KR20030046252A - Operating method for preventing air separation unit from cooling - Google Patents

Operating method for preventing air separation unit from cooling Download PDF

Info

Publication number
KR20030046252A
KR20030046252A KR1020010076729A KR20010076729A KR20030046252A KR 20030046252 A KR20030046252 A KR 20030046252A KR 1020010076729 A KR1020010076729 A KR 1020010076729A KR 20010076729 A KR20010076729 A KR 20010076729A KR 20030046252 A KR20030046252 A KR 20030046252A
Authority
KR
South Korea
Prior art keywords
air
cold
booster
supplied
heat exchanger
Prior art date
Application number
KR1020010076729A
Other languages
Korean (ko)
Other versions
KR100768319B1 (en
Inventor
조병열
한상철
최용영
최춘기
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010076729A priority Critical patent/KR100768319B1/en
Publication of KR20030046252A publication Critical patent/KR20030046252A/en
Application granted granted Critical
Publication of KR100768319B1 publication Critical patent/KR100768319B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: A driving method to prevent loss of cold in an air separator is provided to reduce restarting time of equipment by generating cold with extra air exhausted from a neighboring air separator when the air separator stops for repairing for short time. CONSTITUTION: Extra high pressure air in a neighboring air separator is supplied to a booster(150A) of a cold generator(150) after an air compressor stops. Air exhausted from the booster cools a heat exchanger(140) and supplies to an expansion turbine(150B) with the air. A lower column and an upper column of a rectifying column maintain cooling by receiving air exhausted from the expansion turbine. Thereby, loss of cold is prevented by generating cold with high pressure air provided from the neighboring air separator when the air separator stops. Therein, equipment restarts rapidly.

Description

공기분리장치의 한냉손실방지를 위한 운전방법{Operating method for preventing air separation unit from cooling}Operating method for preventing air separation unit from cooling}

본 발명은 공기분리장치의 운전방법에 관한 것으로서, 보다 상세하게는 고장 수리 등을 위하여 짧은 시간동안 구동이 정지되었을 때 이웃한 다른 공기분리장치에서 배출된 여분의 공기로 한냉을 발생시켜 설비를 냉각시킴에 의해 설비의 재가동시간을 단축시킬 수 있도록 된 공기분리장치의 한냉손실방지를 위한 운전방법에 관한 것이다.The present invention relates to a method for operating an air separation device, and more particularly, to cool down a facility by generating cool air with extra air discharged from another air separation device adjacent to the vehicle when the operation is stopped for a short time for troubleshooting. The present invention relates to an operation method for preventing the cold loss of the air separation device that can shorten the restarting time of the equipment.

일반적으로 공기분리장치는 비점차(산소: -183℃, 질소: -196℃, 아르곤: -186℃ )를 이용한 정유 원리에 의해 고순도의 산소, 질소 및 아르곤 가스를 생산하기 위한 장치이며, 고장수리 등의 이유로 짧은 시간 동안, 예컨대 5일 이하의 시간 동안 설비의 가동을 정지시킨다.In general, the air separation device is a device for producing high purity oxygen, nitrogen and argon gas by the refinery principle using the difference in boiling point (oxygen: -183 ℃, nitrogen: -196 ℃, argon: -186 ℃), troubleshooting For example, the plant is shut down for a short time, for example, for up to 5 days.

그리고, 이러한 공기분리장치는 다수대가 구비되어 사용처의 가스 사용량에 대응하여 일부 또는 전부를 가동시킨다.In addition, a plurality of such air separation apparatuses are provided to operate some or all of them according to the amount of gas used at the place of use.

대기중의 공기를 원료로 하고 비점 차이를 이용하여 산소, 질소 및 아르곤 등을 생산하는 제조설비는 여러 개의 공기분리장치로 이루어지고, 이 공기분리장치의 종래 구성은 도1에 도시된 바와 같다.A manufacturing facility for producing oxygen, nitrogen, argon, etc. using air in the air as a raw material and using a boiling point difference is composed of a plurality of air separation devices, and the conventional configuration of the air separation device is shown in FIG.

질소 78%, 산소 21%, 아르곤 1% 정도가 함유된 대기중의 공기를 흡입하여 공기압축기(110)에서 6㎏/㎠ 정도의 압력으로 압축시키고, 이렇게 압축된 원료공기는 수세 냉각탑(120)에 보내져 공기 속에 수용성 먼지를 제거시킴은 물론 공기의 온도를 약 30℃ 정도로 냉각시키며, 계속하여 흡착기(130)를 통과시켜 공기 속에 포함된 수분 및 이산화탄소를 제거시킨 후, 주 열교환기(140)를 통과시킴에 의해 정류통(160)의 상탑(162)에서 분리되어 나오는 저온의 산소, 질소 및 불순질소 가스와의 열교환에 의해 약 -173℃ 정도로 냉각시킨다.The air in the atmosphere containing 78% nitrogen, 21% oxygen, and 1% argon is sucked and compressed to a pressure of about 6 kg / cm 2 in the air compressor 110, and the compressed raw air is washed with water in the cooling tower 120. It is sent to remove the water-soluble dust in the air as well as to cool the temperature of the air to about 30 ℃, continue through the adsorber 130 to remove the water and carbon dioxide contained in the air, and then the main heat exchanger 140 It is cooled to about −173 ° C. by heat exchange with low temperature oxygen, nitrogen, and impure nitrogen gas separated from the upper column 162 of the rectifier 160 by passing through.

