AU757242B2 - Use of vegetative material as a filler in composite materials - Google Patents

Use of vegetative material as a filler in composite materials Download PDF

Info

Publication number
AU757242B2
AU757242B2 AU24245/00A AU2424500A AU757242B2 AU 757242 B2 AU757242 B2 AU 757242B2 AU 24245/00 A AU24245/00 A AU 24245/00A AU 2424500 A AU2424500 A AU 2424500A AU 757242 B2 AU757242 B2 AU 757242B2
Authority
AU
Australia
Prior art keywords
rice husk
carbonised
mesh
phr
dosage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU24245/00A
Other versions
AU2424500A (en
Inventor
Khalid Haji Ahmad
Mailvaganam Thavalingam Sivasithambaram Pillai Mailvaganam
Arulgnanam Vettivaloo Arunasalam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TADGELL DAVID JOHN
Contract Research and Development Sdn Bhd
Original Assignee
Contract Research and Development Sdn Bhd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPP8198A external-priority patent/AUPP819899A0/en
Application filed by Contract Research and Development Sdn Bhd filed Critical Contract Research and Development Sdn Bhd
Priority to AU24245/00A priority Critical patent/AU757242B2/en
Publication of AU2424500A publication Critical patent/AU2424500A/en
Application granted granted Critical
Publication of AU757242B2 publication Critical patent/AU757242B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

