 난연제로서 인체유해성을 감안하여 할로겐계를 배제하고 무기계 및 인계를 사용하는 바, 무기계 난연제로서는 예컨대, 수산화 알루미늄, 산화안티몬, 수산화 마그네슘 및 붕소 함유 화합물 등이 사용될 수 있고, 인계 난연제로서는 H-205(상품명), H-201(상품명) 등이 사용될 수 있다. 유기계 난연제와는 다르게 무기계 난연제는 열에 의해 휘발되지 않으며 분해되어 H2O, CO2, SO2, HCl과 같은 불연성 기체를 방출하고 대부분 흡열반응이다. 또, 기체상에서는 가연성 기체를 희석시키며 플라스틱 표면을 도포하여 산소의 접근을 방지하게 된다. 동시에, 고체상 표면에서 흡열반응을 통하여 플라스틱 냉각 및 열분해 물의 생성을 감소시키는 효과가 있다. 예컨대, 수산화알루미늄 및 수산화마그네슘은 다음 반응식 2와 같이 분해 후 물을 생성시키며, 이때 다량의 흡열이 동반되어 난연성을 부여하게 된다.In the present invention, the inorganic flame retardant is used to exclude the halogen type in consideration of human harmfulness as the flame retardant, and as the inorganic flame retardant, for example, aluminum hydroxide, antimony oxide, magnesium hydroxide and a boron-containing compound can be used. -205 (trade name), H-201 (trade name) and the like can be used. Unlike organic flame retardants, inorganic flame retardants are not volatilized by heat and decompose to release non-combustible gases such as H 2 O, CO 2 , SO 2 , HCl and are mostly endothermic. In the gas phase, the flammable gas is diluted and the plastic surface is coated to prevent the access of oxygen. At the same time, there is an effect of reducing the generation of plastic cooling and pyrolysis water through the endothermic reaction on the solid phase surface. For example, aluminum hydroxide and magnesium hydroxide produce water after decomposition as shown in Scheme 2, where a large amount of endotherm is accompanied to impart flame retardancy.

2Al(OH)3+ 가열 ------> Al2O3+ 3H2O -298KJ/mol2Al (OH) 3 + heating ------> Al 2 O 3 + 3H 2 O -298KJ / mol

Mg(OH)2+ 가열 ------> MgO + H2O -328KJ/molMg (OH) 2 + heating ------> MgO + H 2 O -328KJ / mol

그리고, 산화안티몬으로는 삼산화안티몬 및 오산화안티몬이 사용될 수 있으며 그 자체로는 사용치 않고 할로겐 함유 난연제의 난연 상승효과를 나타내는 보조제로 사용되고 있는 바, 그 매카니즘은 다음과 같이 추론되고 있다. 즉, 다음 반응식 3의 각 단계 반응에서 생성된 SbCl3는 흡열반응을 통하여 플라스틱의 온도를 낮추는 효과가 있으며, HCl 및 HBr과 같이 라디칼 인터셉터로 작용한다. 일부에서는 SbCl3및 SbOCl 모두 연소영역에서 할로겐 방출속도를 낮추어 라디칼 인터셉터로 작용하는 시간을 늘려줌으로써 난연 상승 효과를 나타낸다고 보는 견해도 있다.In addition, antimony trioxide and antimony pentoxide may be used as antimony oxide, and it is used as an adjuvant that exhibits a flame retardant synergistic effect of a halogen-containing flame retardant without being used as such. The mechanism is inferred as follows. That is, SbCl 3 generated in each step reaction of Scheme 3 has an effect of lowering the temperature of the plastic through endothermic reaction, and acts as a radical interceptor like HCl and HBr. Some have suggested that both SbCl 3 and SbOCl have a flame retardant synergistic effect by lowering the rate of halogen release in the combustion zone, increasing the time to act as a radical interceptor.

또한, 발생되는 무거운 기체는 고체상 표면을 감싸게 되므로 산소 접근을 차단하여 난연효과를 나타내게 된다. 이러한 반응 매카니즘은 다음 반응식 3과 같이 정리할 수 있다.In addition, the generated heavy gas surrounds the surface of the solid phase, thereby blocking oxygen access and thus exhibiting a flame retardant effect. This reaction mechanism can be summarized as in Scheme 3 below.

Sb2O3+ 2HCl(∼250℃ 유지) ----------> 2SbOCl +H2OSb 2 O 3 + 2HCl (~ 250 ° C) ----------> 2SbOCl + H 2 O

5SCOCl (245∼280℃ 유지)----------> Sb4O5Cl + SbCl35SCOCl (Maintain 245 ~ 280 ℃) ----------> Sb 4 O 5 Cl + SbCl 3

4Sb4O5Cl2(410∼475℃ 유지)----------> 5Sb3O4Cl + SbCl34Sb 4 O 5 Cl 2 (Maintain 410 ~ 475 ℃) ----------> 5Sb 3 O 4 Cl + SbCl 3

3Sb3O4Cl (475∼565℃ 유지)----------> 4Sb2O3+ SbCl33Sb 3 O 4 Cl (Maintain 475 ~ 565 ℃) ----------> 4Sb 2 O 3 + SbCl 3

Sb2O3(S) ( 685℃ 유지) ----------> Sb2O3(I)Sb 2 O 3 (S) (Maintain at 685 ℃) ----------> Sb 2 O 3 (I)

그리고, 인계난연제는 하이드록시기를 많이 갖는 고분자에 특히 우수한 방염효과를 줄 수 있다. 이러한 매카니즘은 다음 반응식 4와 같이 첨가된 인(P) 화합물이 모재 고분자의 탈수반응을 촉진시키고 이로 인한 가교(crosslink)가 일어나 불연성의 탄화성 챠르(carbonaceous char)를 생성하기 때문으로 알려져 있다(condensed-phase mechanism).In addition, the phosphorus-based flame retardant can give a particularly excellent flame retardant effect on the polymer having a large number of hydroxyl groups. This mechanism is known because the phosphorus (P) compound added as in Scheme 4 promotes the dehydration reaction of the base polymer and crosslinking results in the formation of non-combustible carbonaceous char (condensed). -phase mechanism).

이때 표면에 존재하는 피로인산(pyrophosphoric acid)과 메타포스포산(metaphosphoric acid)등은 탈수효과를 통해 챠르형성을 증진시키는 역할을 하고, 메타인산은 쉽게 반응이 일어난다. 그리고 생성된 챠르 때문에 재료의 내부에는 열이 침투하기 어렵게 되어 자체 절연층이 생성되는 것이다. 또 탈수반응으로 발생한 물은 가연성 기체의 농도를 희석시키는 효과를 가져와 방염효과를 증진시키게 되며 생성된 탄화성 중간체가 챠르로 전환됨으로서 매연 발생량이 현저히 줄어든다.At this time, pyrophosphoric acid and metaphosphoric acid on the surface play a role of enhancing char formation through dehydration effect, and metaphosphate easily reacts. And because of the generated char, it is difficult for heat to penetrate inside the material, and thus a self insulating layer is generated. In addition, the water generated by the dehydration reaction has the effect of diluting the concentration of the flammable gas to enhance the flame retardant effect, and the amount of soot generated is significantly reduced by converting the generated carbonizable intermediate into char.

그리고, 본 발명에서는 난연제로 환경적인 면과 가공성에 미치는 영향을 고려하여 환경친화적인 조성물을 제조하고자 할로겐계 난연제의 사용을 배제하는 데, 바람직하게는 무기계 난연제인 Al(OH)3, Mg(OH)2, 마그네슘실리케이트,보론산아연(Zinc Borate), 황산아연(Zinc Sulfide), Sb2O3, Sb2O5,황토를, 그리고 인계 난연제인 H-205(상품명), H-201(상품명), DPK(상품명), 적인, TCEP(상품명), TCPP(상품명) 중에서 선택된 것을 사용하는 것이 환경적인 면을 고려하면서도 난연성을 증진하는 효과를 나타내도록 하는데 바람직하다. 본 발명에서는 난연제로서 상기 14종의 성분을 모두 사용하거나 그 중에서 하나 또는 그 이상의 성분을 선택하여 사용하는 것도 포함한다.In addition, the present invention excludes the use of halogen-based flame retardant to prepare an environmentally friendly composition in consideration of the effect on the environmental surface and processability as a flame retardant, preferably Al (OH) 3 , Mg (OH) ) 2, magnesium silicate, acid zinc (zinc Borate), zinc sulfate (zinc Sulfide), Sb 2 O 3, Sb 2 O 5, H-205 of the yellow earth, and phosphorus-based flame retardant (trade name), H-201 (trade name ), DPK (trade name), enemy, TCEP (trade name), TCPP (trade name), it is desirable to have an effect of improving the flame retardancy while considering the environmental aspects. The present invention includes all of the above 14 components as flame retardants, or one or more components selected from them.