그리고, 상기 주 열교환기(140)에서 냉각된 공기는 정류통(160)의 하탑(164)에 공급되며, 이 하탑(164)의 압력이 4㎏/㎠ 이상이 되면 한냉발생기(150)를 기동시켜 일부는 주 열교환기(130)를 거쳐 정류통(160)에서 생산된 질소가스와 함께 배관(191)을 통해 사용처에 공급되고, 나머지는 정류통(160)의 상탑(162)으로 공급된다.In addition, the air cooled in the main heat exchanger 140 is supplied to the lower tower 164 of the rectifier 160, and when the pressure of the lower tower 164 becomes 4 kg / cm 2 or more, the cold cooling generator 150 is started. Some are supplied to the place of use together with the nitrogen gas produced in the rectifier 160 through the main heat exchanger 130 to the place of use through the pipe 191, the rest is supplied to the top tower 162 of the rectifier 160.

또한, 정류통(160)의 하탑(164)으로 공급된 저온의 공기는 배관들을 통해 상탑(162)으로 공급되는바, 이 과정에서 주 응축기(166)와 트레이(Tray)에 의해 1차적인 공기분리가 이루어져 액화공기는 하탑(162)으로 모여져 배관을 통해 상탑(164)과 아르곤 분리기(170)로 이송되고, 하탑(164)에서 분리된 순수 질소가스 및 산소가 포함된 불순 질소가스가 배관을 상탑(162)으로 이송된다.In addition, the low-temperature air supplied to the lower tower 164 of the rectifier 160 is supplied to the upper tower 162 through the pipes, in this process the primary air by the main condenser 166 and the tray (Tray) The liquefied air is separated into the lower tower 162 and is transferred to the upper tower 164 and the argon separator 170 through the pipe, and the pure nitrogen gas and the impurity nitrogen gas containing oxygen separated from the lower tower 164 form a pipe. It is transferred to the tower 162.

그리고, 상탑(162)에서는 트레이에 의해 각 가스의 비점차이를 이용한 2차적인 분리가 이루어져 산소, 질소 및 불순 질소 가스로 분리되며, 산소 가스의 일부는 기화되는 불순 질소 가스에 의해 액체산소로 만들어져 주 응축기(166) 하부에 모여져 하탑(164)의 불순 질소 가스를 냉각시키면서 순도 조정 단계를 거친 다음에 고 순도의 산소와 질소 가스로 생산되고, 이렇게 생산된 산소가스와 질소가스는 배관(191)(192)을 통해 각각 사용처로 보내진다.In the upper tower 162, secondary separation is performed by using a difference in boiling point of each gas by a tray, and separated into oxygen, nitrogen, and impure nitrogen gas, and a part of the oxygen gas is made of liquid oxygen by vaporized impure nitrogen gas. Gathered under the main condenser 166 and undergoing a purity adjustment step while cooling the impurity nitrogen gas of the lower tower 164, the high-purity oxygen and nitrogen gas are produced, and the produced oxygen and nitrogen gas are pipes 191. Each is sent to the destination via 192.

또한, 아르곤 분리기(170)에서도 상탑(162)에서 공급된 산소 중의 아르곤 가스를 분리시켜 배관을 통해 사용처로 보내지고, 전체 공기량의 60% 이상을 차지하는 미 응축 가스인 불순 질소 가스는 배관을 통해 주 열교환기(140)를 거쳐 대기로 방출된다.In addition, in the argon separator 170, the argon gas in the oxygen supplied from the upper tower 162 is separated and sent to the place of use through the piping, and the impurity nitrogen gas, which is an uncondensed gas that occupies 60% or more of the total air volume, passes through the piping. It is discharged to the atmosphere via the heat exchanger 140.

이와 같은 공기분리장치는 상기한 운전 방법에 의해 연속적으로 운전되고 있으나, 설비의 안전 점검이나 설비 고장 등에 의해 단시간, 예컨대 5일 이하의 시간에 걸쳐 가동을 정지시킬 필요가 있고, 이러한 경우 장치를 이루는 구성요소들의 온도가 서서히 상승하는 한냉손실이 발생된다.Such an air separation apparatus is continuously operated by the above-described operating method, but it is necessary to stop the operation for a short time, for example, 5 days or less due to the safety inspection of the equipment or the failure of the equipment. A cold loss occurs when the temperature of the components rises slowly.