PCT/AU00/00018 Received 09 October 2000 -1- USE OF VEGETATIVE MATERIAL AS A FILLER IN COMPOSITE MATERIALS TECHNICAL FIELD This invention relates to the use of a filler derived from cereal husk, more particularly rice husk, in composite materials to enhance the flame retardant, antistatic, accelerator, plasticiser and blowing characteristics in various composite materials. The invention has particular but not exclusive application to the following families of composites:- 1. Thermoplastic Resins 2. Thermoset Plastics 3. Rubbers and Elastomeric Materials 4. Conductive Coatings and Printing Inks Bitumen 6. Concrete BACKGROUND ART Composite materials are well known. Fillers are usually added to composite materials, including composite polymers, to save cost or to enhance a particular mechanical property or other characteristic of the materials. The usage of fillers is usually accompanied by coupling agents that enhance the polymerfiller and filler-filler interaction so that the expected properties are realised.
The present invention is concerned with fillers which enhance the antistatic, flame retardant, accelerator, plasticiser, blowing characteristic and/or other physical or mechanical properties of composite materials and has particular application for use in composite polymers. Such have wide application in the aeronautical, mining, computer, road building, textile, foot ware, rubber and polyurethane industries among others. For example, it is often desirable to prevent the build up of static charges which can cause sparks (and hence explosions or electrical damage) or production problems, eg. collection of dust and poor feeding of materials through machinery. More highly conductive composite polymers can also be used for Electro Magnetic Interference shielding, Sfor example.
C:,w.oowT oocAMENDED SHEET C:WINDOWS\TEMPpp198.OC AMENDED SE ET
IPEAIAU
PCT/AU00/00018 Received 09 October 2000 -2- Carbon black fillers, aluminium flakes and fibres, stainless steel fibres and chopped carbon fibres have all been used as fillers for the purpose of rendering composite plastic conductive. Likewise other chemicals such as Halogen compounds or triethyl phosphate have been used to achieve the flame retardant property.
A number of theories have been proposed to explain how discreet particle fillers impart conductivity and flame retardant properties in composite plastics.
In order for current to flow in a conductive polymer compound, electrons must travel along the filler as the plastic itself is an excellent insulator. To achieve this flow the discreet particles of the filler must be in contact or separate by a minimum distance which is probably less than 100 Angstroms. There are three properties of the filler particles which will effect the average inter-particle distance for a given filler loading in a polymer system. These are particle size, shape (structure), and porosity. Smaller size, irregular shape and high porosity all result in smaller inter-particle distances and hence higher conductivity. A fourth property of the particle which is relevant to conductivity and flame retardant properties in the composite plastics is surface chemistry, that is the presence of oxygen on the surface. The presence of appreciable quantities of oxygen on the surface (called volatile content) acts as insulation and hence reduces conductivity.
The known conductive fillers such as carbon black, aluminium, stainless steel and carbon fibres are expensive and furthermore some of these materials have other processing difficulties, eg. aluminium fibres and stainless steel fibres settle in liquid environments due to their high density. Further problems with known conductive fillers are that they often compromise other properties of composite plastics such as flame retardance and strength.
Static electrification of articles can lead to a number of undesirable effects including: Attraction of dust particles.
0 Attraction between surfaces, e.g. plastic films and textile yarns.
Risk of fire or explosion caused by sparking near inflammable liquids, gases, and explosive dusts, e.g. coal dust and flour.
Risk of shock to persons handling equipment.
C:\WINDOWSTEMPPP8 8.DOOC AIMENDED SHEET Ie!P/AII PCT/AU00/00018 Received 09 October 2000 -3- The accumulation of electrostatic charges can be prevented by using materials of low resistance. The resistivity of natural rubber can be lowered by compounding with suitable ingredients. Alternatively, as static electrification is a surface phenomenon, the product can be covered with a conducting surface layer.
Low resistance rubber is required for a wide range of applications, such as rollers for textile machinery, conveyor belting, fuel hoses, flooring, footwear, antistatic gloves (electronic industry), cables, equipment used in hospital operating theatres, and aircraft components.
The terms "antistatic" and "conductive" are restricted here to rubber products rather than the rubber itself because the electrical resistance of the product depends not only on the resistivity of the rubber but also on the shape and most probable positions of charge generation and discharge.
Natural rubber is normally considered to be an electrically insulating material but it can be an electrically insulating material but it can be compounded to give electrical resistivity lying anywhere between 1 ohm/cm. and 1015 ohm/cm.
The most common means of reducing resistance is to add a suitable carbon black (super conductive furnace). Resistance falls with a decrease in particle size, increase in black "structure" and increase in concentration. For light coloured products certain grades of aluminium silicate may be used as antistatic fillers although these are usually less effective in reducing resistance than the super conductive furnace. There are also other proprietary antistatic agents that are available, such as ethylene oxide, but still these agents are less effective then the super conductive furnace.