그리고, 본 발명에서 바람직하게 사용하는 황토는 카올린 광물(Al2O3·2SiO2·nH2O)을 포함하여 몬모릴로나이트(Al2O3·4SiO2·6H2O), 피로필라이트(Al2O3·4SiO2·H2O), 일라이트{KAl2(OH)2[AlSi3(O,OH)10]}, 탈크(3MgO·4SiO2·H2O) 등의 성분을 지칭한다. 이들 황토는 종류에 따라 유기물질의 인터캘레이션(intercalation)이 가능하고 약 800 m2/g 이상의 극히 높은 비표면적을 갖기 때문에 흡수제의 역할을 하게되며 고도의 표면흡착으로 인한 효율적인 필러로 사용될 수 있다.Then, the yellow earth, which is preferably used in the present invention include kaolin mineral (Al 2 O 3 · 2SiO 2 · nH 2 O) and Montmorillonite (Al 2 O 3 · 4SiO 2 · 6H 2 O), fatigue fill light (Al 2 including O 3 · 4SiO refers to a component such as 2 · H 2 O), illite {KAl 2 (OH) 2 [ AlSi 3 (O, OH) 10]}, talc (3MgO · 4SiO 2 · H 2 O). These loess can act as absorbent because they can intercalate organic materials and have very high specific surface area of about 800 m 2 / g or more and can be used as efficient filler due to high surface adsorption. .

그리고 본 발명에서 첨가제로 사용하는 발포제로는 유기화학발포제로써 예컨대, 아조계 화합물인 아조디카본아미드류(ADCA, AC-1000) 또는 N,N'-디니트로소펜타메틸렌테트라민(N,N′-Dinitrosopentamethylenetetramine; DPT)을, 무기화학발포제로써 중탄산나트륨(상품명 kycerol-91)를 바람직하게 사용할 수 있고, 가공성 및 생산성에 영향을 주게 될 발포성 및 온도를 조절하기 위해 발포조제로서는 요소계발포조제(상품명 Cellex-A)를, 열전달촉진제로는 ZnO를 바람직하게 사용할 수 있다.The blowing agent used as an additive in the present invention is an organic chemical foaming agent, for example, azodicarbonamides (ADCA, AC-1000) or N, N'-dinitrosopentamethylenetetramine (N, N), which are azo compounds. ′ -Dinitrosopentamethylenetetramine (DPT) can preferably be used sodium bicarbonate (trade name kycerol-91) as an inorganic chemical foaming agent, and as a foaming aid to control foamability and temperature which will affect processability and productivity, The brand name Cellex-A) and ZnO can be used preferably as a heat transfer accelerator.

또한, 본 발명에서 사용되는 가교제로서는 과산화물 가교제로 이소프로필벤젠(Isopropylbenzene) 또는디큐밀퍼옥사이드( Dicumylperoxide; DCP)를 상기한 바와 같이 적정비율로 바람직하게 사용할 수 있다.As the crosslinking agent used in the present invention, isopropylbenzene or dicumylperoxide (DCP) can be preferably used at an appropriate ratio as described above as a peroxide crosslinking agent.

안정화제로는 다량의 충전제 사용에 따른 발포속도 및 균일한 셀(Cell)을 얻는데 미치는 영향을 고려하여 Ba-Zn계의 안정제를 사용하는 바, 예컨대 상품명 BZ-806F 및 BZ-119를 바람직하게 사용할 수 있다.As a stabilizer, a Ba-Zn-based stabilizer is used in consideration of the foaming rate and the effect of obtaining a uniform cell by using a large amount of filler. For example, the trade names BZ-806F and BZ-119 can be preferably used. have.

그리고 가소제는 수지와의 상용성, 가공성 및 발포성을 고려하여 디에틸헥실프탈레이트(DOP), 파라핀오일(P3∼P6) 및 디페닐크레실포스페이트(Diphenylchresylphosphate)류(상품명 DPK)를 사용하는 것이 바람직하고, 내부이형제는 고무가공향상제로 폴리에틸렌 왁스(LC-102N) 및 프로세싱 에이드(MMA based acrylic processing aid)를 , 외부이형제로는 압출성 등을 고려하여 스테아르산(Stearic Acid)을 사용하는 것이 바람직하다.In addition, it is preferable to use diethylhexyl phthalate (DOP), paraffin oil (P3 ~ P6) and diphenylchresylphosphate (trade name DPK) in consideration of compatibility, processability and foamability with the plasticizer. In addition, the internal mold release agent is a polyethylene processing agent (LC-102N) and a processing aid (MMA based acrylic processing aid) as a rubber processing enhancer, stearic acid (Stearic Acid) is preferably used in consideration of the extrusion property as an external mold release agent.

이와 같은 조성으로 제조한 본 발명의 난연성 발포체 조성물은 성형을 위해 바람직하기로는 110∼138℃에서 혼합하고 압출, 압축 또는 사출하여 다양한 성형품의 형태로 발포체를 제조할 수 있는 것이다.The flame-retardant foam composition of the present invention prepared in such a composition can be prepared in a variety of molded articles by mixing, extrusion, compression or injection at 110 ~ 138 ℃ preferably for molding.

상기와 같은, 본 발명에 따른 조성물의 제조방법은 다음의 각 실시예를 통하여 하나의 예로서 설명하겠는 바, 이러한 본 발명의 실시예는 사용 용도에 따라 제조되는 사례를 예시한 것이지 본 발명을 제한하려는 것은 아니며, 실시예에서 조성물의 함량을 표시한 퍼센트(%)는 별도의 언급이 없는 한 중량비를 의미한다.As described above, the method for producing a composition according to the present invention will be described as an example through each of the following examples, and the embodiment of the present invention is intended to illustrate the case of manufacture according to the intended use, but the present invention is limited. It is not intended that, in the examples, the percentage (%) indicating the content of the composition means weight ratio unless otherwise stated.

본 실시예에서 사용된 성분의 약어는 W-PE는 폐폴리에틸렌, W-EVA는 폐에틸렌비닐공중합체, W-RUBBER은 폐고무, GTR은 폐타이어고무분말, V-PE는 폴리에틸렌(Virgin-PE), NBR은 니트릴고무, EPDM은 에틸렌 프로필렌 공중합체를 의미하는 것으로 한다.The abbreviation of the components used in this embodiment is W-PE is waste polyethylene, W-EVA is waste ethylene vinyl copolymer, W-RUBBER is waste rubber, GTR is waste tire rubber powder, and V-PE is polyethylene (Virgin-PE ), NBR means nitrile rubber and EPDM means ethylene propylene copolymer.

실시 예 1 : 수지/첨가제 블렌드[Ⅰ]Example 1 Resin / Additive Blend [I]

수지/첨가제 블렌드의 조성비, 온도 및 시간에 따른 열 및 동력학적 거동를 관찰하고, 이를 난연성 및 발포성(발포율, cell structure, 표면상태 등)과 관련지어 검토하였다. 특히, 경제성 및 환경친화성을 고려하여 수지를 W-PE, W-EVA, W-RUBBER, GTR로 구성하고, 경우에 따라서는 V-PE, NBR, EPDM을 소량 사용하고 수지 조성비, 수지/난연제의 조성비, 난연제의 종류 및 함량, 기타 첨가제의 종류 및 함량을 조절하였다.The thermal and dynamic behaviors of the resin / additive blends with temperature, temperature and time were observed and examined in relation to flame retardancy and foamability (foaming rate, cell structure, surface condition, etc.). In particular, the resin is composed of W-PE, W-EVA, W-RUBBER, and GTR in consideration of economical and environmental friendliness.In some cases, a small amount of V-PE, NBR, EPDM is used, and the resin composition ratio, resin / flame retardant is used. The composition ratio of the, the type and content of the flame retardant, and the type and content of other additives were adjusted.

수지성분의 조성비는 다음의 표3과 같이 구성하였고, 블렌드는 Rheomixer(HAAKE)에서 온도 110 ∼ 138℃, RPM50, 시간 20∼25분으로, 그리고 압출은 미니맥스 몰더(Bau.915L)에서 온도 110∼138℃, Rs 5, 시간 1∼3분 이내로, 발포는 오븐(Oven; HB-503M)에서 온도 120∼210℃로 시행하였다. 그리고, 발포성 조사는 발포 후 표면상태, 발포율, 셀 구조 등을 조사하였고, 난연성 조사는 LOI(Atlas) 테스트로써 ASTM-D-2863에 의거하여 시편 크기를 넓이 6.5+/-0.5mm, 두께 2.0+/-0.25mm, 길이 7.0∼150mm로 하여 산소와 질소의 주입량을 임의로 조절하면서 한계산소지수(LOI; limiting Oxygen Index)를 측정하였고, 모폴로지 조사는 전자현미경 SEM(JEOL JSM-840A)을 이용하여 시편의 파단면을 관찰하였다.The composition ratio of the resin components is shown in the following Table 3, the blend is 110 ~ 138 ℃, RPM50, time 20-25 minutes in Rheomixer (HAAKE), and the extrusion is temperature 110 in Minimax Molder (Bau.915L) Foaming was performed at 120-210 degreeC in oven (Oven; HB-503M) within -138 degreeC, Rs5 and time 1-3 minutes. In addition, the foaming test investigated the surface condition, foaming rate, cell structure, etc. after foaming, and the flame retardancy test was a LOI (Atlas) test, and the specimen size was 6.5 +/- 0.5mm wide and 2.0 thick according to ASTM-D-2863. Limiting Oxygen Index (LOI) was measured by arbitrarily adjusting the injection amount of oxygen and nitrogen at +/- 0.25mm and length of 7.0 ~ 150mm, and morphology investigation was performed by electron microscope SEM (JEOL JSM-840A). The fracture surface of the specimen was observed.