그리고, 한냉손실이 발생된 공기분리장치를 재가동시키는 경우, 공기압축기(110)에 의해 압축되고 수세 냉각탑(120)과 흡착기(130)를 거친 공기가 주 열교환기(140)를 통과하여 정류통(160)으로 공급될 때, 상기 주 열교환기(140)의 내부온도가 한냉손실에 의해 상승되어 있는 상태이기 때문에 상기 주 열교환기(140)에서 배출되어 정류통(160)으로 공급되는 공기의 온도가 정상적인 공기분리장치의 가동 상태일 때에 비하여 매우 높은 것이며, 이에 의하여 하탑(164)의 액체공기와 상탑(162)의 액체산소가 순간적으로 증발되면서 각각의 레벨을 저하시켜 정상적인 공기분리작용이 이루어질 때까지는 상당한 시간이 소요되는 문제점을 갖는 것이었다.In addition, when restarting the air separator in which the cold cooling loss is generated, the air compressed by the air compressor 110 and passed through the water washing cooling tower 120 and the adsorber 130 passes through the main heat exchanger 140 to provide a rectifier ( When supplied to the 160, the temperature of the air discharged from the main heat exchanger 140 and supplied to the rectifier 160 because the internal temperature of the main heat exchanger 140 is elevated by the cold loss. It is very high compared to when the normal air separation device is in operation. As a result, the liquid air in the lower tower 164 and the liquid oxygen in the upper tower 162 are instantaneously evaporated until the respective levels are lowered until the normal air separation is achieved. It was a matter of taking considerable time.

본 발명은 이러한 종래의 문제점을 해결하기 위한 것으로서, 고장 수리 등을 위하여 짧은 시간동안 구동이 정지되었을 때 이웃한 다른 공기분리장치에서 배출된여분의 공기로 한냉을 발생시켜 설비를 냉각시킴에 의해 설비의 재가동시간을 단축시킬 수 있도록 된 공기분리장치의 한냉손실방지를 위한 운전방법을 제공함에 그 목적이 있다.The present invention is to solve such a conventional problem, the equipment by cooling the equipment by generating a cold chill with the extra air discharged from the other air separation apparatus when the operation is stopped for a short time for troubleshooting, etc. The purpose of the present invention is to provide an operation method for preventing the cold loss of the air separation device that can shorten the restart time of the vehicle.

도1은 일반적인 공기분리장치가 도시된 개략 구성도;1 is a schematic configuration diagram showing a general air separation apparatus;

도2는 본 발명의 방법에 이용되도록 변형된 공기분리장치의 요부에 대한 구성도;2 is a block diagram of a main portion of an air separation apparatus modified to be used in the method of the present invention;

도3은 도2의 장치가 보다 구체화된 구성도;3 is a configuration diagram in which the apparatus of FIG. 2 is embodied in greater detail;

도4는 본 발명의 작용을 설명하기 위한 블록도;4 is a block diagram for explaining the operation of the present invention;

도5 및 도6은 본 발명의 방법에 의한 작용을 설명하기 위한 그래프도이다.5 and 6 are graphs for explaining the operation by the method of the present invention.

※도면의 주요부분에 대한 부호의 설명※※ Explanation of symbols about main part of drawing ※

110 : 공기압축기120 : 수세냉각탑110: air compressor 120: flush cooling tower

130 : 흡착기140 : 주열교환기130: adsorber 140: main heat exchanger

141a, 141b, 141c : 온도계150 : 한냉발생기141a, 141b, 141c: Thermometer 150: Cold generator

150A : 승압기150B : 팽창터빈150A: Booster 150B: Expansion Turbine

160 : 정류통162 : 상탑160: rectifier tube 162: tower

164 : 하탑200 : 공동배관164: tower 200: joint piping

210 : 공기지관220 : 액체공기분리기210: air branch pipe 220: liquid air separator

232 : 온도계232: Thermometer

상기한 목적을 달성하기 위한 기술적인 구성으로서, 본 발명은, 공기압축기가 일정시간 정지됨에 의해 공기분리장치의 구성요소들이 가열되면서 한냉손실이 발생되는 것을 방지하기 위한 방법에 있어서, 공기압축기가 정지된 후 이웃한 공기분리장치에서 생성된 여분의 고압공기를 한냉발생기의 승압기에 공급하고, 상기 한냉발생기의 승압기에서 배출된 공기로 주 열교환기를 냉각시킨 다음 한냉발생기의 팽창터빈에 공급하며, 상기 팽창터빈에서 배출된 공기를 정류탑에 공급하여 정류탑의 하탑과 상탑을 냉각유지시킴을 특징으로 하는 공기분리장치의 한냉손실방지를 위한 운전방법을 마련함에 의한다.As a technical configuration for achieving the above object, the present invention, in the method for preventing the cold compressor is generated while the components of the air separation apparatus is heated by the air compressor is stopped for a certain time, the air compressor is stopped After supplying the excess high-pressure air generated by the neighboring air separation device to the booster of the cold generator, the main heat exchanger is cooled with the air discharged from the booster of the cold generator and then supplied to the expansion turbine of the cold generator, the expansion By supplying the air discharged from the turbine to the rectification tower to provide an operating method for preventing the cold loss of the air separation device, characterized in that the cooling tower and the top of the rectification tower.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

도2는 본 발명의 방법에 이용되도록 변형된 공기분리장치의 요부에 대한 구성도로서, 가동중인 이웃한 공기분리장치의 흡착기(130')에서 배출된 공기의 일부가 공동배관(200)으로 공급되고, 이 공동배관(200)의 공기는 공기지관(210)을 통하여 한냉발생기(150)에 공급되도록 연결된다.Figure 2 is a schematic diagram of the main portion of the air separation device modified to be used in the method of the present invention, a portion of the air discharged from the adsorber 130 'of the adjacent neighboring air separation device is supplied to the common pipe 200 And, the air of the common pipe 200 is connected to be supplied to the cold chiller 150 through the air pipe 210.