The applicant has found that carbonised rice husk is particularly suited for use as a filler in plastics as it has been found to enhance the conductivity and flame retardant properties of the composite plastics.
Honeycomb structure of a matrix is supposed to be one of the strongest structures that have been determined by Structural Engineers. The strength comes about from the full depth hexagons and half-depth trapezoids. This type of structures is presently used as designs for building bridge decks.
A/MEINDED SHEET W arce\specPCTOO 8a.DO C
IPZ;/AU
PCT/AU00/00018 Received 09 October 2000 -4- The rice husk has a similar type of honeycomb design, which results in not only providing strength to the matrix, but also has sound and thermal insulation properties. The Sound insulation property is provided by the micro-cellular structures formed by the honeycomb structure in the brown rice husk. Thus the sound is trapped within the micro-cellular structure. This property is inherent to the brown (fresh) rice husk. The Thermal insulation property is provided by the honeycomb structure, which is strengthened by the silica and fibre which predominately present in brown rice husk and lesser in the carbonised (depend to the rate of carbonising) rice husk.
The presence of appreciable quantities of oxygen on the surface of carbonised rice husk acts as insulation for each aggregate, thereby reducing the conductivity and also reducing the flammability. The presence of nitrogen and oxygen in the fresh husk not only enables the blowing effect but also nitrogen being inert reduces the flame spread. The volume of gas (nitrogen/oxygen) evolution per gram of fresh rice husk is 240 ml/g. The husk's decomposition temperature is at about 2800C and curing temperature of rubber and ethyl vinyl acetate is between 130°C-180 0 C, thus when urea (dinitroso pentamethylene tetramine) is milled along the decomposition temperature is reduced within the curing temperatures. The presence of silica in the rice husk provides better mechanical strength.
Typical chemical and physical properties of fresh and carbonised rice husk are detailed as follows: consists of 20-23% of paddy husk burning: 20% ash by weight 90-95% is silica (amorphous and crystalline) physical characteristics: bulk density 96.12-112.14 kg/m3 pH 7.14 (husk ash) moisture content dry basis ash 22.2% AMENDED SHEET C:%WINDOWSTEMP\pp8198.DOC
IPEA/AU
PCT/AU00/00018 Received 09 October 2000 Chemical Composition Moisture Content dry basis Ash: :22.2% Protein 2.4% Crude fat 0.7% Carbohydrate :32.0% Fresh RH Carbonised RH Al 2 0 3 0.025% 0.023% CaO 0.36% 0.12% NaO 0.034% 0.018% SiO 2 96.2% 53.88% 0.041% 0.022% MgO 0.16% 0.078%
K
2 0 0.69% 0.95%
P
2 0s 0.57% 0.27% It is an object according to one aspect of the present invention to provide an alternative filler which will enhance the antistatic, flame retardant, accelerator, plasticiser blowing and/or other physical or mechanical in composite materials.
The filler is desirably cheap, environmentally friendly and replenishable and it does not compromise other characteristics of the composite material.
SUMMARY OF INVENTION The present invention in one aspect resides in the use of carbonised vegetative-based filler to provide improved antistatic, flame retardant, accelerator, plasticiser, blowing and/or other physical or mechanical characteristics in composite materials.
Preferably, the carbonised vegetative-based filler is carbonised rice husk.
Preferably, the carbonised rice husk is burnt at about 800°C for about 4 seconds. Most preferably, the carbonised rice husk is burnt at 803-804oC for 3-4 seconds.
In another aspect the invention resides in a composite material, more particularly a composite plastic including a vegetative-based filler when used as a conductive or flame retardant article.
Preferably, the carbonised vegetative-based filler is carbonised rice husk which has been burnt at 803-804 0 C for 3-4 seconds.
C:\WINDOWS\TEMP\pp8198.DOC AMENDED
SHEET
IPEFtAU PCT/AU00/00018 Received 09 October 2000 -6- The present invention also exhibits the usage of fresh and carbonised rice husk as a blowing agent when used in combination with recycled (reclaimed), or virgin natural rubber or other suitable thermoplastic materials. Though other conventional blowing agents have been used with natural or synthetic rubber to achieve the similar products but so far no blowing agents have been used with recycle (reclaim) rubber to produce similar products. Furthermore the conventional blowing agents are expensive and dosages are higher as compared to the fresh rice husk. For example for the conventional blowing agent, the dosage is about 6.5-7 phr, whereas the fresh/carbonised rice husk, the dosage is between 1.5 to 3 phr. When rice husk is used at different dosages the blowing effect is different. It was also noted that the rice husk does not only work as a blowing agent, but also as a plasticizer and a filler. The properties achieved are comparable to conventional blowing agents, when using fresh or carbonised rice, has no difference to the conventional blowing agent other than the colour of the end product.
Ebonite, a hard, dark-coloured plastic-like material, is the reaction product of rubber and a large proportion of sulphur. Simple rubber sulphur mixtures are seldom used in practice; they suffer from poor processability, require long cure times and lead to excessive shrinkage and heat evolution during cure.
