KR100408704B1 - A composition of foams with waste materials and ground tire rubber and foams thereof - Google Patents

A composition of foams with waste materials and ground tire rubber and foams thereof Download PDF

Info

Publication number
KR100408704B1
KR100408704B1 KR10-2001-0011276A KR20010011276A KR100408704B1 KR 100408704 B1 KR100408704 B1 KR 100408704B1 KR 20010011276 A KR20010011276 A KR 20010011276A KR 100408704 B1 KR100408704 B1 KR 100408704B1
Authority
KR
South Korea
Prior art keywords
waste
composition
foaming
foam
gtr
Prior art date
Application number
KR10-2001-0011276A
Other languages
Korean (ko)
Other versions
KR20020071258A (en
Inventor
조병욱
최재곤
문성철
Original Assignee
문성철
조병욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문성철, 조병욱 filed Critical 문성철
Priority to KR10-2001-0011276A priority Critical patent/KR100408704B1/en
Publication of KR20020071258A publication Critical patent/KR20020071258A/en
Application granted granted Critical
Publication of KR100408704B1 publication Critical patent/KR100408704B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L17/00Compositions of reclaimed rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • C08L2207/24Recycled plastic recycling of old tyres and caoutchouc and addition of caoutchouc particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명은 폐플라스틱을 이용한 발포체 조성물과 이를 이용한 발포체에 관한 것으로써, 더욱 상세하게는 바탕수지로 고가의 순수원료를 전혀 사용치 않고, 폐플라스틱으로서 폐폴리에틸렌(W-PE) 또는 폐에틸렌비닐공중합체(W-EVA)와 경우에 따라서 폐타이어고무분말(GTR; Ground tire rubber)를 블렌드하고, 여기에 발포제, 가교제 및 기타 첨가제를 혼합하여 만든 조성물로서, 폐플라스틱의 효율적인 재활용을 추구함과 동시에 보다 환경친화성 및 경제성과 기계적 물성이 우수한 제품에 대한 것이며, 압출성형, 압축성형 또는 사출성형에 의해 각종 건축자재와 자동차 부품, 스포츠 용품, 기타 공산품 등의 광범위한 분야에 적용하는 경우 환경친화성, 경제성 등이 확보되어 폐자원을 처리하면서 경제성이 있는 재활용 제품으로 매우 유용하게 이용할 수 있는 발포체 조성물과 이를 이용하여 성형시킨 발포체에 관한 것이다.The present invention relates to a foam composition using waste plastics and a foam using the same, more specifically, waste plastics (W-PE) or waste ethylene vinyl as waste plastics without using any expensive pure raw materials as a base resin at all. A composition made by blending W-EVA and ground tire rubber (GTR) in some cases and mixing a blowing agent, a crosslinking agent, and other additives, while pursuing efficient recycling of waste plastic. This product is for more environmentally friendly, economical and mechanical properties. When applied to a wide range of fields such as building materials, automobile parts, sporting goods and other industrial products by extrusion molding, compression molding or injection molding, It can be used as a recycled product with economical efficiency while securing waste economic resources. Body composition and relates them to the molding foam was used.

Description

폐플라스틱을 이용한 발포체 조성물과 이를 이용한 발포체{A composition of foams with waste materials and ground tire rubber and foams thereof}A composition of foams with waste materials and ground tire rubber and foams

본 발명은 폐플라스틱을 이용한 발포체 조성물과 이를 이용한 발포체에 관한 것으로써, 더욱 상세하게는 바탕수지로 고가의 순수원료를 전혀 사용치 않고, 폐플라스틱으로서 폐폴리에틸렌(W-PE) 또는 폐에틸렌비닐공중합체(W-EVA)와 경우에 따라서 폐타이어고무분말(GTR; Ground tire rubber)를 블렌드하고, 여기에 발포제, 가교제 및 기타 첨가제를 혼합하여 만든 조성물로서, 폐플라스틱의 효율적인 재활용을 추구함과 동시에 보다 환경친화성 및 경제성과 기계적 물성이 우수한 제품에 대한 것이며, 압출성형, 압축성형 또는 사출성형에 의해 각종 건축자재와 자동차 부품, 스포츠 용품, 기타 공산품 등의 광범위한 분야에 적용하는 경우 환경친화성, 경제성 등이 확보되어 폐자원을 처리하면서 경제성이 있는 재활용 제품으로 매우 유용하게 이용할 수 있는 발포체 조성물과 이를 이용하여 성형한 발포체에 관한 것이다.The present invention relates to a foam composition using waste plastics and a foam using the same, more specifically, waste plastics (W-PE) or waste ethylene vinyl as waste plastics without using any expensive pure raw materials as a base resin at all. A composition made by blending W-EVA and ground tire rubber (GTR) in some cases and mixing a blowing agent, a crosslinking agent, and other additives, while pursuing efficient recycling of waste plastic. This product is for more environmentally friendly, economical and mechanical properties. When applied to a wide range of fields such as building materials, automobile parts, sporting goods and other industrial products by extrusion molding, compression molding or injection molding, It can be used as a recycled product with economical efficiency while securing waste economic resources. Body composition and relates it to a foam molding using.

기존 발포체(폴리올레핀 등)의 경우 건축, 건설, 자동차, 스포츠 용품 및 기타 분야에 광범위하게 사용되고 있는 성형조성물로서, 현재 이들 관련업계의 난립화 및 유사물질의 다변화로 인해 바탕수지로 사용되는 물질에 따라 약간의 차이는 있으나 그 특성에 따라 적용범위가 세분화 되어가고 있으며, 이는 기존 광범위한 적용분야에서 특정분야로의 적용범위 축소가 이루어지고 있고, 이에 따른 대체유사물질이 개발되고 있어서 발포체 조성물의 시장은 무한경쟁이 일어나고 있으므로 경제적이고 우수한 품질의 제품개발에 대한 필요성이 대두되고 있다.Existing foams (polyolefin, etc.) are molding compositions that are widely used in construction, construction, automobiles, sporting goods and other fields. Depending on the materials currently used as base resins due to the difficulty of granulation and similar materials in these related industries, Although there is a slight difference, the scope of application is subdivided according to its characteristics, which is reducing the scope of application to a specific field in a wide range of existing applications, and as a result, substitutes are being developed, and thus the market for foam compositions is infinite. As competition is taking place, there is a need for developing economical and high quality products.

따라서, 발포체의 경우 그 물성도 중요하지만 특히 경제성(저단가)이 우선적으로 요구되고 있다. 그러나, 이러한 발포체 생산에 관여하는 업계들은 대부분이 중소기업으로서 연구기반 및 기술력 부족 등으로 인해 이를 만족시키지 못함으로써, 아직까지도 대부분의 생산업체들은 고가의 순수원료(virgin materials)를 사용하여 발포체를 제조 공급함으로써 부가가치의 급격한 감소와 이로 인한 무한경쟁력(국제 경쟁력) 시대에 경쟁력을 잃어가고 있다.Therefore, in the case of foam, the physical properties are also important, but economical efficiency (low cost) is required in particular. However, most of the industries involved in the production of foams are small and medium-sized companies, which are not satisfied due to the lack of research base and technology, so that most producers still manufacture and supply foams using expensive raw materials. By doing so, it is losing its competitiveness in the era of rapid reduction in value added and the infinite competitiveness (international competitiveness).

이러한 종래의 폴리에틸렌 발포체 조성물은 그 사양에 따라서 약간의 차이가 있기는 하지만, 그 중에서 한가지 조성을 대표적으로 예시해 보면, 저밀도폴리에틸렌수지 100 중량부에 대해 가교제 0.8∼0.9 중량부, 발포제 22∼24 중량부, 색소 1∼1.5 중량부로 이루어진 발포체 조성물이 사용되고 있으며, 이러한 조성의 발포체는 상기와 같이 관련업계의 난립화 등으로 인해 그 조성이 일반화되어 있다.Although such a conventional polyethylene foam composition is slightly different depending on its specifications, one of the compositions is representatively exemplified by 0.8 to 0.9 parts by weight of crosslinking agent and 22 to 24 parts by weight of foaming agent based on 100 parts by weight of low density polyethylene resin. The foam composition which consists of 1-1.5 weight part of pigment | dyes is used, The foam of such a composition is generalized by the granulation etc. of the related art as mentioned above.