상기 공기지관(210)에는 유량제어밸브(212), 체크밸브(214) 및 개폐밸브(216)가 설치되고, 또한 상기 공기지관(210)을 통해 한냉발생기(150)로 유입되는 공기의 압력을 측정할 수 있도록 압력계(218)가 장착된다.The air branch pipe 210 is provided with a flow control valve 212, a check valve 214 and the opening and closing valve 216, and also the pressure of the air flowing into the cold air generator 150 through the air branch pipe 210 A pressure gauge 218 is mounted to allow measurement.

상기 한냉발생기(150)의 출구측에 액체공기분리기(220)가 설치되고, 이 액체공기분리기(220)는 액체공기를 배출시키는 액체공기배관(222)과 기체공기를 배출시키는 기체공기배관(224)을 가지며, 내부의 액체공기레벨을 측정하기 위한 레벨기(226)가 설치된다.The liquid air separator 220 is installed at the outlet side of the cold generator 150, and the liquid air separator 220 is a liquid air pipe 222 for discharging liquid air and a gas air pipe 224 for discharging the gas air. ), And a leveler 226 for measuring the liquid air level therein is installed.

상기 액체공기배관(222)은 레벨제어밸브(2228)를 구비하여 주 열교환기(140)와 정류통(160) 하부를 연결시키는 배관(142)에 연결되고, 상기 기체공기배관(224)은 분지되어 하나는 유량제어밸브(225)를 구비하여 정류통(160)의 상탑(162)에 연결되며 다른 하나는 정류통(160) 상부와 주 열교환기(140)를 연결시키는 배관(144)에 연결 설치된다. 그리고, 상기 배관(144)에는 상탑압력 제어밸브(145)가 설치된다. 물론, 상기 배관(142)은 공기압축기, 수세 냉각탑 및 흡착기를 통해 주 열교환기(140)로 공기를 공급하는 배관(141)과 연결되어 있다.The liquid air pipe 222 is provided with a level control valve 2228 is connected to the pipe 142 connecting the main heat exchanger 140 and the bottom of the rectifier 160, the gas air pipe 224 is branched One is provided with a flow control valve 225 is connected to the top tower 162 of the rectifier 160, the other is connected to the pipe 144 connecting the upper part of the rectifier 160 and the main heat exchanger (140) Is installed. In addition, an upper tower pressure control valve 145 is installed in the pipe 144. Of course, the pipe 142 is connected to a pipe 141 for supplying air to the main heat exchanger 140 through an air compressor, a water cooling tower, and an adsorber.

또한, 상기 정류통(160)의 하탑(164) 내부에 설치된 트레이(165) 부분과 상기 배관(144)이 하탑압력 제어밸브(151)를 갖는 연결배관(150)에 의해 연결되고, 이 연결배관(150)이 배관(144)에 연결된 부분은 주 열교환기(140)와 상기 기체공기배관(224)의 분지관이 연결된 부분의 사이이다.In addition, a portion of the tray 165 installed inside the bottom 164 of the rectifier 160 and the pipe 144 are connected by a connection pipe 150 having a bottom pressure control valve 151, and this connection pipe The portion 150 connected to the pipe 144 is between the main heat exchanger 140 and the branch pipe of the gas air pipe 224 is connected.

그리고, 상기 정류통(160)에는 하탑(164)의 내부 압력을 측정하기 위한 압력계(168a)와 상탑(162)의 내부 압력을 측정하기 위한 압력계(168b)가 구비된다.In addition, the rectifier 160 includes a pressure gauge 168a for measuring the internal pressure of the lower tower 164 and a pressure gauge 168b for measuring the internal pressure of the upper tower 162.

또한, 정류통(160)에서 배출되어 주 열교환기(140)를 거쳐 대기로 불순 질소를 배출시키도록 연결된 배관(146)에는 온도측정을 위한 온도계(147), 압력측정을 위한 압력계(148) 및, 불순질소 출구의 압력을 제어하기 위한 압력제어밸브(149)가각각 설치된다.In addition, the pipe 146 discharged from the rectifier 160 to discharge the impurity nitrogen to the atmosphere through the main heat exchanger 140, the thermometer 147 for measuring the temperature, the pressure gauge 148 for measuring the pressure and Each of the pressure control valves 149 for controlling the pressure of the impurity nitrogen outlet is installed.