Accelerators, fillers, processing aids and other compounding ingredients are widely used in ebonite, as in soft rubber vulcanised rubber, to ease processing, shorten cure times and modify properties. The curing times for ebonite are generally up to ten (10) hours at 1500 C, thus making ebonite products expensive.
Ebonite can be made from synthetic, such as BR, NBR, SBR and Nitrile rubber and as well as from Natural rubber. High strength, low thermal conductivity, chemical resistance and insulating properties of natural rubber make it a popular choice. Although it has been superseded in many applications by synthetic thermoplastic and thermosets, it is still used for outstanding chemical resistance and electrical properties coupled with high mechanical strength and ease of machining.
The present invention exhibits the usage of fresh and carbonised rice as an accelerator when used in combination with recycled (devulcanised) or virgin natural rubber, and at the same time making ebonite a conductive product when C:Aw1ND°WS\TEMPP810.D0 AMENDED SHE:T
JIPEAMU
PCT/AU00/00018 Received 09 October 2000 -7carbonised rice husk is used. Though other conventional accelerators have been used with natural or synthetic rubber (virgin or recycled) to achieve the similar products but so far no accelerators like the rice husk material have been used with recycled (devulcanised) rubber to produce similar products. Further more the conventional accelerators and conductive carbon black are expensive and difficult to blend and process. When rice husk is used singularly at different dosages the activation effect is different to meet industrial requirements.
Generally for ebonite production the sulphur content should be in the range of phr, but whereas when fresh rice husk between 25-30 phr is used the sulphur content could be reduced to 20-25 phr. Accelerators are less effective in ebonite than in soft rubber and large quantities are generally required. Basic accelerators such as guanidines and aldehyde-amines are preferred. Inorganic activators such as magnesium oxide, magnesium carbonate and lime are also effective when used with organic accelerators to reduce cure time without the risk of over heating.
Common inorganic fillers used in ebonite are china clay, talc, silica, whiting and magnesium oxide. These also reduce shrinkage and heat evolution but loaded ebonite generally have weaker mechanical properties than unloaded ones. Carbon black does not reinforce ebonite and is normally only added for pigmentation, although conductive carbon black are sometimes used to prepare electrically conducting ebonite.
BEST MODE Following is an example of the invention, in this example the filler is carbonised rice husk (CRH) which has been burnt at 803-804 0 C for 3-4 seconds.
After this the CRH is obtained.
The manner in which the rice husk is burnt is believed to be important in achieving the desired surface area, surface structure and porosity necessary for conductivity and flame retardant and blowing properties in the composite plastics to be achieved. At this stage the range of temperature and the duration of the time of burning which achieves the desired result has not been fully explored, however it is predicted that the temperature range will be from about 100-950 0
C
S and the time range will be from about 2-30 seconds, although these ranges may C:\WNDOWS\TEMPpp8198.DOC AN TNDE D S ET PCT/AU00/00018 Received 09 October 2000 -8be much narrower. The importance of controlled burning in a prescribed time results in obtaining better surface area and porosity which in turn offers ideal properties emitting anti-static, flame retardant and enhancing physical properties of the material. In the absence of controlled burning, the surface area, surface structure and porosity would be distorted. While the present exemplification involves use of carbonised rice husk it is possible that the desired results may be achieved by use of other carbonised vegetative-based fillers.
EXAMPLE 1 A thermoset application called pulforming was used to manufacture fibre reinforced bolts. Fibre glass tows (36 tow of 8000 tex) are pulled into a resin bath that contains: 1. Polyester and Vinyl Ester combination, ie. 60% Vinyl Ester (Derakane 411 Dow Chemical) and 40% Polyester (Everpol 3260 AR P.T. Arinde).
2. Zinc Stearate (mould releasing agent) 1.18% of the resin weight BYK 980 (improves wetting and dispersing of fillers in glass fibre reinforcement compounds) 1.5% of the filler weight.
3. BYK 515 (air releasing agent) 0.5% of the total weight of the resin mixture.
4. BYK 996 (wetting and dispersing additive for mineral fillers in hot curing, glass fibre reinforced UP-resin systems) 2% of the resin weight.
Fillers (Ca 2
(CO)
3 Carbonised Rice Husk (mesh size 325) 12% of the resin weight).
6. Aluminium Trihydrate of the resin weight).
7. Catalyst TBPH (Tertiary Butyl Peroxy-2-Ethyl Hexanoate) 2.12% of the resin weight.
TBPB (Tertiary Butyl Perbenzoate) 0.53% of the resin weight.
The wet fibre glass tow is pulled into the mould and compressed at a pressure of 800psi (5600kPa) for 3.8 minutes at 130 0 C. Then the bolt is pulled out of the mould and left to cure.
C:\WINDOWS\TEMPpp8198.DOC 'AMEN.DziA s.AHi:- OPENAU a# PCT/AU00/00018 Received 20 November 2000 -9- The following day tests were carried out on the bolt with the following results: Tensile strength at the thread Torque Bond strength BS 1610:Part 1, Grade Fire rating BS 5865:1980 Persistence flame shall be less than seconds Electrical conductivity less than 10 to the power of 9 Ohms.