그 결과, 시료1∼7의 경우 수지 조성으로 폐자원(W-PE, W-EVA)으로만 구성하고 난연성 및 발포성을 보고자 한 것으로 다음의 표 3과 같이 W-PE/W-EVA=100∼0/0∼100 wt%일 때 발포가 140∼195℃의 온도구간에서 일어나고, 이때 소요되는 시간이 25∼30분이며, 표면이 매끄럽고, 셀 구조는 무기화학발포제를 사용한 시료3의 오픈셀(open-cell)을 제외하고는 모두가 밀폐셀(closed-cell)로써 균일하며, 반지름 방향으로 약 320∼355%의 발포율을 갖는다는 사실을 확인할 수 있었다.As a result, in the case of Samples 1 to 7, the resin composition consisted only of waste resources (W-PE, W-EVA) and was intended to see flame retardancy and foaming properties. W-PE / W-EVA = 100 ~ When 0/0 to 100 wt%, foaming occurs at a temperature range of 140 to 195 ° C., and the time required is 25 to 30 minutes, the surface is smooth, and the cell structure is an open cell of Sample 3 using an inorganic chemical foaming agent. Except open-cell, all were uniform as closed-cells, and it was confirmed that they had a foaming rate of about 320 to 355% in the radial direction.

그리고, LOI 테스트 결과 한계산소지수가 28∼35로써 실용적인 면에서 상당히 높은 값을 보여줌으로써 기존 발포체에 비해 난연성이 우수함을 확인할 수 있었다.As a result of the LOI test, the marginal oxygen index was 28 to 35, which showed a considerably high value in terms of practicality, and thus, it was confirmed that the flame resistance was superior to the existing foam.

그리고 시료 8∼13의 경우 발포성에 대한 PE(Virgin-PE)의 영향을 보고자한 것으로 다음의 표 3과 같이 W-PE/W-EVA/V-PE=90∼50/90∼50/10∼50 wt%일 때 발포가 140∼193℃의 온도구간에서 일어나고, 이때 소요되는 시간이 25∼28분이며, 표면이 매끄럽고, 셀 구조는 유기화학발포제중 DPT와 AC-1000을 사용한 시료 10, 11의 준 오픈셀(semi-open cell)을 제외하고는 모두가 밀폐셀(closed-cell)로써 균일하며, 반지름 방향으로 약 320∼350%의 발포율을 갖는다는 사실을 확인할 수 있었다. 따라서 폐자원(W-PE, W-EVA)만으로 구성된 것과 비교해 발포성이 비슷하였다. 이로써 수지 조성이 폐자원으로 구성된 경우 발포성이 신재로 구성된 것에 뒤지지 않음을 확인할 수 있었으므로 경제성면에서 매우 뛰어날 것으로 생각된다.In the case of samples 8 to 13, the effect of PE (Virgin-PE) on foamability is to be examined. W-PE / W-EVA / V-PE = 90 to 50/90 to 50/10 to Foaming occurs at a temperature range of 140 to 193 ° C. at 50 wt%, the time required is 25 to 28 minutes, the surface is smooth, and the cell structure is sample 10, 11 using DPT and AC-1000 in organic chemical foaming agents. Except for semi-open cells, all of them were uniform as closed cells and were found to have a foaming rate of about 320-350% in the radial direction. Therefore, the foaming properties were similar compared to those consisting only of waste resources (W-PE, W-EVA). As a result, when the resin composition was composed of waste resources, it was confirmed that foamability was inferior to that of new materials.

그리고, LOI 테스트 결과 한계산소지수가 31∼35로써 매우 높은 값을 보여줌으로써 이 또한 기존 발포체에 비해 난연성이 우수함을 확인할 수 있었다.In addition, the LOI test results showed that the marginal oxygen index was very high as 31 to 35, which also confirmed that the flame retardancy was superior to the existing foam.

그리고 시료 14∼16의 경우 표 3과 같이 수지의 조성이 V-PE로만 구성되었을 때 발포성 및 난연성을 보고자 한 것으로 발포가 130∼175℃의 온도구간에서 일어나고, 이때 소요되는 시간이 30분이며, 표면이 매끄럽고, 밀폐셀(closed-cell)로써 균일하며, 반지름 방향으로 약 340∼355%의 발포율을 갖는다는 사실을 확인할 수 있었다.In the case of Samples 14 to 16, when the composition of the resin is composed of only V-PE, as shown in Table 3, foaming and flame retardancy were intended to be observed. Foaming occurred at a temperature range of 130 to 175 ° C, and the time required was 30 minutes. It was confirmed that the surface was smooth, uniform as a closed cell, and had a foaming ratio of about 340 to 355% in the radial direction.

그리고, LOI 테스트 결과 한계산소지수가 37∼38로써 매우 높은 값을 보여줌으로써 이 또한 기존 발포체에 비해 난연성이 우수함을 확인할 수 있었다.In addition, the LOI test results showed that the marginal oxygen index was very high as 37 to 38, which also confirmed that the flame retardancy was superior to the existing foam.

그리고 수지 및 각 첨가제의 조성비에 따른 대표적인 시료 상호간의 발포율의 변화를 비교하면 다음과 같다.And comparing the change in the foaming ratio between the representative samples according to the composition ratio of the resin and each additive is as follows.

시료 1, 4, 7은 수지대비 난연제의 함량 증가에 따른 난연성 및 발포성 변화를 보고자 한 것으로써 수지대비 난연제의 함량이 증가할수록(시료1→시료7) 한계산소지수가 28, 31, 33으로 증가함을, 그러나 발포율은 반지름방향으로 355%, 330%, 320%로 다소 감소함을 확인할 수 있었다. 이는 수지대비 난연제의 상대적인 증가 즉, 상대적인 수지 량의 감소에 기인한 것으로 사료된다.Samples 1, 4, and 7 are intended to see the change in flame retardancy and foamability as the amount of flame retardant is increased compared to resin, and as the amount of flame retardant is increased from resin (sample 1 to sample 7), the limit oxygen index increases to 28, 31, 33. However, the foaming rate was found to decrease slightly to 355%, 330%, 320% in the radial direction. This may be due to the relative increase in flame retardants relative to resin, that is, the decrease in the relative amount of resin.

시료 2, 3, 4는 수지대비 난연제의 함량이 동일할 때 수지조성비에 따른 발포성 및 난연성의 변화를 보고자한 것으로써 시료 모두 한계산소지수가 31로 같음을, 발포율은 반지름방향으로 약 325∼330%로 미소한 차이는 있으나 비슷함을 확인하였고, 시료3의 경우 무기화학발포제의 사용에 따라 open cell 구조를 가짐을 확인할 수 있었다. 따라서 수지 조성이 W-PE로만 구성되나 W-EVA로 구성되나 발포율에는 별차이를 보이지 않았으므로 이 모두 발포성 및 난연성을 고려해볼 때 우수한 발포체를 얻기에 바람직하게 사용할 수 있음을 확인하였다.Samples 2, 3, and 4 are intended to see the change in foamability and flame retardancy according to the resin composition ratio when the content of flame retardant to resin is the same. It was confirmed that there was a slight difference with 330%, but similar, and in case of Sample 3, it was confirmed that it had an open cell structure according to the use of the inorganic chemical foaming agent. Therefore, the resin composition is composed only of W-PE, but composed of W-EVA, but did not show any difference in the foaming rate, it was confirmed that all of them can be preferably used to obtain excellent foam in consideration of the foamability and flame retardancy.

시료 12, 13은 수지대비 난연제의 함량이 동일할 때 난연제의 종류에 따른 난연성 및 발포성의 변화를 보고자한 것으로써 한계산소지수가 시료 12의 경우 34로 시료 13의 33에 비해 높음을 확인하였고, 발포율은 시료 13의 경우 반지름방향으로 350%로 시료 12의 330%에 비해 오히려 높음을 확인하였다. 따라서 시료 12의 한계산소지수가 더 높음은 난연제 중 인계난연제의 사용에 따른 시너지 효과로 보여지며, 발포율이 낮음은 이 또한 인계난연제의 사용에 따른 블렌드물의 점도상승에 따른 것으로 사료된다.Samples 12 and 13 were intended to see the change in flame retardancy and foamability according to the type of flame retardant when the content of the flame retardant was the same as that of the resin. It was confirmed that the limit oxygen index was 34 in Sample 12, which was higher than in Sample 13 33. In the case of Sample 13, the foaming rate was found to be 350% in the radial direction, rather than 330% of Sample 12. Therefore, the higher limit oxygen index of sample 12 is shown to be synergistic effect of the use of phosphorus-based flame retardant among flame retardants, and the low foaming rate is also considered to be due to the increase in viscosity of the blend according to the use of phosphorus-based flame retardant.