도3은 도2의 장치가 보다 구체화된 것으로, 주 열교환기(140)에 공기를 공급하는 배관(141)으로부터 분지된 분지배관(141A)이 유량제어밸브(143)를 구비하여 한냉발생기(150)의 승압기(150A) 입구로 연결되고, 상기 승압기(150A)의 출구에 구비된 중간압 배관(241)은 유량제어밸브(243)를 통해 주 열교환기(140)의 제1 교환기(140A)로 공급되고 유량제어밸브(244)를 통해 팽창터빈(150B)의 입구로 연결된다. 그리고, 상기 중간압 배관(241)에는 상기 승압기(150A)의 출구측에 배관 내부의 압력 측정을 위한 압력계(245)가 구비된다. 또한, 이 중간압 배관(241)은 유량제어밸브(243)와 압력계(245) 사이에서 바이패스관(246)이 분지되고, 이 바이패스관(246)은 바이패스밸브(247)를 구비하여 상기 승압기(150A)의 입구쪽으로 연결된다.3 is a more detailed embodiment of the apparatus of FIG. 2, wherein the branch pipe 141A branched from the pipe 141 for supplying air to the main heat exchanger 140 is provided with a flow control valve 143 to provide the cold air generator 150. Is connected to the inlet of the booster 150A, and the intermediate pressure pipe 241 provided at the outlet of the booster 150A is connected to the first exchanger 140A of the main heat exchanger 140 through the flow control valve 243. It is supplied and connected to the inlet of the expansion turbine 150B through the flow control valve 244. The intermediate pressure pipe 241 is provided with a pressure gauge 245 for measuring the pressure inside the pipe on the outlet side of the booster 150A. In addition, the intermediate pressure pipe 241 has a bypass pipe 246 branched between the flow control valve 243 and the pressure gauge 245, and the bypass pipe 246 is provided with a bypass valve 247. It is connected to the inlet side of the booster 150A.

상기 팽창터빈(150B)의 출구와 액체공기분리기(220)의 입구를 연결시키는 연결관(230)에는 유량제어밸브(231), 온도계(232) 및 압력계(233)가 구비된다.The connection pipe 230 connecting the outlet of the expansion turbine 150B and the inlet of the liquid air separator 220 is provided with a flow control valve 231, a thermometer 232, and a pressure gauge 233.

상기 주 열교환기(140)를 이루는 제1 교환기(140A)와 제2 교환기(140B)에는 각각 제1 온도계(141a)와 제3 온도계(141c)가 구비되고 이들 교환기(140A)(140B) 사이에는 제2 온도계(141b)가 구비된다.The first exchanger 140A and the second exchanger 140B constituting the main heat exchanger 140 are provided with a first thermometer 141a and a third thermometer 141c, respectively, between the exchangers 140A and 140B. The second thermometer 141b is provided.

이하, 본 발명의 작용을 설명한다.The operation of the present invention will be described below.

정상운전되고 있던 공기분리장치가 필요에 의해 정지되면, 설비제어컴퓨터에 구비된 운전모드가 한냉손실방지운전모드인가를 판단(310)하여, 한냉손실방지운전을 위한 밸브류 개폐동작이 이루어진다(320).When the air separation device that has been in normal operation is stopped as necessary, it is determined whether the operation mode provided in the facility control computer is the cold loss prevention operation mode (310), and a valve flow opening / closing operation for cold cooling loss prevention operation is performed (320). ).

즉, 정상운전중 개방되어 있던 승압기(150A)의 입구와 출구측 유량제어밸브(143)(243), 바이패스관(246)의 바이패스밸브(247), 팽창터빈(150B)의 입구와 출구측 유량제어밸브(244)(231)들중 승압기(150A)의 입구측 유량제어밸브(143)만이 폐쇄되고 나머지 밸브들은 개방된 상태로 유지시킨다.That is, the inlet and outlet side flow control valves 143 and 243 of the booster 150A opened during normal operation, the bypass valve 247 of the bypass pipe 246, and the inlet and outlet of the expansion turbine 150B. Of the side flow control valves 244 and 231, only the inlet side flow control valve 143 of the booster 150A is closed and the remaining valves are kept open.

그리고, 이웃한 공기분리장치의 흡착기에서 수분 및 이산화탄소가 제거된 공기를 공동배관(200)과 공기지관(210)을 통해 한냉발생기(150)의 승압기(150A) 입구로 공급하며, 이러한 상태에서 공기지관(210)의 유량제어밸브(212)를 조절하여 공기압력을 5㎏/㎠을 유지시키면서 한냉발생기(150)를 가동시킨다(단계 330).Then, the air from which the moisture and carbon dioxide are removed from the adsorber of the neighboring air separator is supplied to the inlet of the booster 150A of the cold-cooled generator 150 through the common pipe 200 and the air branch 210. By controlling the flow control valve 212 of the branch pipe 210 to operate the cold cooling generator 150 while maintaining the air pressure 5kg / ㎠ (step 330).

상기 한냉발생기(150)의 승압기(150A)에서 공기의 압력이 약 8㎏/㎠ 정도로 상승되고 팽창터빈(150B)에서 약 0.58㎏/㎠ 정도로 떨어지면서 약 -165∼170℃ 정도로 냉각되어 한냉을 발생시키며, 이때 승압기(150A)에서 배출된 고압이면서 상온인 공기가 주 열교환기(140)로 공급되어 주 열교환기(140)의 내부 온도가 순간적으로 상승되지만 액체공기분리기(220)의 기체공기배관(224)과 정류통(160) 상부에 연결된 배관(144)을 통해 공급되는 찬 공기와 질소가스에 의해 서서히 냉각되어진다.In the booster 150A of the cold generator 150, the pressure of air is increased to about 8 kg / cm 2 and dropped to about 0.58 kg / cm 2 at the expansion turbine 150B to cool to about -165 to 170 ° C. to generate cold. At this time, the high pressure and room temperature air discharged from the booster 150A is supplied to the main heat exchanger 140 so that the internal temperature of the main heat exchanger 140 is increased momentarily, but the gas air pipe of the liquid air separator 220 It is cooled slowly by cold air and nitrogen gas supplied through the pipe 144 connected to the upper portion 224 and the rectifier 160.