EXAMPLE 2 All chemicals used are taken by percentage of weight of rubber. The rubber and the chemicals are mixed in a Banbury, for 5 minutes. Recycled rubber (reclaim) (220g) is first milled with zinc oxide accelerator, which is followed with stearic acid activator, Mercadibenzothiazole disulphide Tetramethylthiuram disulphide accelerator, fresh rice husk (27%)-blowing agent and filler and sulphur vulcanisate. Then the mixed compound is milled for five minutes to form a sheet that is ready for curing. Then a piece of the sheet weighing about 32g is placed in a mould that it is to be cured for two minutes in a oven at 1500C temperature. The conventional curing time is six minutes at the same temperature of 1500C.
The rubber and the chemicals are mixed in a Banbury, for 5 minutes. The similar approach has been done for using SBR Rubber (100g), silica (62g), Peg 1500 Paraffin oil Zinc oxide Wing stay Wax (1g), Mercadibenzothiazole disulphide (MBTS) Tetramethylthiuram disulphide (TMTD) Stearic acid (1.5g) and Sulphur The milling was done for ten minutes and later cured in the oven for six minutes at 1500C.
This exercise was repeated by using fifty (50) percent of the virgin material compound and fifty (50) percent recycled (reclaimed) material compound, and cured in the oven at 1500C for two minutes.
With the level, of rice husk dosage, the blowing effect can be controlled to o suit the industry's requirement.
4 AMENDED SHEET w:\janicespoe\PCTooo 182.DOC
IP-A/AU
PCT/AU00/00018 Received 20 November 2000 Machine Operating Conditions Virgin Rubber: PROPERTIES SMR-10 TYRE DUST TYRE DUST EXAMPLE 1 EXAMPLE 1 WITH BROWN WITH BROWN WITHOUT RICE HUSK RICK HUSK BROWN RICE HUSK Mooney 60 36.6 31.8 24 Viscosity MLI 3, 100 0
C
Monsanto Rheometer, 150 0
C
Scorch time 1.4 3.8 1.2 2 Cure time 7.4 3.5 3.25 4 4 By using rice husk the Mooney viscosity was lower than the conventional filler, thus lowering scotch time (time taken by the rubber compound to flow into the mould) and curing time (time taken to cure rubber compound) respectively. As such this leads to a cheaper production system. Presently various fillers and blowing agents are being used in the production of soft/spongy rubber that would produce different types of cell structures for an end product, but the cost determines the market.
AMENDED SHEET w:ancspeaPool08a.aoc IPEA/AU PCT/AU00/00018 Received 09 October 2000 11 EXAMPLE 3 All chemicals used are taken by percentage of weight of rubber. The rubber and the chemicals are mixed in a Banbury, for six minutes. The recycle (devulcanised) rubber is first milled with magnesium oxide accelerator, which is followed with Diphenylguanidine accelerator, fresh rice husk accelerator and filler and sulphur vulcanisate. After the milling at the Banbury for ten (10) minutes, it is then milled into a sheet. The mould was heated in the oven press to 1500C then the sheeted rubber is placed in the mould and it is cured for twelve (12) minutes. The conventional curing time is between eight to ten hours at the same temperature of 150°C.
A conventional formula for ebonite was selected to compare. The rubber and the chemicals are mixed in a Banbury, for 5 minutes. The similar mixing as above was followed, using SBR 5 Rubber (100g), ebonite dust (100g), China clay (50g), Magnesium oxide Diphenylguanidine Linseed oil (5g) and Sulphur (45g). The milling was done for ten (10) minutes and later cured in the oven for eight hours at 1500C.
Mix properties; Rice Husk filled mix Mooney viscosity, MLI 3, 1000C 24 Mooney viscosity, MLI 3, 1200C 18.5 Mooney scorch, ts, MLI 3, 1200C min. 5.8 Monsanto Rheometer, 160°C time to 95% cross-linking, s 110 By using rice husk the curing time is reduced tremendously twelve minutes as compared to eight to ten hours. The sulphur content in the rubber polymer is reduced by fifteen percent.
The results are based on cure time, the formulation with rice husk cures faster than the formulation without rice husk, i.e. twelve minutes for with brown rice husk and about eight hour without rice husk.
C:WINDOWSTEMP8198.DOC AMENDED SHEET
IPEJAU
PCT/AU00/00018 Received 09 October 2000 -12- EXAMPLE 4 All chemicals used are taken by percentage of weight of natural rubber The natural rubber and the chemicals are mixed in an open mill or kinder, for six minutes. Natural rubber is first milled with stearic acid and zinc oxide activator, which is followed with rice husk (blowing agent) calcium carbonate promoter urea based silica accelerator dibenzthiazyldisulphide (MBTS) and catalyst sulphur After the milling at the open mill or kinder for ten (10) minutes, it is then milled into a sheet. The mould was heated in the oven press to 160°C then the sheeted natural rubber is placed in the mould and it is cured for twenty-two (22) minutes.
The temperature for curing could be from 145°-160°C and the cure time may differ according to the mould size.
Cured properties; rice husk filled blowed mix micro-cellular cells.
1. Hardness Askar C 2. Shrinkage 3. Specific Gravity g/cc 0.3-0.35 By using rice husk as a blowing agent the catalyst percentage could be reduced and as well as the percentage of blowing agent used.
EXAMPLE THERMOPLASTIC (EVA) All chemicals used are taken by percentage of weight of thermoplastic Ethyl Vinyl Acetate (EVA). The EVA and the chemicals are mixed in an Open Mill or Knider, for six minutes. Ethyl Vinyl Acetate (EVA) is first milled with Stearic Acid and zinc oxide accelerator, which is followed with Rice Husk (Blowing agent) Magnesium carbonate Promoter urea based and catalyst Diacyl Peroxide After the milling at the Open mill or Knider for ten (10) minutes, it is then milled into a sheet. The mould was heated in the oven press to 1600C then the sheeted EVA is placed in the mould and it is Scured for twenty-two (22) minutes.