이로써 위 실험결과로부터 수지 조성비가 W-PE/W-EVA/V-PE = 0∼100/0∼100/0∼100 Wt%일 때, 그리고 가공조건으로 블렌드를 110∼138℃로 하였을 때, 발포율이 반지름방향으로 약 3∼3.5배를 갖고, 표면이 매끄럽고 셀구조가 closed cell, semi-open cell 및 open cell로 균일하고 탄성율이 우수하고, 한계산소지수가 28∼38로 난연성 및 발포성이 매우 우수한 발포체를 얻을 수 있는 바람직한 배합 및 가공조건이라는 것을 규명할 수 있었다.As a result, when the resin composition ratio is W-PE / W-EVA / V-PE = 0 to 100/0 to 100/0 to 100 Wt%, and the blend is 110 to 138 ° C under the processing conditions, The foaming rate is about 3 to 3.5 times in the radial direction, the surface is smooth, the cell structure is uniform, the elasticity is excellent with closed cell, semi-open cell and open cell, and the marginal oxygen index is 28 to 38. It was found that it is a desirable compounding and processing condition to obtain a very good foam.

또한 수지조성비, 수지/난연제의 조성비 및 각 첨가제의 상호작용에 따른 난연성 및 발포율을 확인할 수 있었고, 그리고 상호작용을 고려한 수지 조성비, 수지 대비 첨가제(난연제, 발포제 및 가교제 등)의 종류 및 함량 등이 난연성 및 발포성(발포율 및 셀 구조)에 영향을 주는 중요한 인자임을 규명할 수 있었다.In addition, the resin composition ratio, the composition ratio of the resin / flame retardant, and the flame retardancy and foaming rate according to the interaction of each additive were confirmed, and the resin composition ratio considering the interaction, the type and content of the additives (flame retardant, foaming agent and crosslinking agent, etc.) compared to the resin It was found to be an important factor influencing this flame retardancy and foamability (foam rate and cell structure).

그리고, 위 결과에 대한 관찰 결과는 다음의 표 4와 첨부도면 도1(시료1), 도2(시료4), 도3(시료7), 도4(시료8), 도5(시료11), 도6(시료13), 도7(시료14)에 나타내었다.Observation results for the above results are shown in Table 4 and accompanying drawings, Figure 1 (Sample 1), Figure 2 (Sample 4), Figure 3 (Sample 7), Figure 4 (Sample 8), and Figure 5 (Sample 11). 6 (sample 13) and 7 (sample 14).

시료번호조성성분Sample Number Composition 1One 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 수지Suzy W-PEW-PE 100100 9090 7070 5050 3030 1010 00 9090 7070 5050 W-EVAW-EVA 00 1010 3030 5050 7070 9090 100100 9090 7070 5050 W-RUBBERW-RUBBER GTRGTR V-PEV-PE 1010 3030 5050 1010 3030 5050 100100 100100 100100 NBRNBR EPDMEPDM 난연제Flame retardant Al(OH)3 Al (OH) 3 9090 120120 110110 100100 120120 120120 130130 140140 6060 2020 4040 140140 140140 180180 180180 180180 Mg(OH)2 Mg (OH) 2 2020 2020 3030 4040 2020 2020 3030 2020 8080 120120 100100 2020 2020 마그네슘실리케이트Magnesium silicate 55 Zinc BorateZinc borate Zinc SulfideZinc sulfate Sb2O3 Sb 2 O 3 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1515 1515 Sb2O5 Sb 2 O 5 1010 1010 1010 1010 H-201H-201 55 55 1010 55 H205H205 1010 1010 1010 1010 TCEPTCEP 1010 1010 5050 TCPPTCPP 5050 DPKDPK 55 1010 55 55 55 5050 적인Of 55 염소화파라핀Chlorinated Paraffin 황토ocher 1010 1010 1010 1010 2020 3030 1515 1515 가교제Crosslinking agent PerkadoxPerkadox 22 2.52.5 2.52.5 2.52.5 55 55 3.53.5 66 77 2.52.5 2.52.5 44 55 DCPDCP 55 44 44 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA 1818 1818 1818 1818 1818 1818 1818 1818 1818 2424 2424 2424 AC-1000AC-1000 1818 1010 DPTDPT 1818 88 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 1818 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 1One 22 1.51.5 내부이형제Internal release agent PE-WaxPE-Wax 44 2.52.5 2.52.5 외부이형제External release agent Stearic acidStearic acid 55 55 55 안정제stabilizator Ba-Zn계Ba-Zn system 가소제Plasticizer DOPDOP 열전달촉진제Heat transfer accelerator ZnOZnO 44 44 44 44 22 44 33 1One 33 33 33

구분시료번호Classification Sample Number 발 포Foot Po 조성Furtherance 한계산소지수(LOI)Limit Oxygen Index (LOI) 발포온도/소요시간(℃/min)Foaming temperature / time required (℃ / min) 발포율(%)Foaming rate (%) 표면surface 셀구조Cell structure W-PE/W-EVA/W-R/G/V-PE/N/E(wt%)W-PE / W-EVA / W-R / G / V-PE / N / E (wt%) 난연제/기타(PHR)Flame Retardant / Others (PHR) 1One 140→193/ 25140 → 193/25 355355 smoothsmooth closed cell, uniformclosed cell, uniform 100/0/0/0/0/0/0100/0/0/0/0/0/0 120/ 24.0120 / 24.0 2828 22 330330 90/10/0/0/0/0/090/10/0/0/0/0/0 150/ 24.5150 / 24.5 3131 33 325325 open cell, uniformopen cell, uniform 70/30/0/0/0/0/070/30/0/0/0/0/0 150/ 24.5150 / 24.5 3131 44 330330 closed cell,uniformclosed cell, uniform 50/50/0/0/0/0/050/50/0/0/0/0/0 150/ 24.5150 / 24.5 3131 55 140→195/ 30140 → 195/30 320320 30/70/0/0/0/0/030/70/0/0/0/0/0 165/ 25.0165 / 25.0 30.530.5 66 140→190/ 27140 → 190/27 325325 10/90/0/0/0/0/010/90/0/0/0/0/0 180/ 23.0180 / 23.0 33.533.5 77 140→193/ 25140 → 193/25 320320 0/100/0/0/0/0/00/100/0/0/0/0/0 195/ 21.5195 / 21.5 3333 88 140→190/ 27140 → 190/27 330330 90/0/0/0/10/0/090/0/0/0/10/0/0 200/ 25.0200 / 25.0 3535 99 330330 70/0/0/0/30/0/070/0/0/0/30/0/0 185/ 31.0185 / 31.0 3434 1010 140→193/ 25140 → 193/25 340340 semi-open cell, uniformsemi-open cell, uniform 50/0/0/0/50/0/050/0/0/0/50/0/0 150/ 24.5150 / 24.5 3131 1111 320320 0/90/0/0/10/0/00/90/0/0/10/0/0 150/ 20.5150 / 20.5 3232 1212 140→190/ 28140 → 190/28 330330 closed cell, uniformclosed cell, uniform 0/70/0/0/30/0/00/70/0/0/30/0/0 195/ 26.5195 / 26.5 3434 1313 140→193/ 25140 → 193/25 350350 0/50/0/0/50/0/00/50/0/0/50/0/0 195/ 24.0195 / 24.0 3333 1414 130→175/ 30130 → 175/30 355355 0/0/0/0/100/0/00/0/0/0/100/0/0 270/ 41.0270 / 41.0 3737 1515 340340 0/0/0/0/100/0/00/0/0/0/100/0/0 260/ 38.5260 / 38.5 3838 1616 340340 0/0/0/0/100/0/00/0/0/0/100/0/0 260/ 38.5260 / 38.5 3838

상기 표에서 수지(W-P/W-E/W-R/G/V-P/N/E)는 폐-PE/폐-EVA/폐-고무/GTR/Virgin-PE/NBR/EPDM을 의미한다.In the table, the resin (W-P / W-E / W-R / G / V-P / N / E) means waste-PE / waste-EVA / waste-rubber / GTR / Virgin-PE / NBR / EPDM.

실시 예 2. 수지/첨가제 블렌드[Ⅱ]Example 2. Resin / Additive Blend [II]

상기 실시예 1의 결과 수지 조성비가 W-PE/W-EVA/V-PE = 0∼100/0∼100/0∼100 Wt%의 범위내에서 셀구조가 closed cell, semi-open cell 및 open cell로 균일하고 발포율이 반지름 방향으로 약 300∼350%를 갖고 한계산소지수가 28∼38를 갖기 위한 적정 조성 및 가공조건을 규명할 수 있었으므로, 이를 토대로 재활용율에 주안점을 두고 W-RUBBER 및 GTR을 투입하고 수지 조성비, 수지/난연제의 조성비 및 기타첨가제의 함량을 조절하고 실시하였다. 이에 관한 조성비는 다음 표 5 와 같고, 블렌드, 압출 및 가교·발포 그리고 난연성, 발포성 및 모폴로지 조사는 상기 실시예 1에서와 동일한 방법으로 시행하였다.As a result of Example 1, the cell structure was closed cell, semi-open cell and open in the range of resin composition ratio W-PE / W-EVA / V-PE = 0-100 / 0-100 / 0-100 Wt% The optimum composition and processing conditions for the uniformity of the cell, the foaming rate of about 300-350% in the radial direction, and the limiting oxygen index of 28-38 could be identified. Based on this, the W-RUBBER And GTR was added and the resin composition ratio, the composition ratio of the resin / flame retardant and the content of other additives were adjusted. Composition ratios related to these are shown in Table 5 below, and blend, extrusion and crosslinking / foaming, and flame retardancy, foamability and morphology investigation were performed in the same manner as in Example 1.