그리고, 상기한 주 열교환기(140)의 각 부분에 대한 온도의 관리가 매우 중요하며, 승압기(150A)에서 배출되는 공기의 입구측 온도, 즉 제1 온도계(141a)에서 검출되는 온도가 약 20 ~ 25℃, 제1 교환기(140A)와 제2 교환기(140B) 사이의 온도, 즉 제2 온도계(141b)에서 검출되는 온도가 약 -110∼-120℃, 공기 출구 온도, 즉 제3 온도계(141c)에서 검출되는 온도가 약 -170∼-175℃로 유지시켜야 하며, 이때, 주 열교환기(140)의 공기 출구온도와 팽창터빈(150B)의 출구 온도를 측정(단계340)하여, 이 온도차이와 설정된 온도(약 5℃)를 서로 비교(단계 350)한다.In addition, it is very important to manage the temperature of each part of the main heat exchanger 140, and the inlet temperature of the air discharged from the booster 150A, that is, the temperature detected by the first thermometer 141a is about 20. ˜25 ° C., the temperature detected between the first exchanger 140A and the second exchanger 140B, that is, the temperature detected by the second thermometer 141b, is about −110 to −120 ° C., the air outlet temperature, that is, the third thermometer ( The temperature detected at 141c must be maintained at about -170 to -175 ° C. At this time, the air outlet temperature of the main heat exchanger 140 and the outlet temperature of the expansion turbine 150B are measured (step 340). The difference and the set temperature (about 5 ° C.) are compared with each other (step 350).

상기 온도차이가 설정된 온도보다 작으면 한냉발생기(150)의 승압기(150A) 배출구측 바이패스관(246)의 밸브(247)가 개방되어져 한냉발생기(150)에 공급되고 있는 공기량을 감소시켜 과도한 냉각을 방지(단계 352)시키는 반면에 온도차이가 설정된 온도보다 크면 바이패스밸브(247)를 폐쇄시켜 한냉발생기(150)의 냉각량을 증가시킨다(단계 354).When the temperature difference is smaller than the set temperature, the valve 247 of the bypass pipe 246 of the booster 150A of the cold chiller 150 is opened to reduce the amount of air supplied to the cold chiller 150 to reduce excessive cooling. If the temperature difference is greater than the set temperature, the bypass valve 247 is closed to increase the amount of cooling of the cold generator 150 (step 354).

또한, 2차적으로 냉각된 공기는 주 열교환기(140)의 불순 질소 출구측 배관(146)에 설치된 압력계(148)와 온도계(147)에 의해 동작되는 압력제어밸브(149)를 작동시킴에 의해 냉각된 공기량을 제어하여 주 열교환기(140)가 과도하게 냉각되는 것을 방지한다.In addition, the secondaryly cooled air is operated by operating the pressure control valve 149 operated by the pressure gauge 148 and the thermometer 147 installed on the impurity nitrogen outlet pipe 146 of the main heat exchanger 140. By controlling the amount of air cooled, the main heat exchanger 140 is prevented from being excessively cooled.

상기의 냉각운전을 계속 수행하면서 정류통(160)의 주 응축기(166)가 적정한 냉각 상태를 유지시켜 주 응축기(166)의 레벨이 유지되게 하여야 하며, 이를 위하여는 팽창터빈(150B)의 출구측 유량제어밸브(244)를 서서히 개방시켜 상탑(162)에 한냉 공급을 개시함으로써 상탑(162)의 냉각운전을 실시한다. 이와 같이 상탑(162)에 한냉이 계속적으로 공급되면 상탑(162)의 압력이 상승되고 이러한 상탑(162)의 압력은 상탑압력 제어밸브(145)의 동작에 의해 주 열교환기(140)쪽으로 차가운 한냉을 공급시키면서 불순질소 압력제어용 유량제어밸브(149)를 통해 적정한 양의 불순질소가 대기로 배출되게 한다.While continuing the above cooling operation, the main condenser 166 of the rectifier 160 maintains an appropriate cooling state to maintain the level of the main condenser 166. For this purpose, the outlet side of the expansion turbine 150B is maintained. The flow control valve 244 is gradually opened to start cold supply to the upper tower 162 to perform cooling operation of the upper tower 162. As the cold is continuously supplied to the upper tower 162 as described above, the pressure of the upper tower 162 is increased, and the pressure of the upper tower 162 is cooled to the main heat exchanger 140 by the operation of the upper pressure control valve 145. While supplying the appropriate amount of impurity nitrogen through the flow control valve 149 for impurity nitrogen pressure control to be discharged to the atmosphere.