C:\WINDOWSTEMPpp8198.DOC AMENDED SHEET
IPEA/AU
PCT/AU00/00018 Received 09 October 2000 -13- The temperature for curing could be from 145 0 -160 0 C and the cure time may differ according to the mould size.
Cured properties: Rice Husk filled blowed mix micro-cellular cells 1. HARDNESS Askar C 29-35 2. SHRINKAGE 2 3. SPECIFIC GRAVITY g/cc 0.200 4. COMPRESSION SET By using rice husk as a blowing agent the catalyst percentage could be reduced and as well as the percentage of blowing agent used.
EXAMPLE 6 The rice husk is mixed by weight with tyre crumbs(35-40 mesh) and an effluent from the palm oil mill called Scavenger (which have a fatty acid content
(C
8
-C,
8 From literature it has been reported that by using tyre crumb with the binder (bitumen) there is an improve of properties for the asphalt mixture. This invention not only uses tyre crumb along with rice husk and an oil palm effluent to further improve the properties. As well as the formulation address the recyclability of all agro waste by-products to be used in the road surfacing industries. The formulation of the rice husk mixture as follows: Rice husk Tyre crumb Scavenger In this particular example the usage of rice husk mixture is divided into two categories: A. RICE HUSK MIXTURE USED IN MODIFIED BINDER B. RICE HUSK MIXTURE USED IN AS FILLER AMENDED SHEET C:AWINDOWSTEMP\Pp8198.DOC IPEA/AU PCT/AU00/00018 Received 09 October 2000 -14- A. The rice husk mixture is added to the bitumen first in compliance to the SOCIETY OF HIGHWAY PROCEDURE (SHRP) to manufacture modified bitumen. The bitumen is first heated to about 160 0 C, then the rice husk mixture twenty percent 20% by weight of bitumen is mixed with the heated bitumen for about one hour. As a result of this reaction a modified bitumen is made. From here 5-7% by weight of this modified bitumen is added to the aggregate. The aggregate is first heated to about 200 0 C and the modified bitumen is mixed for three to four minutes. The modified bitumen with rice husk mixture complies to all requirement of the SHRP.
B. The rice husk mixture is added as a filler to the aggregate, by four by weight to the aggregate weight. The aggregate is first heated to 200 0
C,
and is allowed to cool to about 160 0 C, then the rice husk mixture is added and mixed and lastly the bitumen 5-6% by weight of aggregate is added and mixed for 3-4 minutes. This blending with rice husk mixture complies to all requirement of the Marshall Properties.
C:\WINDOWSTEMP\pp8198.DOC AMENDED SHEE
IPEAAU
PCT/AUOO/000 18 Received 09 October 2000 TABLE 1 PROPERTIES OF RICE HUSK MODIFIED BINDER SHRP SHRP 80/100 RICE HUSK MIXTURE FLASH POINT TEMP. -C 230 240 SOFTENING POINT, 0 C 44-50 55-70 PENETRATION 0 C 25, dmm 80-1 00 60-1 00 BROOKFIELD VISCOSITY 135*C, MVPaS <500 >1500 DYNAMIC SHEAR RHEOMETER PG 70
ORIGINAL
G* (Pa) <1000 >1200 >80 G*/Sin 8 <1000 >1200 AFTER RTFOT G*(Pa) <1000 >3800 >80 G*/Sin 8 <1000 >3800 AFTER PAV G*(Pa) <1000 >230 >80 G*/Sin 8 <1000 >260 PG 76
ORIGINAL
G* (Pa) <1000 >1800 >80 G*/Sin 8 <1000 >1800 AFTER G*(Pa) <1000>20 >80>7 G*/Sin 8 <1000>20 AFTER PAV G* (Pa) <1000 >80 G*/SinS <10 >280 TABLE 2 MIXED PROPERTIES OF RICE HUSK MODIFIED BINDER PROPERTIES 80(100 RICE HUSK MIXTURE MARSHALL STABILITY (kN) 5-10 >13 FLOW (mm) 2-4 2-4 QUOTIENT (kN/mm) 1-3.5 3-4 RESILIENT MODULUS 250 >2000 >2800 7 C:AWINDOWS\TEMPIPP8198.OOC AMENDED SHEE7 I p EA/A u PCT/AUO0/00018 Received 09 October 2000 -16- TABLE 3 MIXED PROPERTIES OF RICE HUSK MIXTURE AS FILLER PROPERTIES 80/100 RICE HUSK MIXTURE MARSHALL STABILITY (kN) 6-10 >12 FLOW (mm) 2-4 2-4 QUOTIENT (kN/mm) 1-3.5 3-4 RESILIENT MODULUS 25° >2000 >2800 TABLE 4 PREFERRED PARTICLE SIZE AND DOSAGE OF FRESH AND/OR CARBONISED RICE HUSK FOR PARTICULAR COMPOSITE MATERIALS COMPOSITE MATERIAL FRESH/DOSAGE CARBONISED/DOSAGE BITUMEN (MECHANICAL 100 MESH -40-60 phr
PROPERTY
THERMOPLASTIC (EVA) 325-400 MESH 1.5-2.5 phr 325-400 MESH 1.5-2.6 phr BLOWING CHARACTER THERMOPLASTIC (EVA) 325-400 MESH 1.5-5 phr 325-400 MESH 1.5-2.5 phr MECHANICAL PROPERTY RUBBER 325-400 MESH 1.5-27 phr 325-400 MESH 1.5-27 phr BLOWING CHARACTER EBONITE N.R. 100-200 MESH 18-30 phr (REDUCE CURE TIME) RUBBER 100-200 MESH 5-10 phr 100-200 MESH 5-10 phr SCOTCH TIME THERMOSET RESIN 325 MESH 10-15 phr (FLAME PROPERTY) THERMOSET RESIN 100-200 MESH 10-15 phr 100-200 MESH 10-15 phr (MECHANICAL PROPERTY) THERMOSET RESIN 325 MESH 10-15 phr
(ANTISTATIC)
RUBBER-LATEX 325-400 MESH 5-15 phr
ANTISTATIC
RUBBER 325-400 MESH 5-15 phr
ANTISTATIC
CONCRETE 100-200 MESH 10-15 phr 100-200 MESH 10-15 phr (MECHANICAL PROPERTY)__ NATURAL RUBBER SYNTHETIC RUBBER 0 It will of course be realised that whilst the above has been given by way of illustrative examples of this invention, all such and other modifications and variations hereto, as would be apparent to persons skilled in the art, are deemed to fall within the broad scope and ambit of this invention as herein set forth. For instance, while the preceding examples relate to the use of fresh and/or carbonised rice husk it would be apparent to a person skilled in the art that other cereal husks such as sorghum husk may be suitable.
C:\WINDOWS\TEMP\pp8198.DOC AMENDED SHEET 'Zj/A(J PCT/AU00/00018 Received 09 October 2000 -17- Throughout the description and claims of the specification where reference is made to the dosage of fresh and/or carbonised rice husk, this dosage is expressed in terms of "phr" (parts per hundred) based on the weight of the composite material into which the rice husk is being introduced.
Throughout the description and claims of the specification the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.
C:\WINDOWS\TEMP\pp8198.DOC AIENED SHiEET
IPEA/AU