그 결과, 시료 17∼41의 경우 수지조성이 다음의 표 5와 같이 W-PE/W-EVA/W-RUBBER/GTR/V-PE/NBR/EPDM = 0∼95/0∼85/0∼30/0∼40/0∼10/0∼30/0∼50 wt%일 때 발포가 140∼193℃의 온도구간에서 일어나고, 이때 소요되는 시간이 22∼30분이며, 표면이 매끄럽고, 셀구조는 closed cell, semi open cell로 균일하며, 반지름방향으로 약 300∼330%의 발포율을 갖는다는 사실을 확인할 수 있었다. 그리고 LOI테스트 결과 한계산소지수가 31.5∼40으로 매우 높은 값을 보여줌으로써 기존 발포체에 비해 난연성이 우수함을 확인할 수 있었다.As a result, in the case of Samples 17 to 41, the resin composition was W-PE / W-EVA / W-RUBBER / GTR / V-PE / NBR / EPDM = 0 to 95/0 to 85/0 to When 30/0 to 40/0 to 10/0 to 30/0 to 50 wt%, foaming occurs at a temperature range of 140 to 193 ° C, and the time required is 22 to 30 minutes, the surface is smooth, and the cell structure Was uniform as closed cell and semi open cell, and it was confirmed that the foaming rate was about 300 to 330% in the radial direction. As a result of the LOI test, the marginal oxygen index showed a very high value of 31.5 to 40, indicating that the flame retardancy was superior to the existing foam.

그리고 수지 및 각 첨가제의 조성비에 따른 대표적인 시료 상호간의 발포율의 변화를 비교하면 다음과 같다.And comparing the change in the foaming ratio between the representative samples according to the composition ratio of the resin and each additive is as follows.

시료 17, 18, 25의 경우 수지로 W-PE, W-EVA, W-RUBBER를 사용하고 이 때 W-RUBBER의 함량변화에 따른 발포성 및 수지/난연제의 조성변화에 따른 난연성 및 발포성의 변화를 보고자한 것으로써 수지대비 난연제의 함량이 감소함에 따라(시료 17→18→25) 한계산소지수가 37, 35, 31.5로 감소함을 확인하였다. 그러나 발포율은 반지름방향으로 시료 17, 18은 310%로 같음을, 시료 25는 330%로 증가함을 확인할수 있었다. 이는 수지대비 난연제의 상대적인 증가 즉, 상대적인 수지 량의 감소에 기인한 것으로 사료된다. 따라서 W-RUBBER의 함량이 30 wt%내에서는 발포율이 300%이상의 양호한 발포성을 갖음을 확인할 수 있었다.For samples 17, 18, and 25, W-PE, W-EVA, and W-RUBBER were used as resins, and the change in flame retardancy and foamability according to the change of foamability and the composition of resin / flame retardant according to the change of W-RUBBER content As a result, it was confirmed that the marginal oxygen index decreased to 37, 35, and 31.5 as the content of the flame retardant to the resin decreased (sample 17 → 18 → 25). However, the foaming rate was found to be equal to 310% in samples 17 and 18 in the radial direction, and increased to 330% in sample 25. This may be due to the relative increase in flame retardants relative to resin, that is, the decrease in the relative amount of resin. Therefore, it was confirmed that the foaming ratio of the W-RUBBER content within 30 wt% has a good foamability of more than 300%.

시료 29, 30, 31의 경우 수지대비 난연제의 함량이 동일할 때 난연제 및 발포제의 종류에 따른 난연성 및 발포성의 변화를 보고자한 것으로써 발포율은 300%, 300%, 305%로 비슷함을 확인하였고, 한계산소지수는 34, 36, 36.5로 차이가 있음을 확인하였고, 이는 인계난연제 중 H-201(상품명)의 상대적인 함량증가에 기인한 시너지 효과로 사료된다. 그리고 유기화학발포제중 AC-1000과 DPT를 사용한 시료 31의 경우 실시예 1에서와 같이 semi-open cell를 갖음을 확인할 수 있었다.For samples 29, 30, and 31, when the content of the flame retardant was the same as that of the resin, we wanted to see the change in the flame retardancy and the foamability according to the type of the flame retardant and the foaming agent. The marginal oxygen index was found to be 34, 36, 36.5, which is considered to be a synergistic effect due to the relative increase of H-201 (trade name) among the phosphorus flame retardants. In the case of Sample 31 using AC-1000 and DPT in the organic chemical foaming agent, it was confirmed that it had a semi-open cell as in Example 1.

시료 19, 20, 26의 경우 GTR의 함량 및 수지대비 난연제의 함량변화에 따른 발포성 및 난연성을 보고자한 것으로써 발포율이 300%, 310%, 330%임을, 한계산소지수가 37, 36, 33임을 확인하였다. 따라서 시료 19, 20의 경우 수지대비 난연제의 함량이 동일함에도 불구하고 발포율 및 한계산소지수의 차이를 보였는데, 이는 난연제의 종류 및 함량의 차이에 기인한 것이며, 시료 26의 경우 시료 19, 20에 비해 상대적으로 수지대비 난연제의 함량이 많이 적음에도 불구하고 한계산소지수의 차이가 크지 않음은 이 또한 난연제의 종류 및 함량의 차이에 기인한 것으로 즉, 시료 19, 20의 경우 사용된 DPK(상품명)는 난연효과보다는 가소제 역할이 큼을 보여주는 단적인 예이다. 그리고 GTR의 함량이 40wt% 범위내에서 발포율이 300%이상의 양호한 발포체를 얻을 수 있음을 확인하였다.For samples 19, 20, and 26, we wanted to see the foamability and flame retardancy according to the change of GTR content and the amount of flame retardant to resin, and the foaming rate was 300%, 310%, and 330%. It was confirmed that. Therefore, the samples 19 and 20 showed the difference in the foaming rate and the limit oxygen index even though the content of the flame retardant compared to the resin was the same, which was due to the difference in the type and content of the flame retardant, and in the case of sample 26, 20 Although the difference in the marginal oxygen index is not large despite the relatively small amount of flame retardant compared to that of the resin, this is also due to the difference in the type and content of the flame retardant, that is, DPK ( ) Is a simple example of the role of plasticizers rather than flame retardants. And it was confirmed that a good foam of more than 300% of the foaming rate can be obtained in the range of 40 wt% GTR.

시료 29∼36의 경우는 GTR의 함량을 30 wt%이상 사용하고 난연성 및 발포성의 변화를 보고자한 것으로써 V-PE 0∼10 wt%, NBR 0∼10 wt%, EPDM 0∼10 wt% 범위내에서 발포율이 300∼305%로 양호함을, 한계산소지수가 33∼37로 매우 높음을 확인하였다.In the case of samples 29 to 36, the content of VTR is 0 to 10 wt%, NBR 0 to 10 wt%, EPDM 0 to 10 wt% in order to use the GTR content of 30 wt% or more and to observe the change in flame retardancy and foamability. It was confirmed that the foaming ratio was good at 300 to 305%, and the marginal oxygen index was very high at 33 to 37.

시료 37, 38의 경우는 수지 대비 난연제의 함량 및 종류, 기타 첨가제의 함량 번화에 따른 난연성 및 발포성의 변화를 보고자한 것으로써 한계산소지수가 시료 38의 경우 37.5로 시료 37의 33에 비해 매우 높음을 확인하였고, 발포율은 시료 38이 300%, 시료 37이 305%로 비슷함을 확인하였다. 따라서 수지대비 난연제의 함량이 다소 낮은 시료 37의 경우 한계산소지수가 시료 38에 비해 매우 낮음은 가소제(DOP)의 영향에 기인한 것으로 사료된다.For samples 37 and 38, we wanted to see the change in flame retardancy and foaming properties of the flame retardant compared to resin and the amount of other additives. The limit oxygen index was 37.5 for sample 38, which is much higher than 33 for sample 37. It was confirmed that the foaming rate is similar to that of Sample 38, 300%, and Sample 37, 305%. Therefore, in case of sample 37, which is slightly lower in flame retardant content than resin, the limiting oxygen index is much lower than that of sample 38.

위 실험결과로부터 수지의 조성비가 W-PE/W-EVA/W-RUBBER/GTR/ V-PE/ NBR/EPDM = 0∼95/0∼85/0∼30/0∼40/0∼10/0∼30/0∼50 wt%일 때, 그리고 가공조건으로 블렌드를 110∼138℃로 하였을 때, 발포율이 반지름방향으로 약 3∼3.3배를 갖고, 표면이 매끄럽고 셀구조가 closed cell 및 semi-open cell로 균일하고 탄성율이 우수하고, 한계산소지수가 31.5∼40으로 난연성 및 발포성이 매우 우수한 발포체를 얻을 수 있는 바람직한 배합 및 가공조건이라는 것을 규명할 수 있었다.From the above test results, the composition ratio of resin is W-PE / W-EVA / W-RUBBER / GTR / V-PE / NBR / EPDM = 0 to 95/0 to 85/0 to 30/0 to 40/0 to 10 / 0 to 30/0 to 50 wt% and when the blend is 110 to 138 ° C under the processing conditions, the foaming rate is about 3 to 3.3 times in the radial direction, and the surface is smooth and the cell structure is closed. It was found that it is a desirable compounding and processing condition to obtain a foam having excellent uniformity and elastic modulus as an open cell, and a limiting oxygen index of 31.5 to 40 with excellent flame retardancy and foamability.

또한 수지조성비, 수지/난연제의 조성비 및 각 첨가제의 상호작용에 따른 난연성 및 발포율을 확인할 수 있었고, 그리고 상호작용을 고려한 수지 조성비, 수지 대비 첨가제(난연제, 발포제 및 가교제 등)의 종류 및 함량 등이 난연성 및 발포성(발포율 및 셀 구조)에 영향을 주는 중요한 인자임을 규명할 수 있었다.In addition, the resin composition ratio, the composition ratio of the resin / flame retardant, and the flame retardancy and foaming rate according to the interaction of each additive were confirmed, and the resin composition ratio considering the interaction, the type and content of the additives (flame retardant, foaming agent and crosslinking agent, etc.) compared to the resin It was found to be an important factor influencing this flame retardancy and foamability (foam rate and cell structure).

그리고, 위 결과에 대한 관찰 결과는 다음의 표 6과 첨부도면 도8(시료15), 도9(시료17), 도10(시료23), 도11(시료28), 도12(시료29), 도13(시료32), 도14(시료38), 도15(시료39), 도16(시료40)에 나타내었고, 이와 비교검토하기 위해 종래 알려진 난연성 폴리올레핀 발포체의 셀구조 및 첨가제의 분산정도를 도17(Young.)에 나타내었다.In addition, the observation results for the above results are shown in Table 6 and accompanying drawings, Figure 8 (Sample 15), Figure 9 (Sample 17), Figure 10 (Sample 23), Figure 11 (Sample 28), Figure 12 (Sample 29). 13 (Sample 32), 14 (Sample 38), 15 (Sample 39), and 16 (Sample 40), the cell structure and the degree of dispersion of the known flame retardant polyolefin foam for comparison. Is shown in Figure 17 (Young.).

시료번호조성성분Sample Number Composition 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 수지Suzy W-PEW-PE 9595 8080 9090 6060 8585 7575 6060 6060 6565 W-EVAW-EVA 7070 6060 8585 6060 6565 W-RUBBERW-RUBBER 55 2020 55 55 2020 1010 3030 55 1010 GTRGTR 1010 4040 1010 2020 2020 3030 4040 1010 3030 3030 3030 V-PEV-PE 55 55 NBRNBR EPDMEPDM 난연제Flame retardant Al(OH)3 Al (OH) 3 150150 180180 120120 120120 120120 120120 100100 100100 120120 110110 100100 100100 120120 120120 Mg(OH)2 Mg (OH) 2 5050 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 마그네슘실리케이트Magnesium silicate 1010 Zinc BorateZinc borate 55 1010 3030 5050 1010 Zinc SulfideZinc sulfate Sb2O3 Sb 2 O 3 1010 1010 1010 1010 1010 1010 1010 1010 Sb2O5 Sb 2 O 5 1010 1010 1010 1010 1010 H-201H-201 3030 5050 1010 55 1010 1010 1010 H205H205 3030 5050 55 55 1010 1010 TCEPTCEP 3030 1010 TCPPTCPP 3030 DPKDPK 1010 1010 1010 1010 1010 2020 55 1010 55 1010 1010 1010 1010 적인Of 1010 1010 1010 1010 1010 염소화파라핀Chlorinated Paraffin 3030 3030 황토ocher 3030 1010 1010 1010 1010 1010 2020 1010 가교제Crosslinking agent PerkadoxPerkadox 44 77 55 66 3.53.5 55 55 55 44 55 77 55 55 55 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 AC-1000AC-1000 DPTDPT 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 1818 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 1One 1One 1One 1One 1One 1.51.5 1One 1.51.5 내부이형제Internal release agent PE-WaxPE-Wax 55 1010 44 외부이형제External release agent Stearic acidStearic acid 44 1010 안정제stabilizator Ba-Zn계Ba-Zn system 1One 1One 1One 2.52.5 1One 2.52.5 가소제Plasticizer DOPDOP 55 55 열전달촉진제Heat transfer accelerator ZnOZnO 44 22 55 1One 2.52.5 2.52.5 22 33 1One 1.51.5 33 22

시료번호조성성분Sample Number Composition 3131 3232 3333 3434 3535 3636 3737 3838 3939 4040 4141 수지Suzy W-PEW-PE 5050 5050 5050 6060 3030 2020 3030 4040 W-EVAW-EVA 4040 5050 5050 3030 3030 2020 4040 4040 W-RUBBERW-RUBBER 1010 1010 1010 GTRGTR 4040 4040 4040 4040 4545 4040 1010 1010 1010 V-PEV-PE 55 1010 NBRNBR 55 1010 1010 1010 3030 EPDMEPDM 55 1010 1010 5050 2020 난연제Flame retardant Al(OH)3 Al (OH) 3 9090 120120 100100 8080 9090 8080 240240 180180 190190 250250 200200 Mg(OH)2 Mg (OH) 2 5050 2020 4040 6060 5050 6060 마그네슘실리케이트Magnesium silicate 2020 Zinc BorateZinc borate 1010 1010 1010 Zinc SulfideZinc sulfate 5050 Sb2O3 Sb 2 O 3 1010 1010 1010 1010 1010 1010 1010 3030 1010 1010 Sb2O5 Sb 2 O 5 3030 H-201H-201 2020 2020 55 55 2020 55 H205H205 1010 1010 1010 TCEPTCEP 55 1010 1010 55 TCPPTCPP DPKDPK 55 55 55 55 55 55 4040 3030 2020 적인Of 1010 염소화파라핀Chlorinated Paraffin 5050 황토ocher 2020 2020 1010 1010 2020 1010 1010 가교제Crosslinking agent PerkadoxPerkadox 66 77 55 44 66 44 2121 2222 2222 2525 2323 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA 1818 1818 1818 1818 1818 2424 3232 4040 2424 2424 AC-1000AC-1000 1010 DPTDPT 88 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 1One 내부이형제Internal release agent PE-WaxPE-Wax 55 1One 55 55 55 55 외부이형제External release agent Stearic acidStearic acid 55 2.52.5 55 55 55 55 안정제stabilizator Ba-Zn계Ba-Zn system 1.51.5 22 22 2.52.5 1.51.5 2.52.5 가소제Plasticizer DOPDOP 55 55 1010 1010 55 1010 5050 열전달촉진제Heat transfer accelerator ZnOZnO 1One 1One 22 44 1One 44 33 44 44 33 44

구분시료 번호Sample number 발 포Foot Po 조성Furtherance 한계산소지수(LOI)Limit Oxygen Index (LOI) 발포온도/소요시간(℃/min)Foaming temperature / time required (℃ / min) 발포율(%)Foaming rate (%) 표면surface 셀구조Cell structure W-P/W-E/W-R/G/V-P/N/E(wt%)W-P / W-E / W-R / G / V-P / N / E (wt%) 난연제/기타(PHR)Flame Retardant / Others (PHR) 1717 140→190/ 30140 → 190/30 310310 smoothsmooth closed cell, uniformclosed cell, uniform 95/0/5/0/0/0/095/0/5/0/0/0/0 230/ 36.0230 / 36.0 3737 1818 140→193/ 28140 → 193/28 310310 80/0/20/0/0/0/080/0/20/0/0/0/0 220/ 26.0220 / 26.0 3535 1919 300300 90/0/0/10/0/0/090/0/0/10/0/0/0 230/ 26.0230 / 26.0 3737 2020 310310 60/0/0/40/0/0/060/0/0/40/0/0/0 230/ 24.0230 / 24.0 3636 2121 140→185/ 22140 → 185/22 300300 85/0/5/10/0/0/085/0/5/10/0/0/0 230/ 37.5230 / 37.5 3737 2222 140→190/ 25140 → 190/25 300300 75/0/5/20/0/0/075/0/5/20/0/0/0 230/ 38.0230 / 38.0 37.537.5 2323 320320 60/0/20/20/0/0/060/0/20/20/0/0/0 185/ 27.5185 / 27.5 3333 2424 315315 60/0/10/30/0/0/060/0/10/30/0/0/0 185/ 27.5185 / 27.5 3333 2525 330330 0/70/30/0/0/0/00/70/30/0/0/0/0 165/ 24.0165 / 24.0 31.531.5 2626 330330 0/60/0/40/0/0/00/60/0/40/0/0/0 165/ 33.5165 / 33.5 3333 2727 320320 0/85/5/10/0/0/00/85/5/10/0/0/0 190/ 27.5190 / 27.5 3333 2828 315315 0/60/10/30/0/0/00/60/10/30/0/0/0 190/ 25.5190 / 25.5 3333 2929 300300 65/0/0/30/5/0/065/0/0/30/5/0/0 210/ 34.5210 / 34.5 3434 3030 300300 0/65/0/30/5/0/00/65/0/30/5/0/0 210/ 26.5210 / 26.5 3636 3131 305305 semi-open cell, uniformsemi-open cell, uniform 50/0/0/40/5/5/050/0/0/40/5/5/0 210/ 31.5210 / 31.5 36.536.5 3232 305305 closed cell, uniformclosed cell, uniform 0/40/0/40/10/10/00/40/0/40/10/10/0 215/ 34.0215 / 34.0 3737 3333 300300 50/0/0/40/0/10/050/0/0/40/0/10/0 200/ 37.0200 / 37.0 34.534.5 3434 140→187/ 30140 → 187/30 300300 0/50/0/40/0/10/00/50/0/40/0/10/0 180/ 38.5180 / 38.5 3333 3535 140→185/ 30140 → 185/30 300300 50/0/0/45/0/0/550/0/0/45/0/0/5 210/ 41.5210 / 41.5 3636 3636 140→185/ 30140 → 185/30 300300 0/50/0/40/0/0/100/50/0/40/0/0/10 180/ 38.5180 / 38.5 3333 3737 140→175/ 30140 → 175/30 305305 60/30/10/0/0/0/1060/30/10/0/0/0/10 260/ 101.5260 / 101.5 3333 3838 300300 30/30/0/10/0/30/030/30/0/10/0/30/0 270/ 68.0270 / 68.0 37.537.5 3939 300300 20/20/0/10/0/0/5020/20/0/10/0/0/50 270/ 76.0270 / 76.0 3737 4040 310310 30/40/10/0/0/0/2030/40/10/0/0/0/20 290/ 62.0290 / 62.0 4040 4141 305305 40/40/10/10/0/0/040/40/10/10/0/0/0 280/ 61.0280 / 61.0 39.539.5

상기 표에서 수지(W-P/W-E/W-R/G/V-P/N/E)는 폐-PE/폐-EVA/폐-고무/GTR/Virgin-PE/NBR/EPDM을 의미한다.In the table, the resin (W-P / W-E / W-R / G / V-P / N / E) means waste-PE / waste-EVA / waste-rubber / GTR / Virgin-PE / NBR / EPDM.

상술한 바와 같이, 본 발명은 종래와는 달리 바탕수지로 폐폴리에틸렌(W-PE), 폐에틸렌비닐공중합체(W-EVA), 폐고무(W-RUBBER) 또는 폐타이어고무분말(GTR;Ground tire rubber) 및 경우에 따라서는 폴리에틸렌(PE), 니트릴고무(NBR), 에틸렌 프로필렌 공중합체(EPDM)를 소량 블렌드하고, 여기에 무기계 및 인계 난연제, 발포제, 가교제 및 기타 첨가제를 적정량 혼합하여 만든 조성물로서, W-PE, W-EVA, W-RUBBER 및 GTR 등과 같은 폐자원을 매우 효율적 방법으로 재활용 추구하면서 그 결과물로 얻어지는 난연성 발포체 조성물은 환경친화성, 안정성 및 경제성과 기계적 물성이 우수하고 특히 난연성이 우수한 특성을 가지므로, 압출,압축또는 사출 성형에 의해 각종 건축자재와 자동차 부품, 스포츠 용품, 기타 공산품 등의 광범위한 분야에 매우 유용하게 적용할 수 있는 효과가 있는 것이다.As described above, the present invention is a waste plastic polyethylene (W-PE), waste ethylene vinyl copolymer (W-EVA), waste rubber (W-RUBBER) or waste tire rubber powder (GTR; tire rubber) and optionally a small amount of polyethylene (PE), nitrile rubber (NBR), ethylene propylene copolymer (EPDM), and a mixture of inorganic and phosphorus flame retardants, foaming agents, crosslinking agents and other additives. As a result, the resulting flame-retardant foam composition, which seeks to recycle waste resources such as W-PE, W-EVA, W-RUBBER and GTR in a highly efficient manner, has excellent environmental friendliness, stability and economy and mechanical properties, and particularly because this kind of excellent properties, the effect can be very useful for a wide range of fields such as various types of construction materials and auto parts, sports goods and other industrial products by extrusion, compression molding or injection It is.

Claims (6)

폐플라스틱, 폐고무 및 폐타이어고무분말을 함유하고, 통상의 첨가제로서 난연제, 가교제, 발포제, 활제, 가소제 및 안정제 중에서 하나이상의 첨가제를 포함하는 난연성 발포체 조성물에 있어서, 수지 성분이 폐폴리에틸렌(W-PE) 0∼100 중량%와 폐에틸렌비닐공중합체(W-EVA) 0∼100 중량%, 폐고무(W-RUBBER) 0∼30 중량%, 폐타이어고무분말(GTR) 0∼40 중량%, 폴리에틸렌(PE) 0∼100 중량%, 니트릴고무(NBR) 0∼30 중량%, 에틸렌 프로필렌 공중합체 0∼50 중량%로 구성되어 있고, 상기 수지성분 100중량부에 대하여 난연제로서는 Al(OH)320∼250 중량부, Mg(OH)220∼120 중량부, 마그네슘 실리케이트 0∼20 중량부, 보론산아연 0∼50 중량부, 황산아연 0∼50 중량부, Sb2O30∼30 중량부, Sb2O50∼30 중량부, 3-(하이드록시페닐포스피닐)프로파노익애시드 또는 9,10-디하이드로-9-옥사-10-[2,3-디-(하이드록시에톡시)카르보닐프로필]-10-포스파페난트렌-10-옥사이드 0∼50 중량부, 트리스(클로로이소프로필)포스페이트(TCPP), 또는 트리스(2-클로로에틸)포스페이트(TCEP) 0∼50 중량부, 디페닐크레실포스페이트 0∼50 중량부, 적인 0∼10 중량부, 염소화 파라핀 0∼50 중량부, 황토 0∼30 중량부로 함유되어 있되 상기 난연제가 120∼290 중량부로 함유되어 있으며, 여기에 통상의 첨가제가 함유되어 있는 것을 특징으로 하는 폐자원을 이용한 난연성 발포체 조성물.In a flame-retardant foam composition containing waste plastic, waste rubber and waste tire rubber powder, and containing at least one of a flame retardant, a crosslinking agent, a foaming agent, a lubricant, a plasticizer and a stabilizer as conventional additives, the resin component is waste polyethylene (W- PE) 0-100% by weight, 0-100% by weight of waste ethylene vinyl copolymer (W-EVA), 0-30% by weight of waste rubber (W-RUBBER), 0-40% by weight of waste tire rubber (GTR), It consists of 0-100 weight% of polyethylene (PE), 0-30 weight% of nitrile rubber (NBR), and 0-50 weight% of ethylene propylene copolymers, and it is Al (OH) 3 as a flame retardant with respect to 100 weight part of said resin components. 20 to 250 parts by weight, Mg (OH) 2 20 to 120 parts by weight, magnesium silicate 0 to 20 parts by weight, zinc boronic acid 0 to 50 parts by weight, zinc sulfate 0 to 50 parts by weight, Sb 2 O 3 0 to 30 parts by weight Parts, Sb 2 O 5 0-30 parts by weight, 3- (hydroxyphenylphosphinyl) propanoic acid or 9,10-dihydro-9-oxa-10- [2 , 0-50 parts by weight of 3-di- (hydroxyethoxy) carbonylpropyl] -10-phosphaphenanthrene-10-oxide, tris (chloroisopropyl) phosphate (TCPP), or tris (2-chloroethyl 0 to 50 parts by weight of phosphate (TCEP), 0 to 50 parts by weight of diphenylcresyl phosphate, 0 to 10 parts by weight of red, 0 to 50 parts by weight of chlorinated paraffin, 0 to 30 parts by weight of ocher, and the flame retardant 120 A flame retardant foam composition using waste resources, which is contained in an amount of 290 parts by weight and which contains a conventional additive. 제1항에 있어서, 통상의 첨가제로서는 가교제 2∼25 중량부, 발포제 10∼40 중량부, 발포조제 0∼2 중량부, 내부이형제 0∼10 중량부, 외부이형제 0∼10 중량부, 안정제 0∼2.5 중량부, 가소제 0∼50 중량부, 열전달촉진제 0∼5 중량부 중 적어도 어느 하나 이상이 추가적으로 포함되어 있는 것을 특징으로 하는 폐자원을 이용한 난연성 발포체 조성물.The additive according to claim 1, wherein the additive is 2 to 25 parts by weight of crosslinking agent, 10 to 40 parts by weight of foaming agent, 0 to 2 parts by weight of foaming aid, 0 to 10 parts by weight of internal mold release agent, 0 to 10 parts by weight of external mold release agent, and stabilizer 0. At least any one or more of -2.5 parts by weight, 0 to 50 parts by weight of plasticizer, and 0 to 5 parts by weight of heat transfer accelerator is additionally included. 제1항 또는 제2항에 있어서, 상기 폐폴리에틸렌 수지는 융점 100∼130℃이며, 상기 폐에틸렌비닐공중합체는 초산비닐 함유량이 10∼50%인 것임을 특징으로 하는 폐자원을 이용한 난연성 발포체 조성물.The flame retardant foam composition according to claim 1 or 2, wherein the waste polyethylene resin has a melting point of 100 to 130 ° C and the waste ethylene vinyl copolymer has a vinyl acetate content of 10 to 50%. 제1항 또는 제2항에 있어서, 상기 니트릴 고무는 아크릴로 니트릴 함량이 28∼34중량%인 것임을 특징으로 하는 폐자원을 이용한 난연성 발포체 조성물.The flame retardant foam composition according to claim 1 or 2, wherein the nitrile rubber has an acrylonitrile content of 28 to 34% by weight. 제1항 또는 제2항에 있어서, 상기 에틸렌-프로필렌 공중합체는 ENB 함량이 4.5∼8중량% 인 것을 특징으로 하는 폐자원을 이용한 난연성 발포체 조성물.The flame retardant foam composition according to claim 1 or 2, wherein the ethylene-propylene copolymer has an ENB content of 4.5 to 8% by weight. 상기 청구범위 제1항 또는 제2항의 조성물을 110∼138℃에서 혼합하고 압출,압축또는 사출하여 제조한 것을 특징으로 하는 폐자원을 이용한 난연성 발포체 조성물.A flame retardant foam composition using waste resources, characterized in that the composition of claim 1 or 2 is mixed by extrusion, compression or injection at 110 ~ 138 ℃.
KR10-2001-0076064A 2001-12-04 2001-12-04 A composition of flame retarding foams with waste materials and its preparing method KR100404768B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2001-0076064A KR100404768B1 (en) 2001-12-04 2001-12-04 A composition of flame retarding foams with waste materials and its preparing method
AU2002365856A AU2002365856A1 (en) 2001-12-04 2002-12-04 Flame retarding foam composition utilizing waste material and fabricating method thereof
PCT/KR2002/002281 WO2003048242A1 (en) 2001-12-04 2002-12-04 Flame retarding foam composition utilizing waste material and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076064A KR100404768B1 (en) 2001-12-04 2001-12-04 A composition of flame retarding foams with waste materials and its preparing method

Publications (2)

Publication Number Publication Date
KR20030046551A true KR20030046551A (en) 2003-06-18
KR100404768B1 KR100404768B1 (en) 2003-11-07

Family

ID=19716591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0076064A KR100404768B1 (en) 2001-12-04 2001-12-04 A composition of flame retarding foams with waste materials and its preparing method

Country Status (3)

Country Link
KR (1) KR100404768B1 (en)
AU (1) AU2002365856A1 (en)
WO (1) WO2003048242A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536568B1 (en) * 2002-03-26 2005-12-14 조병욱 A composition of modified flame retarding foams
KR100916534B1 (en) * 2008-11-17 2009-09-11 (주)하이코리아 Waste rubber form and made method of the same that
KR101528439B1 (en) * 2014-12-17 2015-06-16 전용남 Tire
KR20220001044A (en) * 2020-06-26 2022-01-05 문성철 Method for manufacturing highly flame resistant and eco-friendly polyolefin nanocomposite foam using waste polyolefin foam powder

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1831329B1 (en) 2004-10-26 2008-08-27 The Gates Corporation Fire resistant rubber composition and hose
US8308997B2 (en) 2007-12-17 2012-11-13 U.S. Borax Inc. Fire resistant cellulosic materials and method of making the same
KR101331665B1 (en) * 2008-12-04 2013-11-20 (주)엘지하우시스 Method of manufacturing Interfloor noise proofing material
EP2445708A1 (en) * 2009-06-24 2012-05-02 Zephyros Inc. Insulating honeycomb panel
CN101717536B (en) * 2009-11-20 2011-12-07 华南理工大学 Waste plastic, montmorillonoid and waste rubber composite and preparation method thereof
WO2013046212A2 (en) * 2011-06-03 2013-04-04 Essel Propack Limited Post consumer recycled resin composition and manufacture of tubes therefrom
BR112015020979B8 (en) * 2013-04-15 2020-07-07 Basf Se use of thermoplastic molding compounds and molding body
CN103788431B (en) * 2014-01-15 2015-11-25 杜肯(武汉)绝热材料有限公司 The rubber-plastic foamed lagging material of a kind of halogen
CA2975122A1 (en) 2015-01-30 2016-08-04 Zephyros, Inc. Adhesive material and method of use thereof
EP3253814A1 (en) 2015-02-03 2017-12-13 Zephyros Inc. One part epoxy-based composition
CN104610643B (en) * 2015-03-10 2015-10-28 浙江鹏远新材料有限公司 Flame-retardant crosslinking polyethylene porous plastics
CN112250928A (en) * 2020-09-29 2021-01-22 安徽万博电缆材料有限公司 Formula, preparation method and application of efficient flame-retardant light cable filling material
CN113861715A (en) * 2021-10-09 2021-12-31 天长市瑞尔康橡塑制品有限公司 Modified regeneration special material and preparation method thereof
KR102541617B1 (en) * 2023-03-17 2023-06-13 주식회사 케이리사이클링 Recycled Plastic Composition Using Daily Waste Plastics and Preparation Methods of Recycled Plastic Using Thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054228A (en) * 1991-06-26 1993-01-14 Nippon Oil & Fats Co Ltd Regenerated resin composition and regeneration thereof
JP2568138B2 (en) * 1991-07-09 1996-12-25 広島化成株式会社 Molding composition
JPH06306246A (en) * 1993-04-22 1994-11-01 Denki Kagaku Kogyo Kk Resin composition and electric wire produced by using the same composition
KR0141421B1 (en) * 1994-11-29 1998-07-01 박영호 Reproduction method of used rubber and used synthetic resin mixture
KR0180216B1 (en) * 1994-12-22 1999-05-15 정병휴 Complex material composition manufacturing from tier and plastic resin
KR0149845B1 (en) * 1995-10-25 1998-10-15 이서형 Method for manufacturing building materials using used-tire
KR100241706B1 (en) * 1997-12-31 2000-03-02 김형철 Structure forming composition using waste and manufacturing method thereof
KR100383097B1 (en) * 1999-12-23 2003-05-12 주식회사 엘지화학 Flame resistant thermoplastic polybutylene terephthalate resin compositions
KR100350547B1 (en) * 2000-09-18 2002-08-28 전영식 Manufacturing process for sponge using used plastics and foamed scraps
KR100408704B1 (en) * 2001-03-05 2003-12-06 문성철 A composition of foams with waste materials and ground tire rubber and foams thereof
KR100456605B1 (en) * 2001-06-18 2004-11-10 학교법인 호서학원 Recycled Plastic Composites with flame retardancy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536568B1 (en) * 2002-03-26 2005-12-14 조병욱 A composition of modified flame retarding foams
KR100916534B1 (en) * 2008-11-17 2009-09-11 (주)하이코리아 Waste rubber form and made method of the same that
KR101528439B1 (en) * 2014-12-17 2015-06-16 전용남 Tire
KR20220001044A (en) * 2020-06-26 2022-01-05 문성철 Method for manufacturing highly flame resistant and eco-friendly polyolefin nanocomposite foam using waste polyolefin foam powder

Also Published As

Publication number Publication date
WO2003048242A1 (en) 2003-06-12
AU2002365856A1 (en) 2003-06-17
KR100404768B1 (en) 2003-11-07

Similar Documents

Publication Publication Date Title
KR100404768B1 (en) A composition of flame retarding foams with waste materials and its preparing method
KR100361561B1 (en) A Blowing Composition of Polyolefins with Flame-Retardantivity and Method Thereof
US6875263B1 (en) Use of vegetative material as a filler in composite materials
KR100415680B1 (en) A composition of flame retarding rubber foams with ground tire rubber and tire cord fibers and its manufacturing method
KR100496175B1 (en) A composition and manufacturing method of flame retarding rubber/plastics foams with low toxic gas liberation and low smoke density under fire atmosphere
KR100415682B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
KR101465450B1 (en) Rubber foam adiabatic material and manufacturing method thereof
KR101772761B1 (en) Flame retardant master batch of expanded polystyrene with enhanced cell uniformity and flame-resistance, and a method of the manufacturing
KR102204331B1 (en) A method for preparing of rubber foam comprising waste rubber powder by treating with non-thermal plasma
KR100388638B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
KR101975285B1 (en) Rubber foam composition having a high tensile strength and high elongation, and a processe for the preparation of ruber foam using thereof
KR102404479B1 (en) Method for manufacturing highly flame resistant and eco-friendly polyolefin nanocomposite foam using waste polyolefin foam powder
KR100772289B1 (en) Composition for production of flame-retarding cross-linked polyolefine foams
KR102360096B1 (en) Highly flame resistant and eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder
KR102434208B1 (en) Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder
KR100408704B1 (en) A composition of foams with waste materials and ground tire rubber and foams thereof
KR102381971B1 (en) High flame resistant and eco-friendly rubber-base masterbatch with polymer nanocomposites
KR20050074049A (en) Composition for uninflammable agent containing yellow clay, its master batch and uninflammable firing agent prepared by using master batch
KR101607058B1 (en) An eco-friendly plastic foam composition having a high flame retardancy and a process for the preparation thereof
KR102404477B1 (en) Manufacturing method of high flame resistant and eco-friendly rubber-based nanocomposite foam
KR102107842B1 (en) Rubber foam composition having high antimicrobial, antifungal, tensile strengthened and flame resistant properties and a process for the preparation thereof
KR102523047B1 (en) Highly flame resistant and eco-friendly polyolefin nanocomposite masterbatch using waste polyolefin foam powder
KR100536568B1 (en) A composition of modified flame retarding foams
KR20100110448A (en) A low-density polyolefin foam with cell gradient using electrobeam crosslinkage technique
AU757242B2 (en) Use of vegetative material as a filler in composite materials

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120910

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141027

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151027

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161027

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 15