또한, 정류통(160)의 하탑(164)을 냉각시키기 위하여는 상기한 냉각운전을 계속 수행하면서 팽창터빈(150B) 출구에서 배출되는 액체 공기를 하탑(164)에 공급하며, 이때 액체공기분리기(220)의 액체공기 레벨을 일정하게 유지시키면서 액체공기가 하탑(164)에 공급되게 한다. 즉, 레벨계(226)에서 검출된 액체공기의 레벨에 의해 레벨제어밸브(228)가 개폐되어 액체공기를 하탑(164)에 공급하며, 이 과정중 하탑(164)의 압력이 상승되면 유량조절밸브(251)가 동작되어 주 열교환기(140)에 차가운 한냉을 공급하면서 불순질소 압력제어용 유량조절밸브(149)를 통해 불순질소가 대기로 배출되게 한다.In addition, in order to cool the lower tower 164 of the rectifier 160, the liquid air discharged from the outlet of the expansion turbine 150B is supplied to the lower tower 164 while continuing the cooling operation described above, wherein the liquid air separator ( The liquid air level of 220 is kept constant while the liquid air is supplied to the lower tower 164. That is, the level control valve 228 is opened and closed by the level of the liquid air detected by the level meter 226, and the liquid air is supplied to the lower tower 164. During this process, when the pressure of the lower tower 164 is increased, the flow control valve The operation 251 is operated to supply the cool heat chill to the main heat exchanger 140 and discharge the impurity nitrogen into the atmosphere through the flow control valve 149 for controlling the impurity nitrogen pressure.

상기한 운전은 설비의 재가동(단계 360에서 판단)시까지 이루어지며, 설비가 재가동되면 모든 밸브류들은 정상운전상태로 절환된다(370).The operation is performed until the facility restarts (determined in step 360), and when the facility is restarted, all valves are switched to the normal operation state (370).

도5 및 도6은 종래기술과 본 발명의 방법에 따라 설비를 5일간 정지시킨 후 재가동하여 사용가능한 가스를 생산할 때까지의 시간과 공기온도의 관계를 나타낸 그래프도이다.5 and 6 are graphs showing the relationship between the air temperature and the time required to produce a usable gas after stopping the equipment for 5 days according to the prior art and the method of the present invention.

도5의 (a)와 도6의 (a)에서 알 수 있듯이, 재가동을 시작하여 질소순도가 10ppm 이하가 되는 시점을 비교하면, 종래기술에서는 약 10시간 정도가 소요되는 반면, 본 발명의 방법에서는 약 2시간 정도만이 소요됨을 알 수 있고, 이에 의하면 본 발명의 방법에 의해 한냉손실을 방지시킴으로써 보다 빠른 시간내에 설비의 정상적인 가동이 가능하도록 한다.As can be seen from Fig. 5 (a) and Fig. 6 (a), when starting the restart and comparing the point of time when the nitrogen purity is less than 10ppm, it takes about 10 hours in the prior art, while the method of the present invention It can be seen that it takes only about 2 hours, according to the method of the present invention to prevent the cold loss by allowing the normal operation of the equipment in a faster time.

또한, 도5의 (b)와 도6의 (b)에서 나타나 있는 바와 같이 액체산소레벨과 액체공기레벨이 상기한 시간 후에 일정하게 유지됨을 알 수 있다.In addition, it can be seen that the liquid oxygen level and the liquid air level are kept constant after the above time as shown in Figs. 5B and 6B.

상술한 바와 같이 본 발명에 따른 공기분리장치의 한냉손실방지를 위한 운전방법에 의하면, 공기분리장치의 가동이 정지되었을 때 이웃한 공기분리장치로부터 제공되는 고압공기로 한냉을 발생시켜 장치를 냉각시켜 한냉 손실을 방지시킴으로써 설비의 재가동이 신속하게 이루어질 수 있는 효과를 갖는다.As described above, according to the operation method for preventing the cold loss of the air separation device according to the present invention, when the operation of the air separation device is stopped by generating high temperature air from the high-pressure air provided from the neighboring air separation device to cool the device By preventing cold loss, the facility can be restarted quickly.

Claims (2)

공기압축기가 일정시간 정지됨에 의해 공기분리장치의 구성요소들이 가열되면서 한냉손실이 발생되는 것을 방지하기 위한 방법에 있어서,In the method for preventing the cold compressor loss caused by heating the components of the air separation device by the air compressor is stopped for a certain time, 공기압축기가 정지된 후 이웃한 공기분리장치에서 생성된 여분의 고압공기를 한냉발생기(150)의 승압기(150A)에 공급하고, 상기 한냉발생기(150)의 승압기(150A)에서 배출된 공기로 주 열교환기(140)를 냉각시킨 다음 한냉발생기(150)의 팽창터빈(150B)에 공급하며, 상기 팽창터빈(150B)에서 배출된 공기를 정류탑(160)에 공급하여 정류탑(160)의 하탑(164)과 상탑(162)을 냉각유지시킴을 특징으로 하는 공기분리장치의 한냉손실방지를 위한 운전방법.After the air compressor is stopped, the excess high pressure air generated by the neighboring air separator is supplied to the booster 150A of the cold chiller 150, and the main air is discharged from the booster 150A of the cold chiller 150. The heat exchanger 140 is cooled and then supplied to the expansion turbine 150B of the cold-cooling generator 150, and the air discharged from the expansion turbine 150B is supplied to the rectification tower 160 so that the bottom of the rectification tower 160 is maintained. Operating method for preventing cold loss of the air separation device, characterized in that the cooling (164) and the tower (162). 제1항에 있어서, 상기 한냉발생기(150)의 팽창터빈(150B)에서 배출된 공기의 온도와 주 열교환기(140)에서 배출된 공기의 온도 차이를 측정하고, 상기 온도 차이가 설정된 범위에 있으면, 상기 한냉발생기(150)의 승압기(150A) 입, 출구를 연결시키는 바이패스배관(246)에 구비된 바이패스밸브(247)의 개도를 증가시키며, 상기 온도 차이가 설정된 범위를 벗어나면, 상기 바이패스밸브(247)의 개도를 감소시킴을 특징으로 하는 공기분리장치의 한냉손실방지를 위한 운전방법.According to claim 1, wherein the temperature difference between the temperature of the air discharged from the expansion turbine (150B) of the cold chill generator 150 and the air discharged from the main heat exchanger 140 is measured, if the temperature difference is within the set range Increasing the opening degree of the bypass valve 247 provided in the bypass pipe 246 for connecting the inlet and outlet of the booster 150A of the cold generator 150, and if the temperature difference is outside the set range, Operating method for preventing the cold loss of the air separation device, characterized in that to reduce the opening degree of the bypass valve (247).
KR1020010076729A 2001-12-05 2001-12-05 Operating method for preventing air separation unit from cooling KR100768319B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010076729A KR100768319B1 (en) 2001-12-05 2001-12-05 Operating method for preventing air separation unit from cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010076729A KR100768319B1 (en) 2001-12-05 2001-12-05 Operating method for preventing air separation unit from cooling