Claims (30)

1. A filler for use in composite materials wherein said filler comprises carbonized vegetative-based material wherein said carbonized vegetative- based material is the product of burning fresh vegetative-based material at 803° to 804 0 C for 3 to 4 seconds.
2. A filler according to claim 1 wherein the carbonized vegetative-based material is carbonized rice husk.
3. A process for the production of a carbonised vegetative-based filler wherein said process comprises burning a fresh vegetative-based material at about 8030 to 804 0 C for 3 to 4 seconds.
4. A process according to claim 3 wherein the fresh vegetative material is ground to a particle size of from 100 mesh to 400 mesh. A process according to claim 3 or claim 4 wherein said process utilises fresh rice husk as the vegetative material.
6. A filler according to any one of claims 1 or 2 when produced by a process according to claim 4.
7. A method for improving the anti-static, flame retardant, accelerator, plasticiser and/or blowing characteristics of a composite material wherein said method comprises blending into the composite material with a carbonised vegetative-based filler according to claim 1 or claim 2 and wherein said blending is substantially completed prior to incorporation of any additives, if any.
8. A method according to claim 7 wherein the carbonised vegetative filler has a particle size of from 100 mesh to 400 mesh. 4np aNDEDi3 SHEET W:janice\ap \pct00018claBirn.d oc l PCT/AU00/00018 Received 20 November 2000 -19-
9. A method according to claim 7 or claim 8 wherein the composite material is latex (NR/SR) the dosage of the carbonised vegetative filler is from to 2.5 phr (parts per hundred). A method according to any one of claims 7 to 9 wherein said composite material is selected from the group comprising: i) thermoplastic resins; ii) thermoset plastics; iii) rubbers and elastomeric materials; iv) conductive coatings; v) printing inks; vi) bitumen; and vii) concrete.
11. A composite material having improved anti-static, flame retardant, accelerator, plasticiser and/or blowing characteristics wherein said composite material is produced by the method of any one of claims 7 to
12. A method for improving the mechanical properties of bitumen, said method comprising blending fresh and/or carbonised rice husk together with tyre crumb into said bitumen.
13. A method according to claim 12 wherein the rice husk has a particle size of from 100 to 200 mesh and the dosage of rice husk is between 40 to 60 phr.
14. A method according to claim 12 or claim 13 wherein the rice husk and tyre crumb is mixed in composition with a palm oil effluent prior to it being added to the bitumen. A method according to claim 14 wherein the composition comprises about 50% tyre crumb, about 45% rice husk and about 5% palm oil effluent. W:\ancedpm\pct000daim.doc AMENDED SHEET PCT/AU00/00018 Received 20 November 2000
16. A method according to claim 14 or claim 15 wherein the composition is added in a dosage amount of about 20% by weight of the said bitumen.
17. A method for improving the blowing character of a thermoplastic resin this method comprising blending fresh and/or carbonised rice husk into said thermoplastic resin, wherein the rice husk has a particle size of between 325 to 400 mesh and the dosage of the rice husk is between 1.5 to 2.5 phr.
18. A method for improving the mechanical properties of thermoplastic resin including compression strength, said method comprising blending rice husk into said thermoplastic resin wherein said rice husk has a particle size of between 325 to 400 mesh and the dosage of the rice husk is between 1.5 and 2.5 phr.
19. A method for improving the blowing character of rubber said method comprising blending fresh and/or carbonised rice husk into said rubber. A method according to claim 19 wherein the rice husk has a particle size of between 325 to 400 mesh and the dosage of the rice husk is between and 27 phr.
21. A method for reducing the cure time of ebonite NR wherein said method comprises blending fresh rice husk into said ebonite NR.wherein the rice husk has a particle size of between 100 to 200 mesh and the dosage of the rice husk is between 16 to 30 phr.
22. A method for improving the scotch time of rubber said method comprising blending fresh and/or carbonised rice husk into said rubber.
23. A method according to claim 22 wherein the rice husk has a particle size of between 100 to 200 mesh and the dosage of rice husk is between 5 to phr. )MEN,-D SHEET wq.W"WPM\~pdOO6ldlMrdoc 1F ENAU PCT/AU00/00018 Received 20 November 2000 -21-
24. A method for improving the flame retardant ability of a thermoset resin said method comprising blending carbonised rice husk according to claim 2 into said thermoset resin. A method according to claim 24 wherein the carbonised rice husk has a particle size of 325 to 400 mesh and the dosage of carbonised rice husk is between 10 to 15 phr.
26. A method for improving the mechanical properties of thermoset resins including tensile and torque strength, said method comprising blending carbonised rice husk according to claim 2 into said thermoset resin.
27. A method according to claim 26 wherein the rice husk has a particle size of between 100 to 200 mesh and the dosage of rice husk is between 10 to phr.
28. A method for improving the anti-static properties of a thermoset resin said method comprising blending carbonised rice husk according to claim 2 into said thermoset resin.
29. A method according to claim 27 wherein the carbonised rice husk has a particle size of between 325 to 400 mesh and the dosage of carbonised rice husk is between 10 to 15 phr. A method for improving the anti-static properties of rubber and/or rubber latex said method comprising blending carbonised rice husk according to claim 2 into said rubber and/or rubber-latex.
31. A method according to claim 30 wherein the carbonised rice husk has a particle size of between 325 to 400 mesh and the dosage of carbonised rice Shusk is between 5 to 15 phr. AMENDED SHEET W:\janice\dpmW\pctO18daim.doc IPEA!AU PCT/AU00/00018 Received 20 November 2000 -22-
32. A method for improving the mechanical properties of concrete said method comprising blending carbonised rice husk according to claim 2 into said concrete.
33. A method according to claim 32 wherein the rice husk has a particle size of between 100 to 200 mesh and the dosage of the rice husk is between 10 to phr.
34. A filler according to claim 1 substantially as hereinbefore described with reference to any of the examples. A process according to claim 3 substantially as hereinbefore described with reference to any of the examples.
36. A method according to claim 7 substantially as hereinbefore described with reference to any of the examples.
37. A composite material according to claim 11 substantially as hereinbefore described with reference to any of the examples. DATED: 17 November, 2000 PHILLIPS ORMONDE FITZPATRICK Attorneys for: Contract Research Development Sdn. Bhd. And Mr. D J .Tadgell W:an~ A ED SHEET PEA/AU W:aniceVpm\pctoooda msdoc
AU24245/00A 1999-01-18 2000-01-17 Use of vegetative material as a filler in composite materials Ceased AU757242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU24245/00A AU757242B2 (en) 1999-01-18 2000-01-17 Use of vegetative material as a filler in composite materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPP8198 1999-01-18
AUPP8198A AUPP819899A0 (en) 1999-01-18 1999-01-18 Conductive and flame retardant plastic fillers
PCT/AU2000/000018 WO2000042116A2 (en) 1999-01-18 2000-01-17 Use of vegetative material as a filler in composite materials
AU24245/00A AU757242B2 (en) 1999-01-18 2000-01-17 Use of vegetative material as a filler in composite materials

Publications (2)

Publication Number Publication Date
AU2424500A AU2424500A (en) 2000-08-01
AU757242B2 true AU757242B2 (en) 2003-02-06

Family

ID=25619294

Family Applications (1)

Application Number Title Priority Date Filing Date
AU24245/00A Ceased AU757242B2 (en) 1999-01-18 2000-01-17 Use of vegetative material as a filler in composite materials

Country Status (1)

Country Link
AU (1) AU757242B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988838B (en) * 2022-07-26 2023-03-21 重庆腾治科技有限公司 Gypsum self-leveling mortar and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955049A (en) * 1962-09-13 1964-04-08 Gulf States Asphalt Company In Bituminous sealing composition
JPH01249617A (en) * 1988-03-30 1989-10-04 Denki Kagaku Kogyo Kk Burned chaff ash composition and its production
AU6892394A (en) * 1994-01-06 1995-07-13 Kenneth Lindsay Pagden Insulative materials and products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955049A (en) * 1962-09-13 1964-04-08 Gulf States Asphalt Company In Bituminous sealing composition
JPH01249617A (en) * 1988-03-30 1989-10-04 Denki Kagaku Kogyo Kk Burned chaff ash composition and its production
AU6892394A (en) * 1994-01-06 1995-07-13 Kenneth Lindsay Pagden Insulative materials and products

Also Published As

Publication number Publication date
AU2424500A (en) 2000-08-01

Similar Documents

Publication Publication Date Title
US20050165137A1 (en) Use of vegetative material as a filler in composite materials
KR100361561B1 (en) A Blowing Composition of Polyolefins with Flame-Retardantivity and Method Thereof
KR100404768B1 (en) A composition of flame retarding foams with waste materials and its preparing method
CN105330995B (en) A kind of environmental protection flame retardant bipeltate and preparation method thereof
JP2000001584A (en) Fire retardant epdm roofing membrane composition for use on high-sloped roof
CN103980620B (en) High-temperature resistant and flame-retardant convey belt coating layer rubber material and preparation method thereof
CN109776895A (en) A kind of abrasion resistant fire blocking conveyer belt and its preparation process
CN115521516A (en) Rubber-plastic blending composition with flame-retardant and antistatic properties and preparation method thereof
KR101772761B1 (en) Flame retardant master batch of expanded polystyrene with enhanced cell uniformity and flame-resistance, and a method of the manufacturing
KR100415680B1 (en) A composition of flame retarding rubber foams with ground tire rubber and tire cord fibers and its manufacturing method
US6114007A (en) Flame resistant reinforced composites
AU757242B2 (en) Use of vegetative material as a filler in composite materials
CA2144224A1 (en) Green strength promoters for epdm/epm compositions
KR100415682B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
Pusca et al. Mechanical properties of rubber-an overview
EP0748837B1 (en) Process for reclaiming elastomeric material
KR101978717B1 (en) A safety boots
KR100388638B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
WO1998024840A1 (en) Compositions and articles of manufacture
JPS60177043A (en) Gasket composition for fireproof door
US3723355A (en) Elastomeric mixtures vulcanizable to electrically conductive vulcanisates and methods of preparing the same
GB2268497A (en) Fire-retardent material
CN105462225A (en) Anti-static PC-PBT alloy material and preparation method thereof and safe toe cap
KR102360096B1 (en) Highly flame resistant and eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder
Suharty et al. Blend of recycle polypropylene/kenaf fiber/recycle natural rubber/montmorillonite: the effect of natural rubber plasticizer against tensile strength and burning rate properties of smart composites

Legal Events

Date Code Title Description
MK6 Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase
TH Corrigenda

Free format text: IN VOL 14, NO 43, PAGE(S) 7730-7733 UNDER THE HEADING APPLICATIONS LAPSED, REFUSED OR WITHDRAWN PLEASE DELETE ALL REFERENCE TO APPLICATION NO. 21040/00, 24245/00 AND 24252/00

FGA Letters patent sealed or granted (standard patent)