한편, 종래에 폐플라스틱과 폐타이어고무분말을 이용하여 각종 구조물을 성형 제조하는 폐자원활용 기술이 본 발명자들에 의해 개발되어 한국특허 제 180216호로 공지된 바 있다. 여기서는 폐타이어분말과 폐플라스틱을 블렌드하여 고온에서 라디칼화하는 큐멘히드로퍼옥사이드 및 과산화디큐밀등의 가교제를 적당한 고온에서 순간적으로 가교시켜 사출 또는 압출시켜 저렴한 원가의 보도블럭 또는 장판 바닥하지재나 철근대용 구조물 등으로 활용되도록 한 유용한 기술을 제시하고 있다. 그러나, 이러한 공지기술은 발포성을 전혀 부여하지 아니한 단순 성형 가공물로서 폐플라스틱 등의 수지에 발포성을 부여하는 경우 폐자원으로 인한 물성 저하 등이 상당한 품질 결함으로 연결될 수 있기 때문에 이러한 종래의 조성을 그대로 발포체조성물로 적용하기 곤란한 문제가 있다. 즉, 이러한 종래 기술은 발포체의 구성과는 근본적인 적용 기술분야를 달리하는 것이므로 이렇게 경제적으로 유리한 폐자원 활용기술을 발포체 분야에 그대로 적용할 수도 없었다.On the other hand, in the prior art, waste resources utilization technology for forming and manufacturing various structures using waste plastic and waste tire rubber powder has been developed by the present inventors and has been known as Korean Patent No. 180216. Here, a crosslinking agent such as cumene hydroperoxide and dicumyl peroxide, which is a mixture of waste tire powder and waste plastic and radicalized at high temperature, is instantaneously crosslinked at an appropriate temperature, and injected or extruded to inexpensive press blocks or floorboards or reinforcing rods. It presents useful techniques to be used as a structure. However, such a known technique is a simple molded product which does not impart foaming properties. When imparting foaming properties to resins such as waste plastics, the physical properties due to waste resources may lead to considerable quality defects. There is a problem that is difficult to apply. In other words, this conventional technology is different from the application of the fundamental technology and the foam composition, so this economically advantageous waste resource utilization technology could not be applied to the foam field as it is.

이와 같이, 종래의 폴리올레핀 발포체 조성물은 관련업계의 난립화 및 유사물질의 다변화로 인해 특정분야로의 적용범위 축소 및 대체 유사물질과의 무한경쟁이 야기되고 있으며, 이에 따라서 우선적으로 경제적으로 유리한 방법으로 제조하는 조성물의 개발이 시급한 실정이다. 그럼에도 불구하고, 현실적으로는 고가의 순수원료를 사용하여 부가가치의 급격한 감소가 야기되고 있고 이와 더불어 국제화시대의 경쟁력을 잃어감에 따라 경제적 원료로 대체하는 등 저렴한 가격으로 고품질의 제품을 개발하는 것이 필요하다.As such, the conventional polyolefin foam composition is caused by reduction in the scope of application to a specific field and endless competition with alternative analogues due to the diversification of the related art and diversification of the related arts, and thus, preferentially in an economically advantageous manner. Development of the composition to be prepared is an urgent situation. Nevertheless, in reality, it is necessary to develop high quality products at low prices such as replacing raw materials with economic raw materials due to the rapid decrease in added value by using expensive pure raw materials. .

따라서, 본 발명은 종래의 폴리올레핀 발포체 조성에서의 단점들, 특히 경제성을 개선하기 위하여, 그리고 현재 과학발전으로 인한 심각한 환경 오염을 고려하고 기존에 바탕수지로 사용되었던 고가의 순수원료 대신에 폐플라스틱(W-PE, W-EVA) 또는 폐타이어고무분말(GTR; Ground tire rubber)을 효과적으로 조합 블렌드하고, 기타 첨가제의 조성을 새롭게 구성하여 종래의 발포체 조성물에 비하여 특히 기계적 물성이 우수하면서도 보다 환경친화적이고 폐자원 재활용으로 인해 제조단가를 낮추어 경제성을 극대화시켜 제조하는 발포체 조성물을 제공하는데 그 목적이 있다.Accordingly, the present invention is directed to waste plastics instead of expensive pure raw materials which have been used as base resins in order to improve the disadvantages of the conventional polyolefin foam composition, in particular the economics, and to consider the serious environmental pollution caused by current scientific development. W-PE, W-EVA) or ground tire rubber (GTR) can be effectively blended and newly composed of other additives to provide a more environmentally friendly, more environmentally friendly, The purpose of the present invention is to provide a foam composition that is manufactured by maximizing economic efficiency by lowering manufacturing costs due to resource recycling.

본 발명의 또 다른 목적은 상기 조성물을 이용하여 성형 제조한 발포체를 제공하는데 있다.Still another object of the present invention is to provide a molded foam molded using the composition.

도1은 본 발명의 실시예 1에 따라 제조한 발포체 시료5에 대해 셀구조를 확인한 전자현미경(SEM) 사진이고,1 is an electron microscope (SEM) photograph confirming the cell structure of the foam sample 5 prepared according to Example 1 of the present invention.

도2는 본 발명의 실시예 1에 따라 제조한 발포체 시료15에 대해 셀구조를 확인한 전자현미경(SEM) 사진이고,2 is an electron microscope (SEM) photograph confirming the cell structure of the foam sample 15 prepared according to Example 1 of the present invention.

도3은 본 발명의 실시예 1에 따라 제조한 발포체 시료22에 대해 셀구조(A)와 타이어고무분말(GTR)의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,3 is an electron microscope (SEM) photograph confirming the dispersion degree (B) of the cell structure (A) and the tire rubber powder (GTR) with respect to the foam sample 22 prepared according to Example 1 of the present invention.

도4는 본 발명의 실시예 2에 따라 제조한 발포체 시료10에 대해 셀구조를 확인한 전자현미경(SEM) 사진이고,4 is an electron microscope (SEM) photograph confirming the cell structure of the foam sample 10 prepared according to Example 2 of the present invention.

도5는 본 발명의 실시예 2에 따라 제조한 발포체 시료11에 대해 셀구조를 확인한 전자현미경(SEM) 사진이고,5 is an electron microscope (SEM) photograph confirming the cell structure of the foam sample 11 prepared according to Example 2 of the present invention.

도6은 본 발명의 실시예 2에 따라 제조한 발포체 시료16에 대해 셀구조(A)와 GTR의 분산정도(B)를 확인한 전자현미경(SEM) 사진이고,6 is an electron microscope (SEM) photograph confirming the dispersion degree (B) of the cell structure (A) and the GTR with respect to the foam sample 16 prepared according to Example 2 of the present invention.

도7은 종래의 발포체에 대해 셀구조(A)와 첨가제 분산정도(B)를 확인한 전자현미경(SEM) 사진이다.7 is an electron microscope (SEM) photograph confirming the cell structure (A) and the additive dispersion degree (B) of the conventional foam.

본 발명은 폴리올레핀 수지성분을 함유하고 첨가제로서 가교제, 발포제를 포함하는 발포체 조성물에 있어서, 수지성분으로는 폐폴리에틸렌(W-PE) 과 폐에틸렌비닐공중합체(W-EVA) 중에서 하나이상의 폐플라스틱 성분 100중량부에 폐타이어고무분말(GTR) 1∼40 중량부가 함유되어 있고, 여기에 첨가제로서 발포제 5∼40 중량부와 가교제 0.1∼5 중량부가 함유되어 있는 것을 그 특징으로 한다.The present invention relates to a foam composition containing a polyolefin resin component and comprising a crosslinking agent and a foaming agent as an additive, wherein the resin component comprises at least one waste plastic component among waste polyethylene (W-PE) and waste ethylene vinyl copolymer (W-EVA). 1 to 40 parts by weight of waste tire rubber powder (GTR) is contained in 100 parts by weight, which is characterized by containing 5 to 40 parts by weight of blowing agent and 0.1 to 5 parts by weight of crosslinking agent.

또한, 본 발명은 수지성분으로 W-PE와 W-EVA 중 하나이상의 폐플라스틱 성분 100중량부와 GTR 1∼40 중량부를 블렌드하고, 여기에 첨가제로서 발포제 5∼40 중량부와 가교제 0.1∼5 중량를 함유하는 첨가제를 첨가하여 조성물을 제조한 다음, 이 조성물을 110∼120℃에서 혼합하고 압출, 압축 또는 사출하여 제조한 발포체를 포함한다.In addition, the present invention blends 100 parts by weight of at least one waste plastic component of W-PE and W-EVA and 1 to 40 parts by weight of GTR as a resin component, and 5 to 40 parts by weight of blowing agent and 0.1 to 5 parts by weight of crosslinking agent as The composition is prepared by adding an additive to contain, and then the foam is prepared by mixing the composition at 110 to 120 ° C. and extruding, compressing or injecting.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명의 조성물의 성분 구성의 한 예를 구체적으로 예시하면, 수지 성분으로 W-PE와 W-EVA 중에서 하나이상의 성분으로 이루어진 폐플라스틱성분 100중량부와 GTR 1∼40 중량부로 구성되어 있고, 여기에 발포제 5∼40 중량부, 발포조제 0.1∼5 중량부, 외부이형제 0.1∼10 중량부, 가교제 0.1∼5 중량부, 열전달촉진제 0.1∼10 중량부를 포함하는 조성물로 제조할 수 있다.Specific examples of the component composition of the composition of the present invention, the resin component is composed of 100 parts by weight of waste plastic components consisting of one or more components of W-PE and W-EVA and 1 to 40 parts by weight of GTR, wherein 5 to 40 parts by weight of the blowing agent, 0.1 to 5 parts by weight of the foaming aid, 0.1 to 10 parts by weight of the external release agent, 0.1 to 5 parts by weight of the crosslinking agent, and 0.1 to 10 parts by weight of the heat transfer accelerator.

특히, 폐자원으로서의 W-PE는 예비실험에 의하면 대략 분자량이 7,000??∼ 10,000 정도로서 원래의 순수 PE가 가지는 분자량의 1/2∼2/3값에 불과할 정도로낮아있고, W-EVA 또한 순수 EVA 분자량의 1/2∼2/3값에 불과할 정도로 낮은 특성을 보이고 있다. 따라서, 이와 같은 W-PE, W-EVA는 순수원료에 비하여 가교가 훨씬 쉽게 이루어질 수 있으며 발포공정을 더욱 쉽게 만든다. 그리고, 역시 폐자원으로서의 GTR은 가장 안정한 구조의 가교고무로서 가는 분말상태의 경우 매트릭스 수지 중에 분산을 쉽게 할 수 있으며, 또한 난연효과가 좋고 더욱이 연소상태에서는 챠르(char) 형성이 쉬워 표면에 단열층을 형성하고 내부로의 연소진행을 차단시켜주는 역할을 한다.In particular, the preliminary experiments showed that W-PE as a waste resource has a molecular weight of about 7,000 ?? to 10,000, which is only about 1/2 to 2/3 of the molecular weight of the original pure PE, and W-EVA is also pure EVA. The low molecular weight is only 1/2 to 2/3 of the molecular weight. Therefore, such W-PE, W-EVA can be made much easier crosslinking than a pure raw material and makes the foaming process easier. In addition, GTR as a waste resource can easily disperse in the matrix resin in the case of powder, which is the most stable crosslinked rubber, and has a good flame retardant effect, and in addition, it is easy to form char in the combustion state, thereby providing a heat insulating layer on the surface. It forms and blocks the combustion process to the inside.

본 발명에 있어서 수지 조성물은 경제성 및 재활용을 감안하여 바람직하게 사용되는 폐자원으로서 전형적으로는 W-PE, W-EVA, GTR의 블렌드로 이루어져 있으며, 이 중에서 폐플라스틱은 필수적으로 사용하고 경우에 따라서 사용되는 GTR(Ground tire rubber)은 폐타이어를 분쇄하여 분말로 만든 것으로, 화학적 안정성이 크고 대기오염 물질의 함유가 적은 점을 감안할 때 폴리올레핀 블렌드 재료의 좋은 충전제(filler)로 작용될 수 있는데, 이는 가교되어 있으면서 카본블랙 함량이 많은 타이어 고무의 강인성이 플라스틱과 조화를 잘 이룰 수 있고, UV 저항이 커 화학안정성이 크고 함유된 활성탄소 등이 입자보강형 복합재료에 알맞기 때문에 적절히 블렌드하여 사용하면 좋다. 이러한 성분은 입자의 크기에 따라 복합재의 기계적 성질에 큰 영향을 주게 되는데, 크기가 커질수록 계면 접착에 문제가 발생할 수 있으며 대부분의 인장 특성이 떨어지게 되므로 분말상태로 사용하는 것이 바람직하다. 따라서, 본 발명에서는 이를 고려하여 0.5mm 이하의 입자크기를 갖는 것을 바람직하게 사용할 수 있으나, 그 입자크기에 크기에 제한을 두지 아니한다.In the present invention, the resin composition is preferably used in consideration of economical efficiency and recycling, and is typically composed of a blend of W-PE, W-EVA, and GTR. The used ground tire rubber (GTR) is made from powder by grinding waste tires, which can serve as a good filler for polyolefin blend materials in view of its high chemical stability and low air pollutant content. The toughness of the crosslinked, high-carbon black tire rubber can be well harmonized with plastics, and its UV resistance is large, its chemical stability is high, and the activated carbon is suitable for particle-reinforced composites. good. These components have a great influence on the mechanical properties of the composite according to the size of the particles, the larger the size may cause problems in the interface adhesion and most tensile properties are degraded, so it is preferable to use the powder state. Therefore, the present invention can be preferably used having a particle size of 0.5mm or less in consideration of this, but the size is not limited to the particle size.

참고로, 본 발명에서 사용하고 있는 GTR의 조성은 일반적으로 다음의 표 1과 같다.For reference, the composition of the GTR used in the present invention is generally as shown in Table 1 below.

분석항목Analysis item PCa PC a PC + LTb PC + LT b TBc TB c 고무분Rubber powder 고무분Rubber powder 고무분Rubber powder 고무중합체의 종류Type of rubber polymer 배합비d(%)Compounding ratio d (%) NRNR 2020 4040 7070 SBRSBR 8080 4545 2020 BRBR -- 1515 1010 고무중합체의 양(%)% Of rubber polymer 직접법Direct law 23.723.7 40.240.2 간접법Indirect law 47.647.6 44.644.6 54.154.1 비중importance 1.161.16 1.151.15 1.141.14 아세톤 추출분(%)Acetone Extract (%) 19.419.4 16.916.9 12.512.5 클로로포름 추출분(%)Chloroform Extract (%) 1.401.40 1.201.20 알콜성 KOH 용액Alcoholic KOH Solution 추출물(%)extract(%) 0.50.5 0.40.4 유황분(%)Sulfur content (%) 1.71.7 1.71.7 유기유황e(%)Organic sulfur e (%) 0.020.02 0.030.03 무기유황(%)Inorganic sulfur (%) 0.50.5 회분(%)Ash content (%) 3.13.1 4.24.2 3.83.8 활성탄f(%)Activated carbon f (%) 30.730.7 26.326.3 SiO2(%)SiO 2 (%) 0.50.5 0.40.4 TiO2(%)TiO 2 (%) 0.10.1 ZnO(%)ZnO (%) 1.61.6 1.21.2 CaO(%)CaO (%) 1.61.6 0.40.4 Fe2O3+ Al2O3(%)Fe 2 O 3 + Al 2 O 3 (%) 0.30.3 0.10.1

상기 표 1에서 a는 승용차 타이어, b는 경트럭 타이어, c는 트럭 또는 버스 타이어f를 의미하고, d는 기체 색층분석법에 의한 수치, e는 아황산나트륨법에 의한 수치, f는 질산분석법에 의한 수치를 나타낸 것이다.In Table 1, a denotes a passenger car tire, b denotes a light truck tire, c denotes a truck or bus tire f, d denotes a value obtained by gas chromatography, e denotes a value of sodium sulfite method, and f denotes a value of nitrate analysis method. It is shown.

위 성분 분석에서 보면, 타이어는 주로 천연고무(NB; natural rubber), 스티렌 부타디엔고무(SBR; styrene-butadiene rubber), 부타디엔고무(BR; butadiene rubber) 등이 주성분이며, 타이어부위별 특성에 따라 위 성분들의 조합상태를 승용차와 트럭으로 구분하여 분석해 보면 다음의 표 2와 같이 조성이 정해진다.In the above component analysis, tires are mainly composed of natural rubber (NB), styrene-butadiene rubber (SBR) and butadiene rubber (BR), but according to the characteristics of tire parts The composition of the composition is determined as shown in the following Table 2 by analyzing the combination state of the car and truck.

구분division 승용차car 트럭truck 트레드Tread SBR-BRSBR-BR NRa-BR 또는 SBR-BRNR a -BR or SBR-BR 벨트belt NRNR NRNR 카아카스Caucas NR-SBR-BRNR-SBR-BR NR-BRNR-BR 싸이드 월(흑)Side wall (black) NR-SBR 또는 NR-BRNR-SBR or NR-BR NR-BRNR-BR 싸이드 월(백)Side wall (bag) NR-SBR-EPDM-ⅡRb NR-SBR-EPDM-IIR b -- 라이나Lina NR-SBR 또는 NR-SBR-ⅡRNR-SBR or NR-SBR-IIR NR-ⅡRNR-IIR

상기 표 2에서 a는 폴리이소프렌고무(IR; polyisoprene rubber)를 포함하믐 것이고, b는 할로겐화부틸(ⅡR; isobutylene-isoprene rubber)을 포함하는 것을 의미한다.In Table 2, a will include polyisoprene rubber (IR; polyisoprene rubber), b means butyl halide (IIR; isobutylene-isoprene rubber).

이와 같이, 본 발명에 있어서는 폐자원인 W-PE 또는 W-EVA와 GTR을 블렌드하여 원료수지로 사용함으로서, 폐기물을 처리하는 과정을 거치면서 이를 효과적으로 처리하여 기계적 성질 및 화학안정성 등과 같은 제반 물성을 증진시켜서 유용한 원료인 발포체 조성물로 활용하여 재활용에 따른 환경친화성을 추구하고자 하였으며, 이로 인해 매우 저렴한 가격으로 발포체 조성물을 제조하여 경제성을 극대화할 수 있는 것이다.As described above, in the present invention, by mixing W-PE or W-EVA and GTR as waste resources and using them as raw material resins, the physical properties such as mechanical properties and chemical stability are effectively treated by treating the wastes effectively. By promoting the use of the foam composition as a useful raw material to promote the environmental friendliness according to the recycling, it is possible to maximize the economics by manufacturing the foam composition at a very low price.

한편, 본 발명에서 첨가제로 사용하는 발포제로는 유기화학발포제로써 예컨대, 아조계 화합물인 아조디카본아미드류(ADCA, AC-1000) 또는 N,N′-Dinitrosopentamethylenetetramine(DPT)를, 무기화학발포제로써 중탄산나트륨(상품명 kycerol-91)를 사용하는 것이 바람직하고, 가공성 및 생산성에 영향을 주게 될 발포성 및 온도를 조절하기 위해 발포조제로서는 요소계 발포조제(상품명 Cellex-A)를, 외부이형제로는 압출성 등을 고려하여 스테아르산(stearic acid)을, 열전달촉진제로는 ZnO를 바람직하게 사용할 수 있다.Meanwhile, the blowing agent used as an additive in the present invention is an organic chemical foaming agent, for example, azodicarbonamides (ADCA, AC-1000) or N, N'-Dinitrosopentamethylenetetramine (DPT), which are azo compounds, as inorganic chemical foaming agents. Sodium bicarbonate (trade name kycerol-91) is preferably used, and in order to control the foamability and temperature which will affect the processability and productivity, the foaming aid is extruded as urea foaming aid (trade name Cellex-A), and the external release agent is extruded. In consideration of its properties, stearic acid may be preferably used, and ZnO may be preferably used as a heat transfer accelerator.

본 발명에서 사용되는 가교제로서는 과산화물 가교제로 Isopropylbenzene(상품명 Perkadox) 또는 Dicumylperoxide(DCP)를 상기한 바와 같이 적정비율로 사용하는 것이 바람직하다.As the crosslinking agent used in the present invention, it is preferable to use Isopropylbenzene (trade name Perkadox) or Dicumylperoxide (DCP) in an appropriate ratio as described above as the peroxide crosslinking agent.

이와 같은 조성으로 제조한 본 발명의 발포체 조성물은 성형을 위해 바람직하기로는 110∼120℃에서 혼합하고 압출, 압축 또는 사출하여 다양한 성형품의 형태로 발포체를 제조할 수 있는 것이다.The foam composition of the present invention prepared in such a composition can be prepared in a variety of molded articles by mixing, extrusion, compression or injection at 110 to 120 ℃ preferably for molding.

상기와 같은, 본 발명에 따른 조성물의 제조방법은 다음의 각 실시예를 통하여 하나의 예로서 설명하겠는 바, 이러한 본 발명의 실시예는 사용 용도에 따라 제조되는 사례를 예시한 것이지 본 발명을 제한하려는 것은 아니며, 실시예에서 조성물의 함량을 표시한 퍼센트(%)는 별도의 언급이 없는 한 중량부를 의미한다.As described above, the method for producing a composition according to the present invention will be described as an example through each of the following examples, and the embodiment of the present invention is intended to illustrate the case of manufacture according to the intended use, but the present invention is limited. It is not intended that, in the examples, the percentage (%) indicating the content of the composition means parts by weight unless otherwise indicated.

본 실시예에서 사용된 성분의 약어는 W-PE는 폐폴리에틸렌, W-EVA는 폐에틸렌비닐공중합체, GTR은 폐타이어고무분말을 의미하는 것으로 한다.The abbreviation of the components used in the present embodiment means W-PE waste polyethylene, W-EVA waste rubber ethylene vinyl copolymer, and GTR means waste tire rubber powder.

실시 예 1 : 수지/첨가제 블렌드[Ⅰ]Example 1 Resin / Additive Blend [I]

폐자원을 원료로하여 수지를 조성하기 위해 W-PE/GTR 블렌드의 조성비, 온도 및 시간에 따른 열 및 동력학적 거동을 관찰하고 이를 상계면에서의 모폴로지와 관련지어 검토한 결과, 수지 조성비가 W-PE/GTR = 50∼100/50∼0 Wt%의 범위에서 상간접착이 가장 양호함을 확인할 수 있었으므로, 이를 토대로 수지/첨가제 블렌드의 조성비, 온도 및 시간에 따른 열 및 동력학적 거동를 관찰하고, 이를 발포성(발포율, cell structure, 표면상태 등)과 관련지어 검토하였다. 특히, 경제성 및 환경친화성을 고려하여 수지를 W-PE, W-EVA, GTR만으로 구성하고 이들의 조성비 및 기타 첨가제의 종류 및 함량을 조절하고 발포체 조성물과 발포체를 제조하였다.The composition ratio of W-PE / GTR blend, thermal and kinetic behaviors with temperature and time, and the relationship with the morphology at the phase interface were investigated in order to form resin using waste resources as raw materials. It was confirmed that the best phase-to-phase adhesion in the range of -PE / GTR = 50 ~ 100/50 ~ 0 Wt%, based on which the thermal and dynamic behavior of the resin / additive blend composition, temperature and time This was examined in relation to foamability (foaming rate, cell structure, surface state, etc.). In particular, in consideration of economics and environmental friendliness, the resin was composed of only W-PE, W-EVA, and GTR, and the composition and foams of the composition and other additives were adjusted to prepare foam compositions and foams.

수지/첨가제 블렌드의 조성비는 다음의 표 3 및 표 4와 같이 구성하였고, 블렌드는 rheomixer(HAAKE)에서 온도 110∼120℃, RPM50, 시간 20min으로, 그리고 압출은 미니맥스 몰더(Csi-183MMV)에서 온도 135℃, Rs 5, 시간 1∼3 min 이내로, 발포는 오븐(HB-503M)에서 온도 120∼220℃로 시행하였다. 또한, 발포성 조사는 발포 후 표면상태, 발포율, 셀 구조 등을 조사하였고, 모폴로지 조사는 SEM(JEOL JSM-840A)을 이용하여 시편의 파단면을 관찰하였다.The composition ratio of the resin / additive blend was composed as shown in Tables 3 and 4 below, the blend was used at rheomixer (HAAKE) at a temperature of 110-120 ° C, RPM50, time 20min, and extrusion was carried out in a minimax molder (Csi-183MMV). Foaming was performed at 120-220 degreeC in oven (HB-503M) within the temperature of 135 degreeC, Rs5, and within 1 to 3 minutes of time. In addition, effervescent irradiation investigated the surface state, foaming rate, cell structure, and the like after foaming, and morphology irradiation observed the fracture surface of the specimen using SEM (JEOL JSM-840A).

그 결과, 시료 1∼4, 6∼21의 경우 수지조성비가 W-PE/GTR = 100/0 Wt%일 때, 즉 수지로 W-PE를 단독 사용했을 때 발포가 약 120∼200℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 20∼35분이며, 표면이 매끄럽고, 셀 구조가 밀폐셀(closed-cell)로써 균일하며, 반지름 방향으로 약 200∼450%(약 2∼4.5배)의 발포율을 갖음을 확인할 수 있었다. 그리고, 시료 5의 경우는 수지조성비가 W-EVA/GTR = 100/0 Wt%일 때, 즉 수지로 W-EVA를 단독 사용했을 때 발포가 약 120∼190℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 25분이며, 표면이 매끄럽고, 셀 구조가 밀폐셀(closed-cell)로써 균일하며, 반지름 방향으로 약 380%의 발포율을 나타냄을 확인할 수 있었다. 또한, 시료 22, 23의 경우 모두 수지조성비가 W-PE/W-EVA/GTR = 50/50/0 Wt%일 때, 발포가 약 125∼192℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 25분이며, 표면이 매끄럽고, 셀 구조가 밀폐셀로써 균일하며, 반지름 방향으로 약 350%의 발포율을 나타냄을 확인할 수 있었다.As a result, for samples 1 to 4 and 6 to 21, when the resin composition ratio was W-PE / GTR = 100/0 Wt%, that is, when W-PE was used alone as the resin, the foaming temperature was about 120 to 200 ° C. It occurs in the section, and the time required is about 20 to 35 minutes, the surface is smooth, the cell structure is uniform as a closed cell, and about 200 to 450% (about 2 to 4.5 times) in the radial direction. It was confirmed that the foaming rate. In the case of Sample 5, when the resin composition ratio was W-EVA / GTR = 100/0 Wt%, that is, when W-EVA was used alone as the resin, foaming occurred at a temperature range of about 120 to 190 ° C, which required It was confirmed that the time required was about 25 minutes, the surface was smooth, the cell structure was uniform as a closed cell, and the foaming rate was about 380% in the radial direction. In addition, in the case of samples 22 and 23, when the resin composition ratio was W-PE / W-EVA / GTR = 50/50/0 Wt%, foaming occurred at a temperature section of about 125 to 192 ° C, and the time required for It was about 25 minutes, the surface was smooth, the cell structure was uniform as a closed cell, it was confirmed that the foaming rate of about 350% in the radial direction.

위 실험결과로부터 수지의 조성비가 W-PE/W-EVA/GTR = 50∼100/50∼100/0 Wt%일 때 발포율이 반지름방향으로 약 2∼4.5배를 갖고, 표면이 매끄럽고 셀구조가 균일하고 탄성율이 우수한 발포체를 얻을 수 있는 가장 바람직한 배합 및 가공조건이라는 것을 규명할 수 있었다.From the above test results, when the composition ratio of resin is W-PE / W-EVA / GTR = 50-100 / 50-100 / 0 Wt%, the foaming rate is about 2 to 4.5 times in the radial direction, and the surface is smooth and the cell structure Was found to be the most preferable compounding and processing condition to obtain a uniform foam and excellent elastic modulus.

그리고 수지 및 각 첨가제의 조성비에 따른 대표적인 시료 상호간의 발포율의 변화를 비교하면 다음과 같다.And comparing the change in the foaming ratio between the representative samples according to the composition ratio of the resin and each additive is as follows.

시료 4, 5는 수지 및 기타첨가제의 함량이 동일할 때 수지의 종류 변화에 따른 발포율의 변화를 보고자 한 것으로써 발포율이 시료 4는 반지름방향으로 410%, 시료 5는 380%로 비슷함을 알 수 있었다. 따라서 W-PE와 W-EVA의 경우 모두 실시된 조성 및 가공조건하에서 양호한 발포율을 갖음을 확인할 수 있었다. 그리고 시료 15∼22는 기타첨가제의 함량이 동일할 때 수지종류 및 조성비의 변화에 따른 발포율의 변화를 보고자 한 것으로써 시료 모두 반지름방향으로 약 350∼420%로 비슷한 발포율을 갖음을 확인할 수 있었다. 따라서 수지조성비가 W-PE/W-EVA/GTR = 50/50/0 Wt%의 범위에서는 양호한 발포율을 갖음을 확인할 수 있었다. 또한, 시료 22, 23은 수지 조성비 및 기타첨가제의 함량이 동일할 때 가교제의 종류변화에 따른 발포율의 변화를 보고자 한 것으로써 시료 모두 발포율이 반지름방향으로 약 350%로 비슷함을 알 수 있었고, 시료 23의 경우 약 140∼192℃에서 발포가 일어나고 이때 소요되는 시간이 약 25분이고, 시료 22의 경우 약 125∼192℃에서 발포가 일어나고 이때 소요되는 시간이 약 20분으로 시료 23이 시료 22 보다 좁은 온도범위에서 발포가 일어남을 확인할 수 있었다. 따라서 수지 및 첨가제의 조성이 동일할 때 가교제의 종류는 발포온도구간 및 시간에 영향을 주고 발포율에는 큰 영향을 주지 않음을 알 수 있었다.Samples 4 and 5 are intended to see the change of foaming rate according to the change of resin type when the content of resin and other additives is the same.The foaming rate is similar to sample 4 in radial direction and 380% in sample 5 And it was found. Therefore, both W-PE and W-EVA were confirmed to have good foaming rate under the composition and processing conditions. In addition, samples 15 to 22 are intended to see the change in the foaming rate according to the change of resin type and composition ratio when the content of other additives is the same. there was. Therefore, it was confirmed that the resin composition ratio had a good foaming ratio in the range of W-PE / W-EVA / GTR = 50/50/0 Wt%. In addition, samples 22 and 23 are intended to see the change in the foaming rate according to the type change of the crosslinking agent when the resin composition ratio and the content of the other additives are the same. In the case of Sample 23, foaming occurred at about 140 to 192 ° C and the time required was about 25 minutes, and in case of Sample 22, foaming occurred at about 125 to 192 ° C and the time required was about 20 minutes. It was confirmed that foaming occurred in a narrower temperature range. Therefore, when the composition of the resin and the additive is the same, it was found that the type of crosslinking agent affects the foaming temperature section and time and does not significantly affect the foaming rate.

위 실험결과로부터 수지 및 각 첨가제의 상호작용에 따른 발포율을 확인할 수 있었고, 그리고 상호작용을 고려한 수지 조성비, 수지 대비 첨가제(발포제 및 가교제 등)의 종류 및 함량 등이 발포율 및 셀 구조에 영향을 주는 중요한 인자임을 규명할 수 있었다.From the above test results, the foaming rate according to the interaction between the resin and each additive was confirmed, and the resin composition ratio considering the interaction and the type and content of the additives (foaming agent and crosslinking agent, etc.) in consideration of the interaction affect the foaming rate and the cell structure. It could be identified as an important factor to give.

그리고, 위 결과에 대한 관찰 결과는 다음의 표 5와 첨부도면 도1(시료5), 도2(시료15), 도3(시료22)에 나타내었다.And, the observation results for the above results are shown in the following Table 5 and accompanying drawings Figure 1 (Sample 5), Figure 2 (Sample 15), Figure 3 (Sample 22).

시료번호조성성분Sample Number Composition 1One 22 33 44 55 66 77 88 99 1010 1111 수지Suzy W-PEW-PE 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 W-EVAW-EVA 100100 GTRGTR 가교제Crosslinking agent PerkadoxPerkadox DCPDCP 0.20.2 0.20.2 00 0.20.2 0.20.2 0.20.2 0.40.4 0.80.8 0.80.8 0.80.8 0.80.8 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA AC-1000AC-1000 DPTDPT 1212 55 55 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 88 1010 1212 1414 1414 2222 1818 1212 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 1One 0.50.5 열전달촉진제Heat transfer accelerator ZnOZnO

시료번호조성성분Sample Number Composition 1212 1313 1414 1515 1616 1717 1818 1919 2020 2121 2222 2323 수지Suzy W-PEW-PE 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 5050 5050 W-EVAW-EVA 5050 5050 GTRGTR 가교제Crosslinking agent PerkadoxPerkadox 0.80.8 0.80.8 DCPDCP 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 1.61.6 0.80.8 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA 1212 1818 1818 1818 1818 1818 1818 1818 AC-1000AC-1000 1818 DPTDPT 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 1818 1818 1010 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 열전달촉진제Heat transfer accelerator ZnOZnO 1One 1One 33 44 55

시료 번호Sample number 발 포Foot Po 조 성 물Composition water 발포방법Foaming method 발포도Firing degree 발포성Effervescent 조 성 비(wt %)Composition ratio (wt%) 120→220℃120 → 220 ℃ 발포온도/소요시간(℃/min)Foaming temperature / time required (℃ / min) 발포율(%)Foaming rate (%) 표면surface 셀구조Cell structure 수지(W-PE/W-EVA/G)Resin (W-PE / W-EVA / G) B-A(AC계)B-A (AC system) 1One 140∼200 / 26′140-200/26 ' 350350 양호Good 균일Uniformity 100 / 0 / 0100/0/0 88 22 130∼190 / 28′130 ~ 190/28 ′ 450450 1212 33 140∼200 / 26′140-200/26 ' 420420 1212 44 130∼197 / 35′130-197/35 ' 410410 1414 55 120∼195 / 25′120-195/25 ' 380380 0 / 100 / 00/100/0 66 140∼192 / 23′140-192/23 ' 250250 100 / 0 / 0100/0/0 2222 77 130∼190 / 21′130 ~ 190/21 ′ 200200 양호(△)Good (△) 1818 88 130∼200 / 30′130 ~ 200/30 ′ 410410 양호Good 1212 99 130∼192 / 25′130-192/25 ' 300300 1010 180 / 20′180/20 ′ 230230 양호(△)Good (△) 55 1111 130∼200 / 30′130 ~ 200/30 ′ 300300 양호Good 55 1212 120∼195 / 30′120-195/30 ' 400400 1818 1313 1414 1010 1515 120∼195 / 20′120-195/20 ' 350350 1818 1616 130∼190 / 25′130 ~ 190/25 ′ 420420 1212 1717 1818 1818 130∼180 / 25′130 ~ 180/25 ′ 400400 1919 130∼175 / 25′130 ~ 175/25 ′ 2020 130∼170 / 25′130-170/25 ' 2121 130∼190 / 25′130 ~ 190/25 ′ 2222 125∼192 / 25′125-192/25 ' 350350 50 / 50 / 050/50/0 2323 140∼192 / 20′140-192/20 '

상기 표에서 수지(W-PE/W-EVA/G) 는 폐-PE/폐-EVA/GTR를 의미하고, B-A 는 발포제(ADCA, AC-1000, Kycerol-91, DPT)이다.Resin (W-PE / W-EVA / G) in the table means waste-PE / waste-EVA / GTR, and B-A is a blowing agent (ADCA, AC-1000, Kycerol-91, DPT).

실시 예 2. 수지/첨가제 블렌드[Ⅱ]Example 2. Resin / Additive Blend [II]

상기 실시예 1의 결과 수지 조성비가 W-PE/W-EVA/GTR = 50∼100/50∼100/0 Wt%의 범위내에서 셀구조가 균일하고 발포율이 반지름 방향으로 약 200∼450%를 갖기 위한 적정 조성 및 가공조건을 규명할 수 있었으므로, 이를 토대로 재활용율에주안점을 두고 GTR을 투입하여 수지 조성 및 기타첨가제의 함량을 조절하고 실시하였다. 이에 관한 조성비는 다음 표 6 및 표 7과 같고, 블렌드, 압출 및 가교·발포 그리고 발포성 및 모폴로지 조사는 상기 실시예 1에서와 동일한 방법으로 시행하였다.As a result of Example 1, the cell composition was uniform within the range of resin composition ratio of W-PE / W-EVA / GTR = 50 to 100/50 to 100/0 Wt%, and the foaming ratio was about 200 to 450% in the radial direction. Since the proper composition and processing conditions could be identified, the GTR was added with the focus on the recycling rate, and the resin composition and the content of other additives were adjusted and carried out. Composition ratios related to these are shown in Tables 6 and 7, and blend, extrusion, crosslinking and foaming, and foaming and morphology investigation were performed in the same manner as in Example 1.

그 결과 시료 1, 3∼11의 경우 수지조성비가 W-PE/GTR = 90/10 Wt%일 때, 발포가 약 128∼200℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 23∼30분이며, 표면이 매끄럽고, 셀 구조가 밀폐셀(closed-cell)로써 균일하며, 반지름 방향으로 약 200∼400%(약 2∼4배)의 발포율을 갖음을 확인할 수 있었다. 그리고 시료 2의 경우 수지조성비가 W-EVA/GTR = 90/10 Wt%일 때, 발포가 약 130∼195℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 32분이며, 표면이 매끄럽고, 셀 구조가 밀폐셀로써 균일하며, 반지름 방향으로 약 400%의 발포율을 갖음을 확인할 수 있었다. 또한, 시료 12∼15의 경우 모두 수지조성비가 W-PE/GTR = 80∼60/20∼40 Wt%일 때, 발포가 약 128∼190℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 25분이며, 표면이 매끄럽고, 셀 구조가 밀폐셀로써 균일하며, 반지름 방향으로 약 200%의 발포율을 갖음을 확인할 수 있었다. 그리고 시료 16∼18의 경우 수지조성비가 W-PE/GTR = 95/5 Wt%일 때, 발포가 약 120∼190℃의 온도구간에서 일어나고, 이때 소요되는 시간이 약 17∼30분이며, 표면이 매끄럽고, 셀 구조가 closed-cell로써 균일하며, 반지름 방향으로 약 200∼400%의 발포율을 갖음을 확인할 수 있었다.As a result, for samples 1, 3 to 11, when the resin composition ratio was W-PE / GTR = 90/10 Wt%, foaming occurred at a temperature range of about 128 to 200 ° C, and the time required was about 23 to 30 minutes. It was confirmed that the surface was smooth, the cell structure was uniform as a closed cell, and had a foaming ratio of about 200 to 400% (about 2 to 4 times) in the radial direction. In the case of Sample 2, when the resin composition ratio was W-EVA / GTR = 90/10 Wt%, foaming occurred at a temperature range of about 130 to 195 ° C, and the time required was about 32 minutes, and the surface was smooth. It was confirmed that the structure was uniform as a closed cell and had a foaming rate of about 400% in the radial direction. In the case of samples 12 to 15, when the resin composition ratio was W-PE / GTR = 80 to 60/20 to 40 Wt%, foaming occurred at a temperature range of about 128 to 190 ° C, and the time required was about 25 It was confirmed that the powder was smooth, the surface was uniform, the cell structure was uniform as a closed cell, and had a foaming ratio of about 200% in the radial direction. In the case of Samples 16 to 18, when the resin composition ratio was W-PE / GTR = 95/5 Wt%, foaming occurred at a temperature section of about 120 to 190 ° C, and the time required was about 17 to 30 minutes. It was confirmed that this smooth, cell structure was uniform as a closed-cell and had a foaming rate of about 200 to 400% in the radial direction.

위 실험결과로부터 수지의 조성비가 W-PE/W-EVA/GTR = 60∼95/0∼90/5∼40Wt%일 때 발포율이 반지름방향으로 약 2∼4배를 갖고, 표면이 매끄럽고 셀구조가 균일하고 탄성율이 우수한 발포체를 얻기 위한 배합 및 가공조건을 규명할 수 있었다.From the above test results, when the composition ratio of resin is W-PE / W-EVA / GTR = 60 to 95/0 to 90/5 to 40 Wt%, the foaming rate is about 2 to 4 times in the radial direction, and the surface is smooth and the cell Mixing and processing conditions for obtaining a foam having a uniform structure and excellent elastic modulus could be identified.

그리고 수지 및 각 첨가제의 조성비에 따른 대표적인 시료 상호간의 발포율의 변화를 비교하면 다음과 같다.And comparing the change in the foaming ratio between the representative samples according to the composition ratio of the resin and each additive is as follows.

시료 1, 2는 수지 및 기타첨가제의 함량이 동일할 때 수지의 종류 변화에 따른 발포율의 변화를 보고자 한 것으로써 시료 모두 발포율이 반지름방향으로 약 400%임을 알 수 있었다. 따라서 W-PE와 W-EVA의 경우 모두 실시된 조성 및 가공조건하에서 양호한 발포율을 갖음을 확인할 수 있었다. 그리고 시료 2, 11은 수지 조성비가 동일할 때 기타첨가제의 함량 변화에 따른 발포율의 변화를 보고자 한 것으로써 시료 2의 경우 발포율이 반지름방향으로 약 400%인데 반해 시료 11의 경우 발포율이 약 300%임을 확인할 수 있었다. 이는 시료 11이 시료 2에 비해 가교제량이 과량 첨가됨에 기인한 것으로 사료된다. 그리고 시료 11의 경우 시료 2에 비해 cell 크기가 감소함을 확인할 수 있었는데, 이는 발포제의 상대적인 함량 증가에 기인한 것으로 사료된다. 그리고 시료 1, 3∼9는 수지 조성비 및 기타첨가제의 함량이 동일할 때 가교제의 함량 변화에 따른 발포율의 변화를 보고자 한 것으로써 가교제량이 증가함에 따라 발포율이 감소함(400 →220%)을 확인할 수 있었다. 또한, 시료 10∼15는 기타첨가제의 함량이 동일할 때 수지 조성비의 변화에 따른 발포율의 변화를 보고자 한 것으로써 시료 모두 반지름방향으로 약 2배의 발포율을 갖음을 확인할 수 있었고, W-PE 80∼60 중량부 범위내에서 비슷한 발포율, 즉 W-PE의 함량이 60 중량부 까지도 발포율이 우수함을 확인할 수 있었다. 그리고 시료 12과 13은 수지 조성비 및 기타첨가제의 함량이 동일할 때 발포제의 종류변화에 따른 발포율의 변화를 보고자 한 것으로써 시료 모두 반지름방향으로 약 2배의 발포율을 갖음을 확인할 수 있었고, 따라서 수지 조성비 및 기타첨가제의 함량이 동일할 때 발포제의 종류변화는 발포율에 큰 영향을 주지 않음을 확인할 수 있었다.Samples 1 and 2 were intended to see the change in the foaming rate according to the type of resin change when the content of the resin and the other additives were the same. Therefore, both W-PE and W-EVA were confirmed to have good foaming rate under the composition and processing conditions. In addition, samples 2 and 11 are intended to see the change in the foaming rate according to the change of the content of other additives when the resin composition ratio is the same. In the case of sample 2, the foaming rate is about 400% in the radial direction. It was confirmed that it is about 300%. This may be due to the excessive addition of the crosslinking agent in Sample 11 compared to Sample 2. In the case of sample 11, it was confirmed that the cell size was reduced compared to sample 2, which may be due to the increase in the relative content of the blowing agent. In addition, samples 1, 3 to 9 are intended to see the change in the foaming rate according to the content of the crosslinking agent when the resin composition ratio and the content of the other additives are the same, and the foaming rate decreases as the amount of the crosslinking agent increases (400 → 220%). Could confirm. In addition, samples 10 to 15 are intended to see the change in the foaming rate according to the change in the resin composition ratio when the content of the other additives are the same, it can be confirmed that all the samples have a foaming rate of about twice the radial direction, W- It was confirmed that the foaming rate is excellent even in a similar foaming rate, that is, the content of W-PE up to 60 parts by weight in the range of 80 to 60 parts by weight of PE. In addition, samples 12 and 13 were intended to see the change in the foaming rate according to the type of foaming agent when the resin composition ratio and the content of other additives were the same. Therefore, when the resin composition ratio and the content of the other additives are the same, it could be confirmed that the type change of the blowing agent does not significantly affect the foaming rate.

상기 결과로부터 수지 및 각 첨가제의 상호작용에 따른 발포율을 확인할 수 있었고, 그리고 상호작용을 고려한 수지 조성비, 수지 대비 첨가제(발포제 및 가교제 등)의 종류 및 함량 등이 발포율 및 셀 구조에 영향을 주는 중요한 인자임을 규명할 수 있었다.From the above results, the foaming rate according to the interaction between the resin and each additive could be confirmed, and the resin composition ratio considering the interaction and the type and content of the additive (foaming agent and crosslinking agent, etc.) in consideration of the interaction affect the foaming rate and cell structure. The state could be identified as an important factor.

따라서, 규명된 배합 및 가공조건으로 배합에 있어서는 수지의 조성비가 W-PE/W-EVA/GTR = 0∼100/0∼100/0∼40 Wt%, 발포제의 함량이 0∼50 Wt%, 가교제 0∼5 Wt%의 범위에서, 그리고 가공조건에 있어서 블렌드는 rheomixer(HAAKE)에서 온도 110∼120℃, RPM50, 시간 20min으로, 그리고 압출은 미니맥스 몰더(Csi-183MMV)에서 온도 135℃, Rs 5, 시간 1∼3 min 이내로, 발포는 oven(HB-503M)에서 온도 120∼220℃로 시행하였을 때 상기한 바와 같이 발포성이 우수한 발포체를 얻을 수 있었다. 그리고 결과는 다음의 표 8과 첨부도면 도4(시료10), 도5(시료11), 도6(시료16)에 나타내었고 이와 비교검토하기 위해 종래 알려진 폴리올레핀 발포체의 셀구조를 도7(Young.)에 나타내었다.Therefore, in the formulation and processing conditions identified, the composition ratio of the resin is W-PE / W-EVA / GTR = 0-100 / 0-100 / 0-40 Wt%, the content of the blowing agent is 0-50 Wt%, In the range of 0-5 Wt% of the crosslinking agent and in the processing conditions, the blend is at 110-120 ° C, RPM50, time 20min in rheomixer (HAAKE), and extrusion is carried out at 135 ° C, in Minimax molder (Csi-183MMV). When foaming was carried out at Rs 5 within a time of 1 to 3 min at 120 to 220 ° C. in an oven (HB-503M), a foam having excellent foamability was obtained as described above. And the results are shown in the following Table 8 and attached drawings Figure 4 (Sample 10), Figure 5 (Sample 11), Figure 6 (Sample 16). .).

시료번호조성성분Sample Number Composition 1One 22 33 44 55 66 77 88 99 1010 수지Suzy W-PEW-PE 9090 9090 9090 9090 9090 9090 9090 9090 9090 W-EVAW-EVA 9090 GTRGTR 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 외부이형제External release agent 스테아르산Stearic acid 가교제Crosslinking agent PerkadoxPerkadox DCPDCP 0.20.2 0.20.2 0.40.4 0.60.6 0.80.8 1One 1.21.2 1.41.4 44 0.80.8 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA 1818 AC-1000AC-1000 DPTDPT 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 1212 1212 1212 1212 1212 1212 1212 1212 1212 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 열전달촉진제Heat transfer accelerator ZnOZnO

시료번호조성성분Sample Number Composition 1111 1212 1313 1414 1515 1616 1717 1818 수지Suzy W-PEW-PE 8080 8080 7070 6060 9595 9595 9595 W-EVAW-EVA 9090 GTRGTR 1010 2020 2020 3030 4040 55 55 55 외부이형제External release agent 스테아르산Stearic acid 55 가교제Crosslinking agent PerkadoxPerkadox 0.80.8 DCPDCP 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 발포제blowing agent 유기화학발포제Organic Chemical Foaming Agent ADCAADCA 1818 1818 1818 1818 1818 1818 AC-1000AC-1000 1818 DPTDPT 무기화학발포제Inorganic Chemical Foaming Agent Kycerol-91Kycerol-91 1818 발포조제Foaming aid 요소계 (셀렉스-A)Urea system (Celex-A) 열전달촉진제Heat transfer accelerator ZnOZnO

시료 번호Sample number 발 포Foot Po 조 성 물Composition water 발포방법Foaming method 발포도Firing degree 발포성Effervescent 조 성 비(wt %)Composition ratio (wt%) 120→220℃120 → 220 ℃ 발포온도/소요시간(℃/min)Foaming temperature / time required (℃ / min) 발포율(%)Foaming rate (%) 표면surface 셀구조Cell structure 수지(W-PE/W-EVA/G)Resin (W-PE / W-EVA / G) B-A(AC계)B-A (AC system) 1One 130∼190 / 28′130 ~ 190/28 ′ 400400 양호Good 균일Uniformity 90 / 0 / 1090/0/10 1212 22 130∼195 / 32′130-195/32 ' 400400 0 / 90 / 100/90/10 1414 33 130∼193 / 24′130 ~ 193/24 ′ 90 / 0 / 1090/0/10 1212 44 130∼200 / 30′130 ~ 200/30 ′ 300300 55 66 77 250250 88 250250 양호(△)Good (△) 99 130∼190 / 23′130 ~ 190/23 ′ 220220 양호Good 1010 128∼190 / 25′128 ~ 190/25 ′ 300300 1818 1111 300300 0 / 90 / 00/90/0 1212 200200 양호(△)Good (△) 80 / 0 / 2080/0/20 1313 1414 양호Good 70 / 0 / 3070/0/30 1515 60 / 0 / 4060/0/40 1616 130∼190 / 30′130 ~ 190/30 ′ 350350 95 / 0 / 595/0/5 1717 120∼185 / 17′120 ~ 185/17 ′ 200200 양호(△)Good (△) 95 / 0 / 595/0/5 1818 130∼190 / 30′130 ~ 190/30 ′ 400400 양호Good 95 / 0 / 595/0/5

상기 표에서 수지(W-PE/W-EVA/G)는 폐-PE/폐-EVA/GTR를 의미하고, B-A는 발포제(ADCA, AC-1000, Kycerol-91, DPT)이다.Resin (W-PE / W-EVA / G) in the table means lung-PE / waste-EVA / GTR, B-A is blowing agent (ADCA, AC-1000, Kycerol-91, DPT).

상술한 바와 같이, 본 발명은 종래와는 달리 폐플라스틱과 폐타이어분말 등을과 블랜드하고 특정의 가교제와 발포제를 소정량 사용하는 등 일련의 기술구성으로 바탕수지로 고가의 순수원료를 전혀 사용치 않음으로서, W-PE, W-EVA 및 GTR 등과 같은 폐자원을 매우 효율적 방법으로 재활용 추구하면서 그 결과물로 얻어지는 발포체 조성물은 환경친화성 및 경제성과 기계적 물성이 우수한 특성을 가지므로, 압출,압축또는 사출 성형에 의해 각종 건축자재와 자동차 부품, 스포츠 용품, 기타 공산품 등의 광범위한 분야에 매우 유용하게 적용할 수 있는 효과가 있는 것이다.As described above, the present invention, unlike the prior art, blends waste plastic, waste tire powder, and the like, and uses a certain amount of a specific crosslinking agent and a blowing agent, and uses a pure resin as a base resin. No as, because W-PE, foamed composition obtained by the results in pursuit of recycling waste resources in a very efficient way as the W-EVA and GTR are of the environmental friendliness and economy and mechanical properties are superior properties, extrusion, compression, or By injection molding, there is an effect that can be very usefully applied to a wide range of fields, such as various building materials, automobile parts, sporting goods, and other industrial products.

Claims (3)

폴리올레핀 수지성분을 함유하고 첨가제로서 가교제, 발포제를 포함하는 발포체 조성물에 있어서, 수지성분으로는 폐폴리에틸렌(W-PE) 과 폐에틸렌비닐공중합체(W-EVA) 중에서 하나 이상의 폐플라스틱 성분 100중량부에 폐타이어고무분말(GTR) 1∼40 중량부가 함유되어 있고, 여기에 첨가제로서 발포제 5∼40 중량부와 가교제 0.1∼5 중량부가 함유되어 있는 것을 특징으로 하는 폐플라스틱을 이용한 발포체 조성물.A foam composition containing a polyolefin resin component and including a crosslinking agent and a foaming agent as an additive, wherein the resin component is 100 parts by weight of at least one waste plastic component among waste polyethylene (W-PE) and waste ethylene vinyl copolymer (W-EVA). 1 to 40 parts by weight of waste tire rubber powder (GTR) is contained, and 5 to 40 parts by weight of blowing agent and 0.1 to 5 parts by weight of crosslinking agent are contained therein as an additive. 제1항에 있어서, 통상의 첨가제로서 외부이형제 0.1∼10 중량부 또는 열전달촉진제 0.1∼10 중량부 중 적어도 어느 하나 이상이 추가적으로 포함되어 있는 것을 특징으로 하는 폐플라스틱을 이용한 발포체 조성물.The foam composition using waste plastic according to claim 1, further comprising at least one of 0.1 to 10 parts by weight of an external release agent or 0.1 to 10 parts by weight of a heat transfer accelerator as a conventional additive. 제1항 또는 제2항의 조성물을 110∼120℃에서 혼합하고 압출, 압축 또는 사출하여 제조한 것을 특징으로 하는 폐플라스틱을 이용한 발포체.A foam using waste plastics, which is prepared by mixing the composition of claim 1 or 2 at 110 to 120 ° C and extruding, compressing or injecting.
KR10-2001-0011276A 2001-03-05 2001-03-05 A composition of foams with waste materials and ground tire rubber and foams thereof KR100408704B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0011276A KR100408704B1 (en) 2001-03-05 2001-03-05 A composition of foams with waste materials and ground tire rubber and foams thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0011276A KR100408704B1 (en) 2001-03-05 2001-03-05 A composition of foams with waste materials and ground tire rubber and foams thereof

Publications (2)

Publication Number Publication Date
KR20020071258A KR20020071258A (en) 2002-09-12
KR100408704B1 true KR100408704B1 (en) 2003-12-06

Family

ID=27696425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0011276A KR100408704B1 (en) 2001-03-05 2001-03-05 A composition of foams with waste materials and ground tire rubber and foams thereof

Country Status (1)

Country Link
KR (1) KR100408704B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378752B1 (en) 2020-11-09 2022-03-29 한국건설기술연구원 Expanded polystyrene (eps) block for reutilizing waste materials, and manufacturing method for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010069967A (en) * 2001-05-23 2001-07-25 유병두 Manufacturing method of vapor mould
KR100404768B1 (en) * 2001-12-04 2003-11-07 이화케미칼 주식회사 A composition of flame retarding foams with waste materials and its preparing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118833A (en) * 1982-01-08 1983-07-15 Toyo Rubber Chem Ind Co Ltd Preparation of reprocessed synthetic resin foam
JPS59226014A (en) * 1983-06-04 1984-12-19 Mitsui Mokuzai Kogyo Kk Production of soundproofing material
US5030662A (en) * 1988-08-11 1991-07-09 Polymerix, Inc. Construction material obtained from recycled polyolefins containing other polymers
KR960022737A (en) * 1994-12-22 1996-07-18 정병휴 Manufacturing method of composite material composition made from rubber powder and plastic resin and product manufactured using the composition
KR19990002826A (en) * 1997-06-23 1999-01-15 남일 Anti-noise composition containing waste tire powder
KR19990052870A (en) * 1997-12-23 1999-07-15 신현준 Method for manufacturing foam molding using waste plastic pyrolysis material
KR200213968Y1 (en) * 2000-09-18 2001-02-15 전영식 sandwich panel for construction with sponge using used plastics and foamed scraps

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118833A (en) * 1982-01-08 1983-07-15 Toyo Rubber Chem Ind Co Ltd Preparation of reprocessed synthetic resin foam
JPS59226014A (en) * 1983-06-04 1984-12-19 Mitsui Mokuzai Kogyo Kk Production of soundproofing material
US5030662A (en) * 1988-08-11 1991-07-09 Polymerix, Inc. Construction material obtained from recycled polyolefins containing other polymers
KR960022737A (en) * 1994-12-22 1996-07-18 정병휴 Manufacturing method of composite material composition made from rubber powder and plastic resin and product manufactured using the composition
KR19990002826A (en) * 1997-06-23 1999-01-15 남일 Anti-noise composition containing waste tire powder
KR19990052870A (en) * 1997-12-23 1999-07-15 신현준 Method for manufacturing foam molding using waste plastic pyrolysis material
KR200213968Y1 (en) * 2000-09-18 2001-02-15 전영식 sandwich panel for construction with sponge using used plastics and foamed scraps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378752B1 (en) 2020-11-09 2022-03-29 한국건설기술연구원 Expanded polystyrene (eps) block for reutilizing waste materials, and manufacturing method for the same

Also Published As

Publication number Publication date
KR20020071258A (en) 2002-09-12

Similar Documents

Publication Publication Date Title
KR100404768B1 (en) A composition of flame retarding foams with waste materials and its preparing method
CN107266788A (en) A kind of halogen-free polypropylene flame redardant micro foaming composite material and preparation method thereof
Bledzki et al. Microfoaming of flax and wood fibre reinforced polypropylene composites
KR20200039300A (en) Polypropylene resin composition for an automotive exterior part and article foam-molded therefrom
KR101465450B1 (en) Rubber foam adiabatic material and manufacturing method thereof
KR102204331B1 (en) A method for preparing of rubber foam comprising waste rubber powder by treating with non-thermal plasma
KR100408704B1 (en) A composition of foams with waste materials and ground tire rubber and foams thereof
JPH07266338A (en) Production of molded piece using waste tire
KR101772761B1 (en) Flame retardant master batch of expanded polystyrene with enhanced cell uniformity and flame-resistance, and a method of the manufacturing
CN105462159B (en) A kind of fretting map polyformaldehyde material and preparation method thereof
KR101200679B1 (en) Rigid Foams for Car Interior Decoration, Which Use Complex Polypropylene Resin
Guo et al. Wood–polymer composite foams
Zor et al. Feasibility of using foamed styrene maleic anhydride (SMA) co-polymer in wood based composites
KR100836496B1 (en) A biodegradable rigid foam
KR100837106B1 (en) A method for manufacturing of non-crosslinked polypropylene foam sheet
CN102492228B (en) Foamed rubber and preparation method thereof
Bledzki et al. Influence of different endothermic foaming agents on microcellular injection moulded wood fibre reinforced PP composites
CN113603977A (en) High-hardness micro-foaming material and preparation method thereof
KR20150074482A (en) Recycling thermoplastic material with excellent impact strength
KR0138489B1 (en) Plastic sheet for substrate wood
CN112662146A (en) Biodegradable PBAT/PPC foaming composite material and preparation method thereof
JP2003171539A (en) Polyolefin-polyester block copolymer composition and method for producing its molded article
Xin et al. Expanded waste ground rubber tire powder/polypropylene composites: Processing-structure relationships
Solórzano et al. Polymeric foams
CN111087696A (en) Lightweight, low-cost, low-odor and degradable natural fiber reinforced polypropylene reclaimed material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121106

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151125

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161125

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 17