Publications (2)

Publication Number Publication Date
KR20030046252A true KR20030046252A (en) 2003-06-12
KR100768319B1 KR100768319B1 (en) 2007-10-17

Family

ID=29573257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010076729A KR100768319B1 (en) 2001-12-05 2001-12-05 Operating method for preventing air separation unit from cooling

Country Status (1)

Country Link
KR (1) KR100768319B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074491A (en) * 2017-12-20 2019-06-28 주식회사 포스코 Equipment and method for manufacturing industrial gases
EP3557165A1 (en) * 2018-04-19 2019-10-23 Linde Aktiengesellschaft Method for operating a heat exchanger, assembly with a heat exchanger and air processing installation with such an assembly
EP3719428A1 (en) * 2019-04-05 2020-10-07 Linde GmbH Method for operating a heat exchanger, assembly with heat exchanger and system with corresponding assembly
WO2020200521A1 (en) * 2019-04-05 2020-10-08 Linde Gmbh Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015514B1 (en) 2017-12-21 2019-08-28 주식회사 포스코 Air separation plant and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102074A (en) * 1985-10-30 1987-05-12 株式会社日立製作所 Method of separating gas
JPH02279979A (en) * 1989-04-21 1990-11-15 Hitachi Ltd Air separation method and its device
JP3026091B2 (en) * 1989-12-19 2000-03-27 日本酸素株式会社 Air liquefaction separation device and start-up method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074491A (en) * 2017-12-20 2019-06-28 주식회사 포스코 Equipment and method for manufacturing industrial gases
EP3557165A1 (en) * 2018-04-19 2019-10-23 Linde Aktiengesellschaft Method for operating a heat exchanger, assembly with a heat exchanger and air processing installation with such an assembly
WO2019201475A1 (en) * 2018-04-19 2019-10-24 Linde Aktiengesellschaft Method for operating a heat exchanger, assembly comprising a heat exchanger, and air preparing system comprising a corresponding assembly
EP3719428A1 (en) * 2019-04-05 2020-10-07 Linde GmbH Method for operating a heat exchanger, assembly with heat exchanger and system with corresponding assembly
WO2020200521A1 (en) * 2019-04-05 2020-10-08 Linde Gmbh Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement

Also Published As

Publication number Publication date
KR100768319B1 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
NO20111226A1 (en) Method of Separation of Nitrogen
RU2671253C2 (en) Method for removing acid gas from natural gas
KR100768319B1 (en) Operating method for preventing air separation unit from cooling
JP6354516B2 (en) Cryogenic air separation device and cryogenic air separation method
JP6354517B2 (en) Cryogenic air separation device and cryogenic air separation method
US11859873B2 (en) Fluid cooling apparatus
CN104482719B (en) Cryogenic liquid returns filling device
JPH11142054A (en) Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas
KR20170086388A (en) Cooling apparatus for purging non-condensating gas and method for maintaining cooling apparatus
KR100805716B1 (en) Method for decreasing the cooling operation time of an air separation unit
KR20190075282A (en) Air separation plant and control method thereof
KR102139990B1 (en) Method for operating air separation plant
JP4551334B2 (en) Cryogenic air separation device and control method thereof
KR101964331B1 (en) Air separation plant
RU2714088C1 (en) Natural gas liquefaction complex (versions)
JP7134013B2 (en) Liquid hydrogen production facility
KR101977500B1 (en) Air separation device
JP7385800B1 (en) Heat exchanger control system and method for low temperature equipment, and air separation device equipped with the system
WO2023087507A1 (en) Gas treatment apparatus and method for treating gas using same
CN104321538B (en) Device for compressing wet gas current
CN111981760B (en) Heating and unfreezing method of low-temperature air separation device
KR20220121950A (en) Apparatus for recovering volatile organic compound
KR100500081B1 (en) A pre-cooling system of pure-argon culumn
JPH0480558A (en) Helium liquefying refrigerator
TWI459999B (en) A device for injecting a shaft seal gas into a crude argon pump

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee