KR102434208B1 - Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder - Google Patents

Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder Download PDF

Info

Publication number
KR102434208B1
KR102434208B1 KR1020200078793A KR20200078793A KR102434208B1 KR 102434208 B1 KR102434208 B1 KR 102434208B1 KR 1020200078793 A KR1020200078793 A KR 1020200078793A KR 20200078793 A KR20200078793 A KR 20200078793A KR 102434208 B1 KR102434208 B1 KR 102434208B1
Authority
KR
South Korea
Prior art keywords
rubber
weight
parts
eco
masterbatch
Prior art date
Application number
KR1020200078793A
Other languages
Korean (ko)
Other versions
KR20220001046A (en
Inventor
문성철
Original Assignee
문성철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문성철 filed Critical 문성철
Priority to KR1020200078793A priority Critical patent/KR102434208B1/en
Publication of KR20220001046A publication Critical patent/KR20220001046A/en
Application granted granted Critical
Publication of KR102434208B1 publication Critical patent/KR102434208B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • C08L2207/24Recycled plastic recycling of old tyres and caoutchouc and addition of caoutchouc particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법에 관한 것으로, 더욱 상세하게는 고무, 폐 고무 발포체 분말을 포함하는 난연제 혼합물 및 가공조제로 이루어진 폐 고무 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하는 난연성마스터배치제조단계, 고무 수지, 상기 난연성마스터배치제조단계를 통해 제조된 폐고무 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치, 발포용 마스터배치 및 가교용 마스터배치를 혼합하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물을 압출하는 압출단계, 상기 압출단계를 통해 제조된 압출성형물을 발포하는 발포단계. 및 상기 발포단계를 통해 발포된 발포물을 절단하는 절단단계로 이루어진다.
상기의 과정을 통해 제조되는 발포체는 할로겐계 난연제 성분이 함유되지 않고 폐고무 발포체 분말을 재활용하여 친환경적이며, 중량이 가볍고 우수한 흡음성능을 나타낼 뿐만 아니라, 난연성, 단열성, 내열성 및 기계적 물성이 우수하다.
The present invention relates to a method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder, and more particularly, to a waste rubber powder comprising rubber, a flame retardant mixture including waste rubber foam powder, and a processing aid. Flame-retardant masterbatch manufacturing step of manufacturing high-flammability eco-friendly rubber-based nanocomposite masterbatch, rubber resin, high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber powder manufactured through the above flame-retardant masterbatch manufacturing step, masterbatch for foaming and crosslinking A raw material mixing step of mixing the master batch for a raw material, an extrusion step of extruding the mixture prepared through the raw material mixing step, a foaming step of foaming the extruded product manufactured through the extrusion step. and a cutting step of cutting the foamed product through the foaming step.
The foam produced through the above process does not contain a halogen-based flame retardant component and is eco-friendly by recycling waste rubber foam powder, is light in weight and exhibits excellent sound absorption performance, and has excellent flame retardancy, heat insulation, heat resistance and mechanical properties.

Description

폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법 {METHOD FOR MANUFACTURING HIGHLY FLAME RESISTANT AND ECO-FRIENDLY RUBBER-BASED NANOCOMPOSITE FOAM USING WASTE RUBBER FOAM POWDER}Manufacturing method of high-flammability and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder

본 발명은 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법에 관한 것으로, 더욱 상세하게는 할로겐계 난연제 성분이 함유되지 않고 폐고무 발포체 분말을 재활용하여 친환경적이며, 중량이 가볍고 우수한 흡음성능을 나타낼 뿐만 아니라, 난연성, 단열성, 내열성 및 기계적 물성이 우수한 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder, and more particularly, it does not contain a halogen-based flame retardant component and is eco-friendly by recycling waste rubber foam powder, light in weight It relates to a method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using a waste rubber foam powder that not only exhibits excellent sound-absorbing performance, but also has excellent flame retardancy, heat insulation, heat resistance and mechanical properties.

발포체는 전자기기 등의 내부 절연체, 완충재, 방진재, 차음재, 단열재, 혹은 식품 포장재, 의복용재, 건재 및 자동차나 가전 제품 등의 내장 부품이나 외장 부품용 등으로서 사용되고 있다.Foams are used as internal insulators, cushioning materials, vibration-proofing materials, sound insulation materials, heat insulating materials for electronic devices and the like, food packaging materials, clothing materials, building materials, and interior and exterior parts of automobiles and home appliances.

이러한 발포체에는, 부품으로서 조립될 때에 그 밀봉성 등을 확보한다고 하는 관점에서, 유연성, 쿠션성 및 단열성 등의 특성이 요구되며, 발포체의 재료로서는 폴리에틸렌이나 폴리프로필렌 등의 폴리올레핀계 수지 발포체가 알려져 있다.Such foams are required to have properties such as flexibility, cushioning properties, and heat insulating properties from the viewpoint of ensuring sealing properties and the like when assembled as parts, and polyolefin resin foams such as polyethylene and polypropylene are known as foam materials.

상기의 성분으로 이루어지는 발포체는 발포의 배율을 높게 하거나, 폴리올레핀계 수지에 고무 성분 등을 배합하여 소재자체를 부드럽게 하는 것이 행해지고 있는데, 통상의 폴리에틸렌이나 폴리프로필렌은 고온시에서의 장력, 즉 용융장력이 낮아 고발포배율을 얻으려고 해도 발포시에 기포벽이 파괴되어 가스 빠짐이 발생하거나 기포의 합일(合一)이 발생하여 발포배율이 높아 부드러운 물성을 나타내는 발포체를 얻는 것이 곤란한 문제점이 있었다.For foams made of the above components, the expansion ratio is increased or the material itself is softened by blending a rubber component with a polyolefin-based resin. Even when trying to obtain a low, high foaming ratio, the cell walls are destroyed during foaming, causing gas leakage or unity of the cells, so that it is difficult to obtain a foam exhibiting soft physical properties due to a high foaming ratio.

종래 알려진 난연성 폴리올레핀 발포체로서 한국 공개특허 제10-1997-0042714호는 저밀도폴리에틸렌(LDPE)과 에틸렌비닐공중합체(EVA)만을 단독 혹은 블렌드한 수지에 난연제 및 기타 첨가제를 첨가하여 제조한 ASTM D 2863에 의한 한계산소지수(LOI) 26의 난연성 발포체를 개시한 바 있다. 또한, 일본 공개특허공보 특개2000-106041호는 전선케이블 피복용의 난연성 발포고무 조성물을 제시한 바 있으나, 상기에 나열된 발포체 및 난연성 발포고무 조성물은 난연성을 확보한 반면 발포율이 매우 낮은 문제점이 있었다.As a conventionally known flame-retardant polyolefin foam, Korean Patent Application Laid-Open No. 10-1997-0042714 discloses ASTM D 2863 prepared by adding a flame retardant and other additives to a resin obtained by mixing only low-density polyethylene (LDPE) and ethylene vinyl copolymer (EVA) alone or in a blend. A flame retardant foam having a limiting oxygen index (LOI) of 26 has been disclosed. In addition, Japanese Patent Application Laid-Open No. 2000-106041 has presented a flame-retardant foamed rubber composition for covering electric wires and cables, but the foams and flame-retardant foamed rubber compositions listed above have a very low foaming rate while ensuring flame retardancy. .

또한, 폴리올레핀계 수지 발포체 외에 고무성분으로 이루어진 고무발포체도 사용되고 있는데, 고무발포체는 셀 구조 및 난연도에 따라 각종 건축 자재, 자동차 부품, 선박 부품, 철도 부품, 스포츠 용품, 및 완구 용품 등의 광범위한 분야의 단열재, 흡차음재, 구조재, 완구재 및 보조재 등으로 사용되고 있으며, 그 사용량이 급속한 증가세를 보이고 있다.In addition to polyolefin-based resin foams, rubber foams made of rubber components are also used, and the rubber foams are used in a wide range of fields such as various building materials, automobile parts, ship parts, railway parts, sporting goods, and toy articles depending on the cell structure and flame retardancy. It is used as an insulator, sound absorbing and insulating material, structural material, toy material, and auxiliary material, and its usage is showing a rapid increase.

이러한 고무발포체는 주로 니트릴부타디엔 고무(NBR), 에틸렌폴리프로필렌디엔 고무(EPDM) 등을 주 원료로 하고 있으나, 종래의 고무발포체에는 난연성을 부여하기 위해 할로겐계 난연제가 사용되어 친환경적이지 못하며, 난연제를 사용하여 난연도와 발포율이 높은 발포체를 유도하기 위해 원료의 배합과정이 복잡하고, 발포과정에서 발포제의 함량을 조절해야하기 때문에 제조공정이 복잡한 문제점이 있었다.These rubber foams are mainly made of nitrile butadiene rubber (NBR), ethylene polypropylene diene rubber (EPDM), etc. In order to induce a foam with high flame retardancy and foaming rate by using it, the mixing process of raw materials is complicated, and the manufacturing process is complicated because the content of the foaming agent has to be adjusted during the foaming process.

또한, 종래에는 발포고무 폐기물을 단순히 소각하거나 매립 등의 과정으로 처리하여 대기나 토양이 오염되는 문제점이 있었다.In addition, conventionally, there is a problem in that the air or soil is polluted by simply incinerating the foamed rubber waste or treating it through a process such as landfill.

이에 본 발명자는 할로겐계 난연제 성분이 함유되지 않고, 폐고무 발포체 분말을 사용하여 친환경적이며, 중량이 가볍고 우수한 흡음성능을 나타낼 뿐만 아니라, 난연성, 단열성, 내열성 및 기계적 물성이 우수한 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법을 개발함으로써 본 발명을 완성하였다.Accordingly, the present inventors use waste rubber foam powder that does not contain halogen-based flame retardant components, is eco-friendly by using waste rubber foam powder, is light in weight and exhibits excellent sound absorption performance, and has excellent flame retardancy, heat insulation, heat resistance and mechanical properties. The present invention was completed by developing a method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam.

한국특허등록 제10-0415680호(2004.01.06)Korean Patent Registration No. 10-0415680 (January 6, 2004) 한국특허공개 제10-2015-0093146(2015.08.17)Korean Patent Publication No. 10-2015-0093146 (2015.08.17) 한국특허등록 제10-0916534호(2009.09.02)Korean Patent Registration No. 10-0916534 (2009.09.02)

본 발명의 목적은 할로겐계 난연제 성분이 함유되지 않고, 폐고무 발포체 분말을 재활용하여 친환경적이며, 중량이 가볍고 우수한 흡음성능을 나타낼 뿐만 아니라, 난연성, 단열성, 내열성 및 기계적 물성이 우수한 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법을 제공하는 것이다.An object of the present invention is to produce a waste rubber foam powder that does not contain halogen-based flame retardant components, is environmentally friendly by recycling waste rubber foam powder, is light in weight and exhibits excellent sound absorption performance, and has excellent flame retardancy, heat insulation, heat resistance and mechanical properties. To provide a method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using the.

본 발명의 목적은 고무, 난연제 혼합물 및 가공조제로 이루어진 폐 고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하는 난연성마스터배치제조단계, 고무 수지, 상기 난연성마스터배치제조단계를 통해 제조된 고난연성 친환경 고무계 나노복합 마스터배치, 발포용 마스터배치 및 가교용 마스터배치를 혼합하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물을 압출하는 압출단계, 상기 압출단계를 압출된 압출물을 발포하는 발포단계, 및 상기 발포단계를 통해 발포된 발포물을 절단하는 절단단계로 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법을 제공함에 의해 달성된다.An object of the present invention is a flame retardant masterbatch manufacturing step for manufacturing a high flame retardant eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder consisting of rubber, a flame retardant mixture and a processing aid, a rubber resin, manufactured through the flame retardant masterbatch manufacturing step A raw material mixing step of mixing a high-flammability eco-friendly rubber-based nanocomposite masterbatch, a foaming masterbatch and a crosslinking masterbatch, an extruding step of extruding the mixture prepared through the raw material mixing step, and foaming the extruded product through the extrusion step It is achieved by providing a method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using a waste rubber foam powder, characterized in that it comprises a foaming step, and a cutting step of cutting the foamed product through the foaming step.

본 발명의 바람직한 특징에 따르면, 상기 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치는 고무 100 중량부, 난연제 혼합물 100 내지 150 중량부 및 가공조제 0.1 내지 10 중량부로 이루어지는 것으로 한다.According to a preferred feature of the present invention, the high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder is made of 100 parts by weight of rubber, 100 to 150 parts by weight of a flame retardant mixture, and 0.1 to 10 parts by weight of a processing aid.

본 발명의 더 바람직한 특징에 따르면, 상기 고무는 니트릴부타디엔고무 및 에틸렌프로필렌디엔모노머로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the rubber is made of at least one selected from the group consisting of nitrile butadiene rubber and ethylene propylene diene monomer.

본 발명의 더욱 바람직한 특징에 따르면, 상기 난연제 혼합물은 고분자 나노클레이 복합체 10 내지 30 중량%, 폐 고무 발포체 분말 10 내지 50 중량%, 및 친환경 난연제 30 내지 80 중량%로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the flame retardant mixture is composed of 10 to 30% by weight of the polymer nanoclay composite, 10 to 50% by weight of the waste rubber foam powder, and 30 to 80% by weight of the eco-friendly flame retardant.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 고분자 나노클레이 복합체는 고무 수지 100 중량부, 나노클레이 1 내지 15 중량부 및 상용화제 1 내지 15 중량부로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the polymer nanoclay composite is composed of 100 parts by weight of the rubber resin, 1 to 15 parts by weight of the nanoclay, and 1 to 15 parts by weight of the compatibilizer.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 친환경 난연제는 무기금속 수산화물 100 중량부, 팽창흑연 30 내지 40 중량부, 인계난연제 60 내지 70 중량부 및 붕산아연 70 내지 90 중량부로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the eco-friendly flame retardant is 100 parts by weight of inorganic metal hydroxide, 30 to 40 parts by weight of expanded graphite, 60 to 70 parts by weight of a phosphorus-based flame retardant, and 70 to 90 parts by weight of zinc borate.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 무기금속 수산화물은 수산화알루미늄 및 수산화마그네슘으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the inorganic metal hydroxide is made of at least one selected from the group consisting of aluminum hydroxide and magnesium hydroxide.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 원료혼합단계는 고무 수지 100 중량부, 상기 난연성마스터배치제조단계를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치 100 내지 200 중량부, 발포용 마스터배치 100 내지 200 중량부 및 가교용 마스터배치 10 내지 20 중량부를 혼합하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the raw material mixing step includes 100 parts by weight of a rubber resin, 100 to 200 parts by weight of a high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared through the flame-retardant masterbatch manufacturing step. , it shall be made by mixing 100 to 200 parts by weight of the master batch for foaming and 10 to 20 parts by weight of the master batch for crosslinking.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 발포용 마스터배치는 고무 100 중량부 및 발포제 25 내지 100 중량부로 이루어지며, 상기 발포제는 아조디카본아마이드로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the master batch for foaming consists of 100 parts by weight of rubber and 25 to 100 parts by weight of a foaming agent, and the foaming agent is made of azodicarbonamide.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 가교용 마스터배치는 고무 100 중량부 및 가교제 혼합물 5 내지 100 중량부로 이루어지며, 상기 가교제 혼합물은 황 화합물, 2-멜캅트벤조티아졸(M), 디벤조티아딜 디설파이드(DM) 및 Zn-디메틸디치오카아바메이트(PZ)로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the crosslinking masterbatch consists of 100 parts by weight of rubber and 5 to 100 parts by weight of a crosslinking agent mixture, and the crosslinking agent mixture is a sulfur compound, 2-mercaptbenzothiazole (M), di It shall consist of benzothiadyl disulfide (DM) and Zn-dimethyldithiocarbamate (PZ).

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 원료혼합단계는 100 내지 130℃의 온도에서 5 내지 60분 동안 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the raw material mixing step is to be performed at a temperature of 100 to 130 ℃ for 5 to 60 minutes.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 발포단계는 100 내지 180℃의 온도에서 5 내지 60분 동안 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the foaming step is to be made at a temperature of 100 to 180 ℃ for 5 to 60 minutes.

본 발명에 따른 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법은 할로겐계 난연제 성분이 함유되지 않고, 폐고무 발포체 분말을 재활용하여 친환경적이며, 중량이 가볍고 우수한 흡음성능을 나타낼 뿐만 아니라, 난연성, 단열성, 내열성 및 기계적 물성이 우수한 발포체를 제공하는 탁월한 효과를 나타낸다.The method for manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder according to the present invention does not contain a halogen-based flame retardant component, is eco-friendly by recycling waste rubber foam powder, is light in weight, and exhibits excellent sound absorption performance In addition, it exhibits an excellent effect of providing a foam having excellent flame retardancy, heat insulation, heat resistance and mechanical properties.

도 1은 본 발명에 따른 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법을 나타낸 순서도이다.1 is a flowchart showing a method of manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using a waste rubber foam powder according to the present invention.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, which is intended to describe in detail enough that a person of ordinary skill in the art to which the present invention pertains can easily carry out the invention, This does not mean that the technical spirit and scope of the present invention is limited.

본 발명에 따른 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법은 고무, 난연제 혼합물 및 가공조제로 이루어진 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하는 난연성마스터배치제조단계(S101), 고무 수지, 상기 난연성마스터배치제조단계(S101)를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치, 발포용 마스터배치 및 가교용 마스터배치를 혼합하는 원료혼합단계(S103), 상기 원료혼합단계(S103)를 통해 제조된 혼합물을 압출하는 압출단계(S105), 상기 압출단계(S105)를 통해 제조된 압출물을 발포하는 발포단계(S107) 및, 상기 발포단계(S107)를 통해 발포된 발포물을 절단하는 절단단계(S109)로 이루어진다.The method for producing a high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder according to the present invention is a flame-retardant method for manufacturing a high-flammability eco-friendly rubber-based nanocomposite masterbatch using a waste rubber foam powder consisting of rubber, a flame retardant mixture and a processing aid Mixing the masterbatch manufacturing step (S101), the rubber resin, the high flame retardant eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder produced through the flame retardant masterbatch manufacturing step (S101), the foaming masterbatch and the crosslinking masterbatch a raw material mixing step (S103), an extrusion step (S105) of extruding the mixture prepared through the raw material mixing step (S103), a foaming step of foaming the extrudate prepared through the extrusion step (S105) (S107) and , consists of a cutting step (S109) of cutting the foamed product through the foaming step (S107).

상기 난연성마스터배치제조단계(S101)는 고무, 난연제 혼합물 및 가공조제로 이루어진 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하는 단계로, 고무 100 중량부, 난연제 혼합물 100 내지 150 중량부 및 가공조제 0.1 내지 15 중량부를 혼합하여 이루어진다.The flame-retardant masterbatch manufacturing step (S101) is a step of preparing a non-flammable eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder consisting of rubber, a flame retardant mixture, and a processing aid, 100 parts by weight of rubber, 100 to 150 parts by weight of a flame retardant mixture It is made by mixing 0.1 to 15 parts by weight of parts and processing aids.

상기 고무는 고난연성 친환경 고무계 나노복합 마스터배치가 고무 성분과 혼합되었을때, 고른 분산성능을 나타낼 수 있도록 하는 역할을 하며, 고무 성분과 용융 혼합성이 좋은 성분이면 특별히 한정되지 않고 어떠한 것이든 사용가능하나 니트릴부타디엔고무 및 에틸렌프로필렌디엔모노머로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The rubber serves to ensure that the high-flammability eco-friendly rubber-based nanocomposite masterbatch exhibits even dispersion performance when mixed with the rubber component. It is preferably made of one or more selected from the group consisting of nitrile butadiene rubber and ethylene propylene diene monomer.

상기 난연제 혼합물은 100 내지 150 중량부가 함유되며, 고분자 나노클레이 복합체 10 내지 30 중량%, 폐 고무 발포체 분말 10 내지 50 중량%, 및 친환경 난연제 30 내지 80 중량%로 이루어지는 것이 바람직하다.The flame retardant mixture contains 100 to 150 parts by weight, and preferably consists of 10 to 30% by weight of the polymer nanoclay composite, 10 to 50% by weight of the waste rubber foam powder, and 30 to 80% by weight of an eco-friendly flame retardant.

상기 고분자 나노클레이 복합체는 난연제 혼합물에 10 내지 30 중량%로 함유되며, 고무 수지 100 중량부, 나노클레이 1 내지 15 중량부 및 상용화제 1 내지 15 중량부로 이루어지는데, 본 발명에 따른 고난연성 친환경 고무계 마스터배치에 내열성과 난연성을 부여하며, 할로겐계 성분이 사용되지 않고 폐고무 발포체 분말을 재활용하여 친환경적인 특성을 부여하는 역할을 한다.The polymer nanoclay composite is contained in an amount of 10 to 30% by weight in the flame retardant mixture, and 100 parts by weight of a rubber resin, 1 to 15 parts by weight of nanoclay, and 1 to 15 parts by weight of a compatibilizer. It gives heat resistance and flame retardancy to the masterbatch, and plays a role in giving eco-friendly properties by recycling waste rubber foam powder without using halogen-based components.

상기 고무 수지는 니트릴부타디엔고무 및 에틸렌프로필렌디엔모노머로 이루어진 그룹에서 선택된 하나 이상, 바람직하게는 아크릴로니트릴의 함량이 28 내지 34%인 니트릴부타디엔고무 및 ENB 함량이 4.5 내지 8.0%인 에틸렌프로필렌디엔모노머로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The rubber resin is at least one selected from the group consisting of nitrile butadiene rubber and ethylene propylene diene monomer, preferably nitrile butadiene rubber having an acrylonitrile content of 28 to 34%, and an ethylene propylene diene monomer having an ENB content of 4.5 to 8.0% It is preferable that it consists of one or more selected from the group consisting of.

상기 나노클레이는 1 내지 15 중량부가 함유되며, 상기 고분자 나노클레이 복합체의 내열성 및 난연성을 향상시키는 역할을 하는데, 통상적으로 사용되는 것이면 특별히 한정되지 않고 어떠한 것이든 사용가능하나, 구체적으로는 몬모릴로나이트, 헥토라이트, 벤토나이트, 버미큘라이트 및 볼콘스코이트 등이 사용될 수 있다. 상기 몬모릴로나이트는 유기화합물로 개질된 형태이며, 구체적으로는 Southern Clay Products사의 제품의 Cloisite  10A, Cloisite  15A, Cloisite  20A, Cloisite  25A, Cloisite  30B, Cloisite  93A 등을 사용할 수 있다.The nanoclay contains 1 to 15 parts by weight, and serves to improve the heat resistance and flame retardancy of the polymer nanoclay composite. It is not particularly limited as long as it is commonly used and any kind can be used. Specifically, montmorillonite, hecto Light, bentonite, vermiculite, and volconite can be used. The montmorillonite is a modified form with an organic compound, and specifically, Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 30B, Cloisite 93A, etc. manufactured by Southern Clay Products may be used.

또한, 상기 나노클레이가 함유되면 고분자 나노클레이 복합체는 분해 온도가 50% 이상 증가(50 내지 150℃ 증가)하여 본 발명에 따른 마스터배치의 내열성이 향상되며, 복합구조{Intercalation(삽입형) 구조 및 exfoliation(박리형) 구조가 공존함}로 챠 형성 극대화를 통한 난연성이 향상되고 화염전파 차단력이 향상된다.In addition, when the nanoclay is contained, the decomposition temperature of the polymer nanoclay composite is increased by 50% or more (increased by 50 to 150°C), so that the heat resistance of the masterbatch according to the present invention is improved, and the composite structure {Intercalation (insertion type) structure and exfoliation (Releasable) structure coexists}, so flame retardancy is improved by maximizing char formation and flame propagation blocking power is improved.

상기 고분자 나노클레이 복합체는 종래 믹싱물이나 컴파운드에서의 구조와 달리 나노클레이 층간에 고분자가 삽입된 형태(삽입형, intercalation)와 나노클레이 층상구조가 박리되어 고분자 내에 존재하는 형태(박리형, exfoliation)로 제조되기 때문에, 난연성 및 차폐성이 향상된 마스터배치를 제공할 수 있다.The polymer nanoclay composite has a form in which a polymer is inserted between nanoclay layers (insertion type, intercalation) and a form in which the nanoclay layered structure is peeled off and exists in the polymer (exfoliation type), unlike the structure in a conventional mixture or compound. Because it is manufactured, it is possible to provide a masterbatch with improved flame retardancy and shielding properties.

이때, 상기 나노클레이의 함량이 1 중량부 미만이면 본 발명에 따른 마스터배치의 압축강도와 같은 기계적 물성의 향상 효과가 미미하며, 상기 나노클레이의 함량이 15 중량부를 초과하게 되면 상기 폐고무 발포체 분말에 대한 분산 효과가 저하되면서 나노클레이 성분 간의 뭉침현상이 발생하여 고분자 나노클레이 복합체의 물성이 저하될 수 있다.At this time, if the content of the nanoclay is less than 1 part by weight, the effect of improving mechanical properties such as compressive strength of the masterbatch according to the present invention is insignificant, and when the content of the nanoclay exceeds 15 parts by weight, the waste rubber foam powder As the dispersion effect on the nanoclay decreases, agglomeration between the nanoclay components may occur, thereby reducing the physical properties of the polymer nanoclay composite.

상기 상용화제는 1 내지 15 중량부가 혼합되며, 폴리에틸렌 그라프트 무수말레인산으로 이루어지는데, 상기 폐고무 발포체 분말과 나노클레이가 고르게 혼합될 수 있도록 하기 때문에, 균질한 물성을 나타내는 고분자 나노클레이 복합체를 제공하는 역할을 한다.1 to 15 parts by weight of the compatibilizer is mixed, and it is composed of polyethylene graft maleic anhydride, and since it allows the waste rubber foam powder and the nanoclay to be mixed evenly, providing a polymer nanoclay composite exhibiting homogeneous physical properties play a role

상기 상용화제의 함량이 1 중량부 미만이면 상기의 효과가 미미하며, 상기 상용화제의 함량이 15 중량부를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 지나치게 많은 양이 함유되는 것으로 고분자 나노클레이 복합체의 물성을 저하시킬 수 있다.When the content of the compatibilizer is less than 1 part by weight, the above effect is insignificant, and when the content of the compatibilizer exceeds 15 parts by weight, the effect is not significantly improved and an excessively large amount is contained. may decrease the physical properties of

상기 고분자 나노클레이 복합체는 고무 수지, 나노클레이, 및 상용화제를 혼합기에 투입하고, 200 RPM 이상의 고속, 바람직하게는 200 내지 500 RPM의 고속, 180 ℃ 이상의 고온, 바람직하게는 180 내지 220 ℃의 고온, 5 min 이하의 단시간, 바람직하게는 3 내지 5 min의 단시간으로 혼합하여 제조할 수 있다.In the polymer nanoclay composite, rubber resin, nanoclay, and a compatibilizer are added to a mixer, and a high speed of 200 RPM or more, preferably a high speed of 200 to 500 RPM, a high temperature of 180 ° C. or more, preferably a high temperature of 180 to 220 ° C. , can be prepared by mixing in a short time of 5 min or less, preferably in a short time of 3 to 5 min.

상기 폐 고무 발포체 분말은 10 내지 50 중량%가 함유되며, 고무 성분과 혼합되도록 하는 역할을 할 뿐만 아니라 폐기 처분되는 폐 고무 발포체를 재활용하기 때문에 친환경적인 효과를 나타내는 마스터배치를 제공하는 역할을 한다.The waste rubber foam powder is contained in an amount of 10 to 50% by weight, and serves to not only mix with the rubber component, but also to provide a masterbatch exhibiting an eco-friendly effect because the waste rubber foam to be disposed of is recycled.

상기 폐고무 발포체 분말은 본 발명에 따른 마스터배치가 적용되는 고무 성분에 따라 가변적이나, 천연고무(NR), 스트렌부타디엔고무(SBR), 부타디엔고무(BR), 니트릴부타디엔고무(NBR) 및 에틸렌프로필렌고무(EPDM)로 이루어진 그룹에서 선택된 하나를 주성분으로 하는 건축 단열재용 및 자동차 내장용 고무 발포체 폐기물을 분쇄하여 제조된다. 폐고무 발포체 분말로 이루어지는 것이 바람직하다.The waste rubber foam powder varies depending on the rubber component to which the masterbatch according to the present invention is applied, but natural rubber (NR), strenbutadiene rubber (SBR), butadiene rubber (BR), nitrile butadiene rubber (NBR) and ethylene It is manufactured by pulverizing rubber foam waste for building insulation and automobile interiors, which has one selected from the group consisting of propylene rubber (EPDM) as a main component. It is preferably made of waste rubber foam powder.

상기 폐고무 발포체 분말은 1 내지 10㎛의 입자크기를 나타내며, 액체질소, 밀링기, 또는 분쇄기를 이용한 파쇄 방법을 사용하는 것이 바람직하다. 이와 같이 액체질소, 밀링기(특히 고속밀링기), 또는 분쇄기를 통해 제조되는 폐고무 발포체 분말은 원물의 물리적 손상, 탄화 등이 최소화되어 발포체가 갖는 물성이 유지될 뿐만 아니라, 다양한 입자크기로 제조가 용이한 효과를 나타낸다. 또한, 상기의 과정을 통해 제조되는 폐고무 발포체 분말은 20% 내외의 가교구조를 가져 내열 및 난연의 역할을 할 수 있고, 카본블랙의 함량이 많아 강도가 높고, UV 저항성이 커 화학적 안정성이 높은 특성을 나타낸다.The waste rubber foam powder has a particle size of 1 to 10 μm, and it is preferable to use liquid nitrogen, a crushing method using a milling machine, or a pulverizer. As such, the waste rubber foam powder produced through liquid nitrogen, a milling machine (especially a high-speed milling machine), or a pulverizer minimizes physical damage and carbonization of the raw material, so that the physical properties of the foam are maintained, and it is easy to manufacture in various particle sizes. shows an effect. In addition, the waste rubber foam powder produced through the above process has a cross-linked structure of about 20%, so it can play a role of heat resistance and flame retardancy, and has high strength due to its high content of carbon black, and has high chemical stability due to its high UV resistance. indicates characteristics.

상기 폐고무 발포체 분말의 입자크기가 1㎛ 미만인 경우에는 쉽게 비산되어 작업장을 오염시키고, 뭉침 현상으로 인해 상기 고난연성 친환경 고무계 나노복합 마스터배치를 구성하는 성분들과 고르게 혼합되지 못할 뿐만 아니라 제조되는 고무 발포체의 난연성 및 강도가 낮아지고 재활용 공정의 경제성을 감소시키며, 상기 폐고무 발포체 분말의 입자크기가 10㎛를 초과하는 경우에는 상기 고난연성 친환경 고무계 나노복합 마스터배치를 구성하는 성분들과의 혼합성이 저하될 뿐만 아니라 제조되는 고무 발포체의 인장 특성과 품질이 낮아지게 된다.When the particle size of the waste rubber foam powder is less than 1 μm, it scatters easily and contaminates the workplace, and due to agglomeration, it is not uniformly mixed with the components constituting the high-flammability eco-friendly rubber-based nanocomposite masterbatch, as well as rubber manufactured The flame retardancy and strength of the foam are lowered, and the economic feasibility of the recycling process is reduced, and when the particle size of the waste rubber foam powder exceeds 10 μm, the mixability with the components constituting the high-flammability eco-friendly rubber-based nanocomposite masterbatch Not only this lowers, but also the tensile properties and quality of the rubber foam produced.

상기 친환경 난연제는 30 내지 80 중량%로 함유되며, 상기 난연제 혼합물에 난연성능을 부여하여 고난연성의 마스터배치가 제공될 수 있도록 하는 역할을 하는데, 무기금속 수산화물 100 중량부, 팽창흑연 30 내지 40 중량부, 인계난연제 60 내지 70 중량부 및 붕산아연 70 내지 90 중량부로 이루어지는 것이 바람직하다.The eco-friendly flame retardant is contained in an amount of 30 to 80% by weight, and serves to provide flame retardant performance to the flame retardant mixture to provide a high flame retardant masterbatch, 100 parts by weight of inorganic metal hydroxide, 30 to 40 parts by weight of expanded graphite It is preferably composed of 60 to 70 parts by weight of the phosphorus-based flame retardant and 70 to 90 parts by weight of zinc borate.

상기 무기금속 수산화물은 친환경 난연제의 주재료가 되는 성분으로 친환경성과 우수한 난연성을 나타내어 본 발명에 따른 마스터배치에 난연성을 부여하는 역할을 하는데, 수산화알루미늄 및 수산화마그네슘으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The inorganic metal hydroxide is a component that is the main material of an eco-friendly flame retardant, and exhibits eco-friendliness and excellent flame retardancy, thereby providing flame retardancy to the masterbatch according to the present invention. Preferably, it is made of at least one selected from the group consisting of aluminum hydroxide and magnesium hydroxide do.

상기 팽창흑연은 30 내지 40 중량부가 함유되며, 마스터배치에 단열성을 부여하는 역할을 하는데, 흑연을 물로 정제한 후 황산으로 처리하여 1차 팽창을 시킨 후 이를 다시 정제수로 정제하고 열을 가하면 2차 팽창하는데, 황산 및 열처리를 통하여 최초의 흑연은 수십 내지 수백 배로 팽창하는 과정을 통해 제조된다.The expanded graphite contains 30 to 40 parts by weight, and serves to impart heat insulation to the masterbatch. After the graphite is purified with water and treated with sulfuric acid for primary expansion, it is purified with purified water and heated to secondary It expands, and through sulfuric acid and heat treatment, the first graphite is manufactured through a process of expanding tens to hundreds of times.

상기의 과정을 통해 제조되는 팽창흑연의 일반적인 제조방법을 살펴보면, 천연광산으로부터 흑연을 채굴한 후, 분쇄 및 수분급의 공정을 거쳐 흑연을 만들고, 이 흑연을 황산과 같은 강산을 이용하여 1차 팽창시키고 고온 및 알칼리 상태에서 소결한 후에 세정 공정을 거쳐 순도 99.5%의 흑연을 만들며, 이 세정된 흑연을 예열을 통하여 흑연을 팽창시켜 제조한다.Looking at the general manufacturing method of expanded graphite produced through the above process, graphite is mined from natural mines, then crushed and water graded to make graphite, and the graphite is first expanded using a strong acid such as sulfuric acid. After sintering at high temperature and alkali state, it goes through a washing process to make graphite with a purity of 99.5%, and the cleaned graphite is prepared by expanding the graphite through preheating.

팽창흑연은 고상층을 형성하는 난연제로서 팽창된 카본층이 절연층으로 작용하여 열의 이동을 방해하는데, 비할로겐 타입의 저발연성 친환경 난연제이며, 흑연이 열처리에 의해 팽창되게 되면, 층을 이루는 면에 대하여 수직한 방향으로는 단열성이 우수한 특성을 나타낸다. 또한, 팽창흑연은 독성이 없고, 가벼우며, 할로겐 성분을 함유하지 않고, 물에 불용성이며, 유독가스를 발생하지 않는 등의 장점을 가지고 있다.Expanded graphite is a flame retardant that forms a solid layer, and the expanded carbon layer acts as an insulating layer to prevent heat transfer. In the direction perpendicular to each other, it exhibits excellent thermal insulation properties. In addition, expanded graphite has advantages such as non-toxic, light, does not contain halogen components, insoluble in water, and does not generate toxic gas.

상기 팽창흑연의 함량이 30 중량부 미만이면 난연성 및 단열성의 효과가 미미하며, 상기 팽창흑연의 함량이 40 중량부를 초과하게 되면 본 발명에 따라 제조된 마스터배치가 적용된 발포체의 기계적 물성이 저하될 수 있다.If the content of the expanded graphite is less than 30 parts by weight, the effect of flame retardancy and thermal insulation properties is insignificant, and when the content of the expanded graphite exceeds 40 parts by weight, the mechanical properties of the foam to which the masterbatch prepared according to the present invention is applied may be reduced. have.

상기 인계난연제는 60 내지 70 중량부가 함유되며, 인산 에스테르, 인산 에스테르의 올리고머, 무기 인 화합물, 폴리인산암모늄, 멜라민 폴리인산암모늄 및 인산암모늄으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는데, 본 발명에 따른 마스터배치에 난연성을 부여하는 역할을 한다.The phosphorus-based flame retardant contains 60 to 70 parts by weight, and is made of at least one selected from the group consisting of phosphoric acid esters, oligomers of phosphoric acid esters, inorganic phosphorus compounds, ammonium polyphosphate, melamine polyammonium polyphosphate, and ammonium phosphate. It serves to impart flame retardancy to the masterbatch.

상기 인계난연제의 함량이 60 중량부 미만이면 난연효과가 미미하며, 상기 인계난연제의 함량이 70 중량부를 초과하게 되면 폐고무 발포체 분말의 가공성 및 내충격성 등이 저하될 수 있다.If the content of the phosphorus-based flame retardant is less than 60 parts by weight, the flame retardant effect is insignificant, and if the content of the phosphorus-based flame retardant exceeds 70 parts by weight, the processability and impact resistance of the waste rubber foam powder may be deteriorated.

상기 붕산아연은 70 내지 90 중량부가 함유되며, 폐고무 발포체 분말과 난연제 혼합물을 구성하는 성분들의 결속력을 향상시키는 역할을 하는데, 상기 붕산아연의 함량이 70 중량부 미만이면 상기의 효과가 미미하며, 상기 붕산아연의 함량이 90 중량부를 초과하게 되면 본 발명을 통해 제조되는 마스터배치의 점도가 지나치게 증가하여 바람직하지 못하다.The zinc borate contains 70 to 90 parts by weight, and serves to improve the binding force of the components constituting the waste rubber foam powder and the flame retardant mixture. When the content of the zinc borate exceeds 90 parts by weight, the viscosity of the masterbatch prepared through the present invention is excessively increased, which is not preferable.

상기 가공조제는 0.1 내지 15 중량부가 함유되며, 테레프탈레이트계 가소제, 폴리에틸렌왁스 및 스테아르산으로 이루어진 그룹으로 어느 하나 이상 포함되는데, 구체적으로는 테레프탈레이트계 가소제 단독 또는 폴리에틸렌 왁스와 스테아르산이 1: 1의 중량비로 혼합되거나 테레프탈레이트계 가소제와 폴리에틸렌 왁스와 스테아르산이 8: 1: 1의 중량비 또는 6: 2: 2의 중량비 또는 5: 2.5: 2.5의 중량비로 혼합되어 이루어지는 것이 바람직하며, 상기 고무와 상기 난연제 혼합물이 고르게 혼합되도록 할 뿐만 아니라, 본 발명을 통해 제조되는 마스터배치가 고무 성분과 혼합되는 경우에 고무의 가공성을 향상시켜 다양한 형태로 성형할 수 있도록 하는 역할을 한다.The processing aid contains 0.1 to 15 parts by weight, and includes any one or more of the group consisting of a terephthalate-based plasticizer, polyethylene wax, and stearic acid. Specifically, the terephthalate-based plasticizer alone or polyethylene wax and stearic acid is 1:1 Preferably, it is mixed in a weight ratio or a terephthalate-based plasticizer, polyethylene wax, and stearic acid are mixed in a weight ratio of 8: 1: 1 or 6: 2: 2 or 5: 2.5: 2.5 by weight, the rubber and the flame retardant In addition to ensuring that the mixture is evenly mixed, when the masterbatch prepared through the present invention is mixed with the rubber component, it serves to improve the processability of rubber to be molded into various shapes.

상기 가공조제의 함량이 0.1 중량부 미만이면 상기의 효과가 미미하며, 상기 가공조제의 함량이 15 중량부를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 본 발명을 통해 제조된 마스터배치가 적용된 성형품의 기계적 물성을 저하시킬 수 있다.When the content of the processing aid is less than 0.1 parts by weight, the above effect is insignificant, and when the content of the processing aid exceeds 15 parts by weight, the effect is not significantly improved and the molded article to which the masterbatch manufactured through the present invention is applied. may reduce the mechanical properties of

상기 원료혼합단계(S103)는 고무 수지, 상기 난연성마스터배치제조단계(S101)를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치, 발포용 마스터배치 및 가교용 마스터배치를 혼합하는 단계로, 고무 수지 100 중량부, 상기 난연성마스터배치제조단계(S101)를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치 100 내지 200 중량부, 발포용 마스터배치 100 내지 200 중량부 및 가교용 마스터배치 10 내지 20 중량부를 혼합하여 이루어진다.In the raw material mixing step (S103), a rubber resin, a high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder produced through the flame-retardant masterbatch manufacturing step (S101), a foaming masterbatch and a crosslinking masterbatch are mixed. 100 to 200 parts by weight of a rubber resin, 100 to 200 parts by weight of a non-flammable eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared through the flame retardant masterbatch manufacturing step (S101), 100 to 200 parts by weight of the foaming masterbatch It is made by mixing 10 to 20 parts by weight of the masterbatch for crosslinking and 10 parts by weight.

이때, 상기 발포용 마스터배치는 고무 수지 100 중량부 및 발포제 25 내지 100 중량부로 이루어지며, 상기 발포제는 아조디카본아마이드로 이루어지는 것이 바람직한데, 상기의 성분으로 이루어지는 발포용 마스터배치는 상기 원료혼합단계(S103)를 통해 제조된 혼합물이 상기 발포단계(S105)에서 발포되도록 하여 중량이 가벼우면서도 우수한 흡음성능 및 단열성을 나타내는 발포체를 제공하는 역할을 한다.At this time, the master batch for foaming consists of 100 parts by weight of a rubber resin and 25 to 100 parts by weight of a foaming agent, and the foaming agent is preferably made of azodicarbonamide. By allowing the mixture prepared through (S103) to be foamed in the foaming step (S105), it serves to provide a foam that is light in weight and exhibits excellent sound absorption and thermal insulation properties.

상기 발포용 마스터배치의 함량이 100 중량부 미만이면 상기의 효과가 미미하며, 상기 발포용 마스터배치의 함량이 200 중량부를 초과하게 되면 제조되는 발포체의 발표배율이 지나치게 증가하여 성형성 및 기계적 물성이 저하될 수 있다.If the content of the master batch for foaming is less than 100 parts by weight, the above effect is insignificant. may be lowered.

또한, 상기 가교용 마스터배치는 고무 수지 100 중량부 및 가교제 혼합물 5 내지 100 중량부로 이루어지며, 상기 가교제 혼합물은 황 화합물, 2-멜캅트벤조티아졸(M), 디벤조티아딜 디설파이드(DM) 및 Zn-디메틸디치오카아바메이트(PZ)로 이루어지는 것이 바람직한데, 상기의 성분으로 이루어지는 가교용 마스터배치는 상기 원료혼합단계(S103)를 통해 제조된 혼합물이 상기 발포단계(S107)에서 발포되는 과정에서 가교반응을 유도하여 기계적 물성이 우수한 발포체를 제공하는 역할을 한다.In addition, the crosslinking masterbatch consists of 100 parts by weight of a rubber resin and 5 to 100 parts by weight of a crosslinking agent mixture, and the crosslinking agent mixture is a sulfur compound, 2-mercaptbenzothiazole (M), dibenzothiadyl disulfide (DM) and Zn-dimethyldithiocaabamate (PZ). The crosslinking masterbatch made of the above components is a mixture prepared through the raw material mixing step (S103) is foamed in the foaming step (S107). In the process, it induces a crosslinking reaction and serves to provide a foam with excellent mechanical properties.

상기 가교용 마스터배치의 함량이 10 중량부 미만이면 가교반응이 더디게 진행되며 가교율이 낮아 상기의 효과가 미미하며, 상기 가교용 마스터배치의 함량이 20 중량부를 초과하게 되면 가교율이 지나치게 상승하여 발포체의 가공성이 저하될 수 있다.If the content of the masterbatch for crosslinking is less than 10 parts by weight, the crosslinking reaction proceeds slowly, and the above effect is insignificant because the crosslinking rate is low. When the content of the masterbatch for crosslinking exceeds 20 parts by weight, the crosslinking rate increases excessively. Processability of the foam may be reduced.

상기 압출단계(S105)는 상기 원료혼합단계(S103)를 통해 제조된 혼합물을 압출하는 단계로, 상기 원료혼합단계(S103)를 통해 제조된 혼합물을 압출기에 투입하고 35 내지 80℃의 온도, 바람직하게는 35 내지 50℃의 온도로 압출성형물을 제조하는 단계다.The extruding step (S105) is a step of extruding the mixture prepared through the raw material mixing step (S103), and the mixture prepared through the raw material mixing step (S103) is put into the extruder and a temperature of 35 to 80° C., preferably Preferably, it is a step of preparing an extrudate at a temperature of 35 to 50 °C.

상기 발포단계(S107)는 상기 압출단계(S105)를 통해 제조된 압출물을 발포로에 투입하고 발포하는 단계로, 100 내지 180℃의 온도, 바람직하게 100 내지 170℃의 온도에서 10 내지 30분 동안 발포하는 과정으로 이루어진다.The foaming step (S107) is a step of putting the extrudate prepared through the extrusion step (S105) into a foaming furnace and foaming, at a temperature of 100 to 180° C., preferably at a temperature of 100 to 170° C. for 10 to 30 minutes. During the firing process is made.

이때, 상기 발포단계(S107)는 발포로 외에 프레스와 같은 금형을 이용하여 이루어질 수도 있으며, 상기 발포단계(S107)에서는 발포과정 뿐만 아니라, 상기 가교용 마스터배치로 인해 발포물의 가교가 동시에 진행된다.At this time, the foaming step (S107) may be made using a mold such as a press in addition to the foaming furnace, and in the foaming step (S107), not only the foaming process but also the crosslinking of the foamed product due to the masterbatch for crosslinking proceeds at the same time.

상기 절단단계(S107)는 상기 발포단계(S105)를 통해 발포된 발포물을 절단하는 단계로, 상기 발포단계(S105)를 통해 다양한 형태 및 두께로 발포된 발포물을 상온으로 냉각한 후에 용도에 맞게 다양한 크기로 절단하는 과정으로 이루어진다.The cutting step (S107) is a step of cutting the foamed product through the foaming step (S105). After cooling the foamed product in various shapes and thicknesses through the foaming step (S105) to room temperature, it is suitable for use. It consists of a process of cutting to various sizes to fit.

이때, 상기 발포물을 절단하는 과정은 특별히 한정되지 않고, 통상적인 발포체의 절단과정으로 진행되며, 통상적인 절단장치를 이용하여 이루어진다.At this time, the process of cutting the foam is not particularly limited, and it proceeds as a cutting process of a conventional foam, and is performed using a conventional cutting device.

이하에서는, 본 발명에 따른 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법 및 그 제조방법으로 제조된 발포체의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, a method for producing a high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder according to the present invention and the physical properties of the foam produced by the method will be described by way of examples.

<제조예 1> 고분자 나노클레이 복합체의 제조<Preparation Example 1> Preparation of polymer nanoclay composite

고무 100 중량부, 나노클레이(Cloisite  10A) 7 중량부 및 상용화제(폴리에틸렌 그라프트 무수말레인산) 7 중량부를 혼합기에 투입하고, 고속 (>200 RPM), 고온 (>180 ℃), 단시간 (<5 min.) 하에서 고분자 나노복합체를 제조하였다.100 parts by weight of rubber, 7 parts by weight of nanoclay (Cloisite 10A) and 7 parts by weight of compatibilizer (polyethylene graft maleic anhydride) were put into a mixer, and high speed (>200 RPM), high temperature (>180 ℃), short time (<5 min.) to prepare a polymer nanocomposite.

<제조예 2> 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치의 제조<Preparation Example 2> Preparation of high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder

상기 제조예 1에서 제조한 고분자 나노클레이 복합체 20 중량%, 폐고무 발포체 분말(니트릴부타디엔고무) 30 중량%, 및 친환경 난연제{무기금속 수산화물(수산화마그네슘) 100 중량부, 팽창흑연 35 중량부, 인계난연제(암모늄폴리포스페이트) 65 중량부 및 붕산아연 80 중량부} 60 중량%가 혼합된 난연제 혼합물 125 중량부, 가공조제(폴리에틸렌 왁스와 스테아르산의 1: 1 혼합물) 10 중량부를 혼합기에 투입하고, 120±5 ℃에서 혼합한 후, 일축 압출기에서 압출성형하여 시트화 또는 펠렛화하고, 냉각하여 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하였다.20% by weight of the polymer nanoclay composite prepared in Preparation Example 1, 30% by weight of waste rubber foam powder (nitrile-butadiene rubber), and an eco-friendly flame retardant {inorganic metal hydroxide (magnesium hydroxide) 100 parts by weight, expanded graphite 35 parts by weight, phosphorus-based 65 parts by weight of a flame retardant (ammonium polyphosphate) and 80 parts by weight of zinc borate} 125 parts by weight of a flame retardant mixture in which 60% by weight is mixed, and 10 parts by weight of a processing aid (a 1:1 mixture of polyethylene wax and stearic acid) are added to the mixer, After mixing at 120±5° C., extruded in a single screw extruder to form a sheet or pellet, and cooled to prepare a high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder.

<제조예 3> 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치의 제조<Preparation Example 3> Preparation of high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder

상기 제조예 2와 동일하게 진행하되, 상기 제조예 1을 통해 제조된 난연제 혼합물 100 중량부 및 가공조제 5 중량부 혼합하여 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하였다.Proceeds in the same manner as in Preparation Example 2, but 100 parts by weight of the flame retardant mixture prepared in Preparation Example 1 and 5 parts by weight of a processing aid were mixed to prepare a high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder.

<제조예 4> 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치의 제조<Preparation Example 4> Preparation of high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder

상기 제조예 2와 동일하게 진행하되, 상기 제조예 1을 통해 제조된 난연제 혼합물 150 중량부 및 가공조제 15 중량부 혼합하여 고난연성 친환경 고무계 나노복합 마스터배치를 제조하였다.Proceeds in the same manner as in Preparation Example 2, but 150 parts by weight of the flame retardant mixture prepared in Preparation Example 1 and 15 parts by weight of a processing aid were mixed to prepare a high-flammability eco-friendly rubber-based nanocomposite masterbatch.

<제조예 5> 발포용 마스터배치의 제조<Preparation Example 5> Preparation of masterbatch for foaming

고무 수지(니트릴부타디엔고무) (제조예 5-1) 또는 고무 수지(에틸렌프로필렌디엔모노머) (제조예 5-2) 100 중량부 및 발포제(아조디카본아마이드) 60 중량부를 110~120℃에서 혼합하여 발포용 마스터배치를 제조하였다.100 parts by weight of a rubber resin (nitrile butadiene rubber) (Preparation Example 5-1) or a rubber resin (ethylene propylene diene monomer) (Preparation Example 5-2) and 60 parts by weight of a foaming agent (azodicarbonamide) at 110 to 120° C. Thus, a master batch for foaming was prepared.

<제조예 6> 가교용 마스터배치의 제조<Preparation Example 6> Preparation of masterbatch for crosslinking

고무 수지(니트릴부타디엔고무) (제조예 6-1) 또는 고무 수지(에틸렌프로필렌디엔모노머) (제조예 6-2) 100 중량부, 가교제 혼합물(황, [2-멜캅트벤조티아졸(M), 디벤조티아딜 디설파이드(DM), Zn-디메틸디치오카아바메이트(PZ)] 40 중량부를 70~75℃에서 혼합하여 가교용 마스터배치를 제조하였다.100 parts by weight of a rubber resin (nitrile butadiene rubber) (Preparation Example 6-1) or a rubber resin (ethylene propylene diene monomer) (Preparation Example 6-2), a crosslinking agent mixture (sulfur, [2-mercaptbenzothiazole (M)) , dibenzothiadyl disulfide (DM), Zn-dimethyldithiocabamate (PZ)] 40 parts by weight were mixed at 70 to 75° C. to prepare a crosslinking masterbatch.

<실시예 1> <Example 1>

고무 수지(니트릴부타디엔고무) 100 중량부에 상기 제조예 2를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치 150 중량부 및 상기 제조예 5-1을 통해 제조된 발포용 마스터배치 150 중량부 및 상기 제조예 6-1을 통해 제조된 가교용 마스터배치 15 중량부를 압출기에 투입하여 40℃의 온도에서 압출성형하고, 이어서 압출성형물을 발포로에 투입하여 100~170℃의 온도에서 20분 동안 가교 및 발포성형한 후에 냉각하고 절단하여 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체를 제조하였다.150 parts by weight of a high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Example 2 in 100 parts by weight of a rubber resin (nitrile butadiene rubber) and a foaming master prepared in Preparation Example 5-1 150 parts by weight of the batch and 15 parts by weight of the masterbatch for crosslinking prepared in Preparation Example 6-1 were put into an extruder and extruded at a temperature of 40° C., and then the extruded product was put into a foaming furnace to a temperature of 100 to 170° C. After cross-linking and foam molding for 20 minutes, cooling and cutting were performed to prepare a high-flammability and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder.

<실시예 2> <Example 2>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 3을 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 사용하여 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체를 제조하였다.Proceed in the same manner as in Example 1, but using the high-flammability eco-friendly rubber-based nano-composite masterbatch using the waste rubber foam powder prepared in Preparation Example 3, high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder was prepared.

<실시예 3> <Example 3>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 4를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 사용하여 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체를 제조하였다.Proceed in the same manner as in Example 1, but using the high-flammability eco-friendly rubber-based nano-composite masterbatch using the waste rubber foam powder prepared in Preparation Example 4, high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder was prepared.

<실시예 4> <Example 4>

고무 수지(에틸렌프로필렌디엔모노머) 100 중량부에 상기 제조예 2를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치 150 중량부 및 상기 제조예 5-2를 통해 제조된 발포용 마스터배치 150 중량부 및 상기 제조에 6-2를 통해 제조된 가교용 마스터배치 15 중량부를 압출기에 투입하여 40℃의 온도에서 압출성형하고, 이어서 압출성형물을 발포로에 투입하여 100~170℃의 온도에서 20분 동안 가교 및 발포성형한 후에 냉각하고 절단하여 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체를 제조하였다.150 parts by weight of a non-flammable eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Example 2 in 100 parts by weight of a rubber resin (ethylene propylene diene monomer) and for foaming prepared in Preparation Example 5-2 150 parts by weight of the masterbatch and 15 parts by weight of the masterbatch for crosslinking prepared through 6-2 in the above preparation were put into an extruder and extruded at a temperature of 40° C. After crosslinking and foam molding at a temperature for 20 minutes, cooling and cutting were performed to prepare a high-flammability and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder.

<실시예 5><Example 5>

상기 실시예 4와 동일하게 진행하되, 상기 제조예 3을 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 사용하여 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체를 제조하였다.Proceeds in the same manner as in Example 4, but using the high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Example 3, high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder was prepared.

<실시예 6><Example 6>

상기 실시예 4와 동일하게 진행하되, 상기 제조예 4를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 사용하여 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체를 제조하였다.Proceeded in the same manner as in Example 4, but using the high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Example 4, high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder was prepared.

상기 제조예 2 내지 4를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치 및 상기 제조예 1 내지 6을 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 발포체의 유해성분 함유 여부를 측정하여 아래 표 1에 나타내었다.Harm of high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Examples 2 to 4 and the high-flammability eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder prepared in Preparation Examples 1 to 6 The content of the components was measured and shown in Table 1 below.

{단, 유해성분 함유 여부는 IEC 62321을 이용하여 6대 유해물질의 함유여부를 확인하는 방법을 이용하였다.}{However, the method of checking the content of 6 major hazardous substances using IEC 62321 was used for the presence or absence of harmful ingredients.}

구분division 카드뮴(Cd)Cadmium (Cd) 수은(Hg)Mercury (Hg) 납(Pb)Lead (Pb) 6가크롬(Cr6+)Hexavalent chromium (Cr 6+ ) 폴리브롬화비페닐(PBBs)Polybrominated biphenyls (PBBs) 폴리브롬화비닐(PBDEs)Polyvinyl bromide (PBDEs) 제조예 2Preparation 2 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 제조예 3Preparation 3 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 제조예 4Preparation 4 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 실시예 1Example 1 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 실시예 2Example 2 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 실시예 3Example 3 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 실시예 4Example 4 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 실시예 5Example 5 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 실시예 6Example 6 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection 불검출non-detection

상기 표 1에 나타낸 것처럼, 본 발명의 제조예 2 내지 4를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치는 유해성분이 함유되지 않아 친환경적인 것을 알 수 있다.As shown in Table 1, it can be seen that the high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Examples 2 to 4 of the present invention does not contain harmful components and is therefore eco-friendly.

상기 제조예 2 내지 4를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치의 난연성 및 건조감량을 측정하여 아래 표 2에 나타내었다.The flame retardancy and drying loss of the high-flammability eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder prepared in Preparation Examples 2 to 4 were measured and shown in Table 2 below.

{단, 난연성은 KSM ISO 4589-2의 측정방법을 이용하였으며, 건조감량은 KSM 0009:2010의 측정방법을 이용하였다.}{However, the measurement method of KSM ISO 4589-2 was used for flame retardancy, and the measurement method of KSM 0009:2010 was used for loss on drying.}

구분division 난연성(LOI, %)Flame retardant (LOI, %) 건조감량(%)Loss on drying (%) 제조예 2Preparation 2 ≤ 47≤ 47 0.020.02 제조예 3Preparation 3 ≤ 46≤ 46 0.010.01 제조예 4Preparation 4 ≤ 48≤ 48 0.020.02

또한, 상기 실시예 1 내지 6을 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 난연성, 단열성 및 내충격성을 측정하여 아래 표 3에 나타내었다.In addition, the flame retardancy, heat insulation and impact resistance of the high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder prepared in Examples 1 to 6 were measured and shown in Table 3 below.

{단, 난연성은 KSM ISO 4589-2의 측정방법을 이용하였으며, 단열성은 KSL 9016의 측정방법을 이용하였고, 내충격성은 실시예 1 내지 6을 통해 제조된 발포체를 가로 150mm×세로150mm×두께0.9mm로 절단하여 시편화하고 JIS P8134(1976)의 측정방법을 이용하였다.}{However, the measurement method of KSM ISO 4589-2 was used for flame retardancy, the measurement method of KSL 9016 was used for thermal insulation, and the impact resistance of the foam prepared in Examples 1 to 6 was 150 mm horizontal × 150 mm vertical × 0.9 mm thick. It was cut into a specimen and the measurement method of JIS P8134 (1976) was used.}

구분division 난연성(LOI, %)Flame retardant (LOI, %) 단열성(W/m.K)Insulation (W/m.K) 내충격성(kgf·㎝)Impact resistance (kgf cm) 실시예 1Example 1 ≤ 40≤ 40 ≤ 0.035≤ 0.035 138138 실시예 2Example 2 ≤ 38≤ 38 ≤ 0.034≤ 0.034 146146 실시예 3Example 3 ≤ 37≤ 37 ≤ 0.037≤ 0.037 136136 실시예 4Example 4 ≤ 39≤ 39 ≤ 0.033≤ 0.033 152152 실시예 5Example 5 ≤ 36≤ 36 ≤ 0.032≤ 0.032 163163 실시예 6Example 6 ≤ 34≤ 34 ≤ 0.033≤ 0.033 152152

상기 표 3에 나타낸 것처럼, 본 발명의 실시예 1 내지 6을 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체는 난연성, 단열성 및 내충격성이 우수한 것을 알 수 있다.As shown in Table 3, it can be seen that the high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder prepared in Examples 1 to 6 of the present invention has excellent flame retardancy, heat insulation and impact resistance.

따라서, 본 발명에 따른 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법은 할로겐계 난연제 성분이 함유되지 않고 폐고무 발포체 분말을 재활용하여 친환경적이며, 중량이 가볍고 우수한 흡음성능을 나타낼 뿐만 아니라, 난연성, 단열성, 내열성 및 기계적 물성이 우수한 발포체를 제공한다.Therefore, the method of manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using the waste rubber foam powder according to the present invention is environmentally friendly by recycling waste rubber foam powder without containing a halogen-based flame retardant component, light weight and excellent sound absorption performance It also provides a foam excellent in flame retardancy, heat insulation, heat resistance and mechanical properties.

S101 ; 난연성마스터배치제조단계
S103 ; 원료혼합단계
S105 ; 압출단계
S107 ; 발포단계
S109 ; 절단단계
S101; Flame retardant masterbatch manufacturing stage
S103; Raw material mixing step
S105 ; Extrusion step
S107; foaming step
S109; cutting step

Claims (10)

고무 100 중량부; 고분자 나노클레이 복합체 10 내지 30 중량%, 폐 고무 발포체 분말 10 내지 50 중량%, 및 친환경 난연제 30 내지 80 중량%로 이루어진 난연제 혼합물 100 내지 150 중량부; 및 가공조제 0.1 내지 10 중량부;로 이루어진 폐 고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치를 제조하는 난연성마스터배치제조단계;
고무 수지, 상기 난연성마스터배치제조단계를 통해 제조된 고난연성 친환경 고무계 나노복합 마스터배치, 발포용 마스터배치 및 가교용 마스터배치를 혼합하는 원료혼합단계;
상기 원료혼합단계를 통해 제조된 혼합물을 압출하는 압출단계;
상기 압출단계를 통해 제조된 압출물을 발포하는 발포단계; 및
상기 발포단계를 통해 발포된 발포물을 절단하는 절단단계;로 이루어지되,
상기 폐고무 발포체 분말은 1 내지 10㎛의 입자크기를 나타내며, 폐고무 발포체를 액체질소, 밀링기, 또는 파쇄하여 제조된 것을 특징으로 하며,
상기 고분자 나노클레이 복합체는 고무 수지 100 중량부, 나노클레이 1 내지 15 중량부 및 상용화제 1 내지 15 중량부를 혼합기에 투입하고, 200 내지 500 RPM으로 180 내지 220℃의 온도에서 3 내지 5 min 동안 혼합한 것을 특징으로 하며,
상기 친환경 난연제는 무기금속 수산화물 100 중량부, 팽창흑연 30 내지 40 중량부, 인계난연제 60 내지 70 중량부 및 붕산아연 70 내지 90 중량부로 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법.
100 parts by weight of rubber; 100 to 150 parts by weight of a flame retardant mixture consisting of 10 to 30% by weight of a polymer nanoclay composite, 10 to 50% by weight of waste rubber foam powder, and 30 to 80% by weight of an eco-friendly flame retardant; and 0.1 to 10 parts by weight of a processing aid; a flame retardant masterbatch manufacturing step of preparing a high-flammability eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder consisting of;
A raw material mixing step of mixing a rubber resin, a high-flammability eco-friendly rubber-based nano-composite masterbatch manufactured through the flame-retardant masterbatch manufacturing step, a foaming masterbatch and a crosslinking masterbatch;
an extrusion step of extruding the mixture prepared through the raw material mixing step;
a foaming step of foaming the extrudate prepared through the extrusion step; and
A cutting step of cutting the foamed product through the foaming step;
The waste rubber foam powder has a particle size of 1 to 10 μm, characterized in that it is prepared by liquid nitrogen, a milling machine, or crushing,
The polymer nanoclay composite is prepared by adding 100 parts by weight of a rubber resin, 1 to 15 parts by weight of nanoclay, and 1 to 15 parts by weight of a compatibilizer to a mixer, and mixing at 200 to 500 RPM at a temperature of 180 to 220° C. for 3 to 5 min. It is characterized by
The eco-friendly flame retardant comprises 100 parts by weight of inorganic metal hydroxide, 30 to 40 parts by weight of expanded graphite, 60 to 70 parts by weight of phosphorus-based flame retardant, and 70 to 90 parts by weight of zinc borate. A method for producing a rubber-based nanocomposite foam.
삭제delete 청구항 1에 있어서,
상기 고무는 니트릴부타디엔고무 및 에틸렌프로필렌디엔모노머로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법.
The method according to claim 1,
The rubber is a method of manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using a waste rubber foam powder, characterized in that it consists of at least one selected from the group consisting of nitrile butadiene rubber and ethylene propylene diene monomer.
삭제delete 삭제delete 삭제delete 청구항 1에 있어서,
상기 무기금속 수산화물은 수산화알루미늄 및 수산화마그네슘으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법.
The method according to claim 1,
The inorganic metal hydroxide is a method of manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using a waste rubber foam powder, characterized in that it consists of at least one selected from the group consisting of aluminum hydroxide and magnesium hydroxide.
청구항 1에 있어서,
상기 원료혼합단계는 고무 수지 100 중량부, 상기 난연성마스터배치제조단계를 통해 제조된 폐고무 발포체 분말을 이용한 고난연성 친환경 고무계 나노복합 마스터배치 100 내지 200 중량부, 발포용 마스터배치 100 내지 200 중량부 및 가교용 마스터배치 10 내지 20 중량부를 혼합하여 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법.
The method according to claim 1,
The raw material mixing step includes 100 parts by weight of a rubber resin, 100 to 200 parts by weight of a non-flammable eco-friendly rubber-based nanocomposite masterbatch using the waste rubber foam powder produced through the flame retardant masterbatch manufacturing step, 100 to 200 parts by weight of a foaming masterbatch and 10 to 20 parts by weight of the masterbatch for crosslinking.
청구항 1에 있어서,
상기 발포용 마스터배치는 고무 100 중량부 및 발포제 25 내지 100 중량부로 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법.
The method according to claim 1,
The master batch for foaming is a method of manufacturing a high-flammability and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder, characterized in that it consists of 100 parts by weight of rubber and 25 to 100 parts by weight of a foaming agent.
청구항 1에 있어서,
상기 발포단계는 100 내지 180℃의 온도에서 5 내지 60분 동안 이루어지는 것을 특징으로 하는 폐고무 발포체 분말을 이용한 고난연성 및 친환경성 고무계 나노복합 발포체의 제조방법.
The method according to claim 1,
The foaming step is a method for producing a high-flammability and eco-friendly rubber-based nanocomposite foam using a waste rubber foam powder, characterized in that made at a temperature of 100 to 180 ℃ for 5 to 60 minutes.
KR1020200078793A 2020-06-26 2020-06-26 Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder KR102434208B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200078793A KR102434208B1 (en) 2020-06-26 2020-06-26 Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200078793A KR102434208B1 (en) 2020-06-26 2020-06-26 Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder

Publications (2)

Publication Number Publication Date
KR20220001046A KR20220001046A (en) 2022-01-05
KR102434208B1 true KR102434208B1 (en) 2022-08-22

Family

ID=79348776

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200078793A KR102434208B1 (en) 2020-06-26 2020-06-26 Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder

Country Status (1)

Country Link
KR (1) KR102434208B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415680B1 (en) 2001-03-06 2004-01-24 문성철 A composition of flame retarding rubber foams with ground tire rubber and tire cord fibers and its manufacturing method
KR100916534B1 (en) 2008-11-17 2009-09-11 (주)하이코리아 Waste rubber form and made method of the same that
KR101005489B1 (en) * 2008-12-08 2011-01-04 호남석유화학 주식회사 Fabrication of high strength and high impact strength polypropylene/nanoclay/rubber composite using rubber/nanoclay masterbatch
US8835536B2 (en) 2012-02-02 2014-09-16 Lion Copolymer Holdings, Llc Highly silica loaded styrene butadiene rubber masterbatch
KR101731864B1 (en) * 2015-08-05 2017-05-02 (주)다이나믹 An eco-friendly master batch for expanded cross-linked polyolefin having the flame retardancy
KR102204331B1 (en) * 2018-10-19 2021-01-19 문성철 A method for preparing of rubber foam comprising waste rubber powder by treating with non-thermal plasma

Also Published As

Publication number Publication date
KR20220001046A (en) 2022-01-05

Similar Documents

Publication Publication Date Title
KR100361561B1 (en) A Blowing Composition of Polyolefins with Flame-Retardantivity and Method Thereof
KR101496218B1 (en) Non-halogen flame retardant foam and manufacturing method thereof
KR20170017141A (en) An eco-friendly master batch for expanded cross-linked polyolefin having the flame retardancy and the foam composition by using the same
KR100404768B1 (en) A composition of flame retarding foams with waste materials and its preparing method
JP2008201825A (en) Method for producing organically treated filler
JP5170865B2 (en) Expandable polyolefin-based resin composition and polyolefin-based flame retardant foam containing intercalation compound filler
WO2012005424A1 (en) Flame retardant foam polystyrene bead and method for manufacturing same
KR101772761B1 (en) Flame retardant master batch of expanded polystyrene with enhanced cell uniformity and flame-resistance, and a method of the manufacturing
KR102404479B1 (en) Method for manufacturing highly flame resistant and eco-friendly polyolefin nanocomposite foam using waste polyolefin foam powder
KR20180103527A (en) Non-halogen flame retardant foam for automobile and manufacturing method thereof
KR100415680B1 (en) A composition of flame retarding rubber foams with ground tire rubber and tire cord fibers and its manufacturing method
JP2003064209A (en) Foam material of epoxy resin
KR102434208B1 (en) Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder
KR100415682B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
JP5128143B2 (en) Polyolefin flame retardant foam composition and olefin flame retardant foam
KR102360096B1 (en) Highly flame resistant and eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder
KR101975285B1 (en) Rubber foam composition having a high tensile strength and high elongation, and a processe for the preparation of ruber foam using thereof
KR102404477B1 (en) Manufacturing method of high flame resistant and eco-friendly rubber-based nanocomposite foam
KR102381971B1 (en) High flame resistant and eco-friendly rubber-base masterbatch with polymer nanocomposites
KR102523047B1 (en) Highly flame resistant and eco-friendly polyolefin nanocomposite masterbatch using waste polyolefin foam powder
KR20220001040A (en) Manufacturing method of high flame resistant and eco-friendly polyolefin nanocomposite foam
KR20220001023A (en) High flame resistant and eco-friendly polyolefin-base masterbatch with polymer nanocomposites
KR100388638B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
KR101919751B1 (en) Flame-resistant master batch composition for a formed insulating material
KR20220002770A (en) Manufacturing method of eco-friendly sound absorbing material excellent in flame retardancy and sound sbsorption

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant