JPH0480558A - Helium liquefying refrigerator - Google Patents

Helium liquefying refrigerator

Info

Publication number
JPH0480558A
JPH0480558A JP19300290A JP19300290A JPH0480558A JP H0480558 A JPH0480558 A JP H0480558A JP 19300290 A JP19300290 A JP 19300290A JP 19300290 A JP19300290 A JP 19300290A JP H0480558 A JPH0480558 A JP H0480558A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
helium
gas
heat exchanger
temperature level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19300290A
Other languages
Japanese (ja)
Other versions
JPH0784961B2 (en
Inventor
Shigeto Kawamura
河村 成人
Kozo Matsumoto
松本 孝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2193002A priority Critical patent/JPH0784961B2/en
Publication of JPH0480558A publication Critical patent/JPH0480558A/en
Publication of JPH0784961B2 publication Critical patent/JPH0784961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To enable coping with change for a complete operation mode by a method wherein a method to generate cold on the temperature side higher than a liquid nitrogen temperature level includes two kinds of the one being a method by liquid nitrogen and the other being a method by a high temperature expansion turbine. CONSTITUTION:In an operation mode to demand the generation of quantities of cold like liquefying operation, a liquid nitrogen heat exchanger 8 is worked in addition to the generation of cold by means of a high temperature expansion turbine 16 and a cold generating amount is increased. Namely, a part of middle pressure gas entering a cold box 5 is branched and is heat-exchanged with liquid nitrogen by a liquid nitrogen heat exchanger 8, and helium gas of a liquid nitrogen temperature level is joined with a main middle pressure line through an absorber 9. This method increases a cold generating amount of a liquid nitrogen temperature level or more. In normal operation, when the high temperature expansion turbine 16 is stopped due to failure in operation, the liquid nitrogen heat exchanger 8 is worked as backup thereof, Further, when, in initial stage cooling operation, gas of a liquid nitrogen temperature level or more is used, all expansion turbines 16 and 17 are all stopped, and the liquid nitrogen heat exchanger 8 is worked to effect initial cooling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導機器の冷却等に用いられる極低温用ヘ
リウム液化冷凍機に関まるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryogenic helium liquefaction refrigerator used for cooling superconducting equipment and the like.

〔従来の技術〕[Conventional technology]

従来の装置を第2図を用いて説明する。 A conventional device will be explained using FIG. 2.

低段圧縮機lおよび高段圧縮機2で圧縮されたヘリウム
ガスは、油分離ユニット3にて、油分を分離し、コール
トポ呼りス5に入り、熱交換器6にて戻りヘリウムガス
と熱交換し、冷却される。
The helium gas compressed by the low-stage compressor 1 and the high-stage compressor 2 is separated from oil in the oil separation unit 3, enters the coal topo tank 5, and returns to the heat exchanger 6 where it is exchanged with helium gas and heat. Replaced and cooled.

一部のヘリウムガスは、高温膨張タービン16にて二段
階に膨張し、寒冷を発生し、熱交換器6で寒冷を回収し
、高段圧JI機2の吸入側に戻る。他方のヘリウムガス
は、さらに、熱交換器7にて冷却され、一部のヘリウム
ガスは、膨張タービン17にて二段階に膨張し、寒冷を
発生し、戻りヘリウムガスと合流する。他方のヘリウム
ガスは、さらに、熱交換器7にて冷却されJT弁刃にて
膨張し、低温移送配管lOを経てタライオスタットνに
送られ、一部液体ヘリウムとなって液体ヘリウム槽14
に溜り、非冷却体Bを冷却する。一方のガスヘリウムは
戻りガスヘリウムとなって、低温移送配管■を経てコー
ルドボックス5にもどり、熱交換器7゜6を通って低段
圧縮機lの吸入側へ戻る。
A portion of the helium gas expands in two stages in the high temperature expansion turbine 16 to generate cold, recovers the cold in the heat exchanger 6, and returns to the suction side of the high-pressure JI machine 2. The other helium gas is further cooled in the heat exchanger 7, and part of the helium gas is expanded in two stages in the expansion turbine 17 to generate refrigeration, and then merges with the returned helium gas. The other helium gas is further cooled in the heat exchanger 7, expanded in the JT valve blade, and sent to the Taliostat ν via the low temperature transfer pipe 1O, where it partially becomes liquid helium and enters the liquid helium tank 14.
and cools the non-cooled body B. One gas helium becomes return gas helium and returns to the cold box 5 via the low-temperature transfer pipe (2), and returns to the suction side of the low stage compressor (1) through the heat exchanger (7.6).

圧縮機の吐出および吸入圧は、圧力調整弁狙。The discharge and suction pressure of the compressor is aimed at the pressure regulating valve.

冨を介して中圧タンク4とガスのやりとりを行なうこと
により、一定にw14整される。
By exchanging gas with the intermediate pressure tank 4 through the gas, w14 is kept constant.

運転初期においては、系内に不純ガスが多(存在するの
で、低圧ラインのガスヘリウムをガスパプグ51を経て
回収圧縮機52にて圧縮し、ヘリウム精製器郭で精製し
て中圧ラインへ戻す。
At the beginning of operation, since there is a large amount of impure gas in the system, the gas helium in the low pressure line is compressed by the recovery compressor 52 via the gas pump 51, purified by the helium purifier enclosure, and returned to the medium pressure line.

二のようなヘリウム液化冷凍機については、例えば、ア
トパンシーズ イ/ クライオジェニヲク エンジニア
リング 第314(1986)第693頁から第698
員 (Advances in Cry。
Regarding the helium liquefaction refrigerator, see, for example, Atopanse I/Cryogeniwok Engineering No. 314 (1986), pp. 693 to 698.
(Advances in Cry.

genic EngJneerlng、 Vol 31
.  (1986)PP693〜698)において論じ
られている。
Generic EngJneerlng, Vol 31
.. (1986) PP693-698).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、液体窒素温度レベルより高温側の寒冷
発生方法が、高温膨張タービンによるものだけであり、
運転モードの変更による寒冷発生量の1l11iおよび
、タービン故障時のパブクアブブに問題点があり、さら
に、初期#tIR時において、外部精製器による精製が
必要であるという問題点があった。
In the above conventional technology, the only method for generating cold at a temperature higher than the liquid nitrogen temperature level is a high temperature expansion turbine.
There are problems with the amount of cold generation being 1l11i due to changes in the operation mode, and the amount of cooling generated when the turbine fails, and there is also a problem that purification by an external purifier is required at the time of initial #tIR.

本発明は、ヘリウム液化冷凍後の液体窒素温度レベルよ
り高温側の寒冷発生方法に関して、より完全な運転モー
ドの変化への対応と冗長性の確保を目的としており、さ
らに、安価で効率的な初期精製の実現が可能となるヘリ
ウム液化冷凍機を供給することを目的としている。
The present invention aims to more completely respond to changes in operation modes and ensure redundancy regarding the cold generation method on the side higher than the liquid nitrogen temperature level after helium liquefaction freezing, and furthermore, aims to provide an inexpensive and efficient initial stage. The aim is to supply a helium liquefaction refrigerator that enables purification.

〔t!1題を解決するための手段〕 上記目的を達成するために、ヘリウム液化冷凍機の液体
窒素温度レベルより高温側の寒冷発生方法を液体M素に
よるものと高温膨張タービンによるものとの2s類にし
、さらに上記の他の目的を達成するために、上記の液体
窒素による寒冷発生方法に不純ガスを凝着あるいはq&
看線除去るシステムを付加したものである。
[t! Means for Solving Problem 1] In order to achieve the above objective, the method of generating cold on the side higher than the liquid nitrogen temperature level of the helium liquefaction refrigerator is divided into two types: one using liquid M element and one using high temperature expansion turbine. In addition, in order to achieve the other objectives mentioned above, the above method of generating cold using liquid nitrogen is combined with condensation of impurity gas or q&
A system for removing blind lines has been added.

〔作   用〕[For production]

圧縮機の吐出ガスである中圧ヘリウムガスをコールドボ
ックスに入る前に分流し、本来の熱交換器および高温膨
張タービンによる液体窒素温度レベル以上の寒冷発生以
外に、液体窒素との熱交換を行なう液体窒素熱交換器を
もうける。
Medium-pressure helium gas, which is the discharge gas of the compressor, is diverted before entering the cold box, and in addition to generating cold above the liquid nitrogen temperature level using the original heat exchanger and high-temperature expansion turbine, heat exchange with liquid nitrogen is performed. Build a liquid nitrogen heat exchanger.

液化運転のように寒冷の発生を多畷要求するような運転
モードにおいては、高温膨張タービンによる寒冷発生に
付加して液体窒素熱交換器を働かせ、寒冷発生量を増加
させる。また、通常の運転において、高温膨張タービン
が故障等により停止した場合には、そのパブクアップと
して液体窒素熱交換器を働かせる。また、系内の初期冷
却運転において、液体窒素温度レベル以上のガスを使用
する場合には、回転体である膨張タービンをすべて停止
し、液体窒素熱交換器を働かせて初期冷却することが可
能となる。その際、系内の不純ガスが液体窒素熱交換器
のヘリウムラインに蓄積されるが、初期冷却完了後に当
該ヘリウムラインを加温真空引することにより、不純ガ
スを系外に、除去可能である。
In an operation mode such as liquefaction operation that requires generation of a large amount of cold, the liquid nitrogen heat exchanger is operated in addition to the cold generated by the high-temperature expansion turbine to increase the amount of cold generated. In addition, during normal operation, if the high-temperature expansion turbine is stopped due to a failure or the like, the liquid nitrogen heat exchanger is activated to repair the turbine. In addition, when using gas with a temperature higher than the liquid nitrogen temperature level during initial cooling operation in the system, it is possible to stop all the rotating expansion turbines and activate the liquid nitrogen heat exchanger for initial cooling. Become. At that time, impure gas in the system accumulates in the helium line of the liquid nitrogen heat exchanger, but by heating and vacuuming the helium line after initial cooling is completed, the impure gas can be removed from the system. .

また、液体窒素温度レベルのヘリウムガス温度を検出す
ることにより、液体窒素温度レベル以上の寒冷量の過不
足が籾量し、液体窒素熱交換器に流すガス流量を調整す
ることが可能となる。
Furthermore, by detecting the helium gas temperature at the liquid nitrogen temperature level, it is possible to determine whether the amount of chilling is too much or too little above the liquid nitrogen temperature level, and to adjust the gas flow rate to flow into the liquid nitrogen heat exchanger.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

低段圧縮機lおよび高段圧縮機2で圧縮されたヘリウム
ガスは、油分離ユニット3にて、油分を分離し、コール
ドボックス5に入り、熱交換器6にて戻りヘリウムガス
と熱交換し、冷却される。
The helium gas compressed by the low-stage compressor 1 and the high-stage compressor 2 is separated from oil by an oil separation unit 3, enters a cold box 5, and returns to a heat exchanger 6 to exchange heat with the helium gas. , cooled.

一部のヘリウムガスは、高温膨張タービン16にて二段
階に膨張し、寒冷を発生し、熱交換器6で寒冷を回収し
、高段圧縮機2の吸入側に戻る。他方のヘリウムガスは
、さらに、熱交換器7にて冷却され、一部のヘリウムガ
スは、膨張タービン17にて二段階に膨張し、寒冷を発
生し、戻りヘリウムガスと合流する。他方のヘリウムガ
スは、さらに、熱交換器7にて冷却されJT弁島にて膨
張し、低温移送配管10を経てクライオスタット認に送
られ、一部液体ヘリウムとなって液体ヘリウム槽14に
溜り、非冷却体13を冷却する。一方のガスヘリウムは
戻りガスヘリウムとなって、低温移送配管l】を経てコ
ールドボックス5に戻り、熱交換器7.6を通って低段
圧縮IIII!1の吸入側へ戻る。
A portion of the helium gas expands in two stages in the high-temperature expansion turbine 16 to generate cold, recovers the cold in the heat exchanger 6, and returns to the suction side of the high-stage compressor 2. The other helium gas is further cooled in the heat exchanger 7, and part of the helium gas is expanded in two stages in the expansion turbine 17 to generate refrigeration, and then merges with the returned helium gas. The other helium gas is further cooled in the heat exchanger 7, expanded in the JT Benjima, sent to the cryostat via the low temperature transfer pipe 10, and partially becomes liquid helium and accumulates in the liquid helium tank 14. The non-cooled body 13 is cooled. One gas helium becomes return gas helium, returns to the cold box 5 via the low-temperature transfer pipe 1], passes through the heat exchanger 7.6, and undergoes low-stage compression III! Return to the suction side of 1.

圧縮機の吐出および吸入圧は、圧力調整弁31゜!を介
して中圧タンク4とガスのやりとりを行なうことにより
、一定に調整される。
The discharge and suction pressure of the compressor is controlled by the pressure regulating valve 31°! By exchanging gas with the intermediate pressure tank 4 through the , the pressure is adjusted to a constant level.

液化運転のように寒冷の発生を多く要求するような運転
モードにおいては、高温膨張タービン16による寒冷発
生に付加して液体窒素熱交換器8を働かせ、寒冷発生量
を増加させる。即ち、コールドボックス5に入る中圧ガ
スを一部分流させ、液体窒素熱交換器8において、液体
窒素と熱交換させ、液体窒素温度レベルのヘリウムガス
な吸着器9を経てメインの中圧ラインに合流させる。こ
れにより、液体窒素温度レベル以上の寒冷発生量が増加
することになる。
In an operation mode that requires generation of a large amount of cold, such as liquefaction operation, the liquid nitrogen heat exchanger 8 is operated in addition to the cold generation by the high-temperature expansion turbine 16 to increase the amount of cold generation. That is, a part of the intermediate pressure gas entering the cold box 5 is caused to flow, exchanged heat with liquid nitrogen in the liquid nitrogen heat exchanger 8, and flows into the main intermediate pressure line through the helium gas absorber 9 at the liquid nitrogen temperature level. let This results in an increase in the amount of cold generated above the liquid nitrogen temperature level.

また、通常の運転において、高温膨張タービン16が故
障等により停止した場合には、そのバックアップとして
液体窒素熱交換器8を鋤かせる。即ち、弁羽を閉止し、
高温膨張タービンへのガスの流れはない状態となり、弁
47を経てコールドボックス5に入るヘリウムガスは、
すべて、熱交換器6において、戻りガスヘリウムと熱交
換し、液体窒素熱交換器8を経たヘリウムガスと合流し
て、さらに低温部へと進む。高温膨張タービン16で発
生していた寒冷を補うだけであるので、比較的わずかな
ヘリウムガスを液体窒素熱交換器8に供給するだけで、
高温膨張タービンのバックアップは可能である。
Further, in normal operation, if the high temperature expansion turbine 16 is stopped due to a failure or the like, the liquid nitrogen heat exchanger 8 is used as a backup. That is, the valve blades are closed,
There is no gas flow to the hot expansion turbine, and helium gas enters the cold box 5 via the valve 47.
All of the gas exchanges heat with the return gas helium in the heat exchanger 6, merges with the helium gas that has passed through the liquid nitrogen heat exchanger 8, and then proceeds to the low temperature section. Since the cold generated in the high-temperature expansion turbine 16 is only supplemented, only a relatively small amount of helium gas is supplied to the liquid nitrogen heat exchanger 8.
Backup of hot expansion turbines is possible.

また、系内の初期冷却運転において、液体窒素温度レベ
ル以上のガスを使用する場合には、回転体である膨張タ
ービン16.17をすべて停止し、液体窒素熱交換器8
を働かせて初期冷却することが可能となる。その際、系
内の不純ガスが液体窒素熱交換器のヘリウムラインに蓄
積されるが、初期冷却完了後に当該ヘリウムラインを弁
41.42を閉止することにより締切、弁葛を閉止して
、液体窒素の供給を止め、その後、弁材、5を開は窒素
ガスにより加温した後、弁柄、45を閉止し、弁槌な開
は真空引装@25で真空引することにより、不純ガスを
系外に、除去可能である。初期冷却完了後は、液体窒素
熱交換器8を加温真空引している段階でも高温膨張ター
ビン16を起動することにより、さらに、冷却が可能と
なる。
In addition, in the initial cooling operation in the system, if gas with a temperature higher than the liquid nitrogen temperature level is used, all the expansion turbines 16 and 17, which are rotating bodies, are stopped, and the liquid nitrogen heat exchanger 8
This makes it possible to perform initial cooling. At that time, impure gas in the system accumulates in the helium line of the liquid nitrogen heat exchanger, but after the initial cooling is completed, the helium line is shut off by closing valves 41 and 42, and the After stopping the nitrogen supply, the valve material 5 is heated with nitrogen gas, the valve handle 45 is closed, and the valve hammer opening is evacuated with the vacuum suction device @25 to remove impure gas. can be removed outside the system. After the initial cooling is completed, further cooling becomes possible by starting the high temperature expansion turbine 16 even while the liquid nitrogen heat exchanger 8 is being heated and evacuated.

また、液体窒素温度レベルのヘリウムガス温度を温度検
出器Bにより検出することにより、制御装[61におい
て、液体窒素温度レベル以上の寒冷量の過不足が判明し
、液体窒素熱交換器8に流すガス流量を弁41.43に
より調整することにより、運転モードの変化に対応した
最適な弁操作が可能となる。また、液位検出器Cにより
、液体ヘリウム槽14のヘリウムレベルを知ることによ
り、より適切な運転モードの把握が可能となることはい
うまでもないことである。
In addition, by detecting the helium gas temperature at the liquid nitrogen temperature level by the temperature detector B, the control device [61] determines whether the amount of cooling is too much or too little above the liquid nitrogen temperature level, and the temperature is changed to the liquid nitrogen heat exchanger 8. By adjusting the gas flow rate using the valves 41 and 43, optimal valve operation corresponding to changes in the operating mode is possible. It goes without saying that by knowing the helium level in the liquid helium tank 14 using the liquid level detector C, it is possible to determine a more appropriate operating mode.

本実施例によれば、液体窒素温度レベルより高温側の寒
冷発生方法が液体窒素によるものと高温膨張タービンに
よるものとの2s@であるので、運転モードによる寒冷
発生量の1Iil整が容易になり、高温膨張タービンが
停止した場合のバックアップができ、さらに初期冷却時
において、液体窒素熱交換器および吸着器により不純ガ
スを凝着あるいは吸着除去することができるので、ヘリ
ウム液化冷凍機の信頼性を高め、安定で、効率的な運転
ができる効果がある。
According to this embodiment, since the method of generating cold on the side higher than the liquid nitrogen temperature level is 2s@, using liquid nitrogen and using a high-temperature expansion turbine, it is easy to adjust the amount of cold generation depending on the operation mode. This feature provides backup in case the high-temperature expansion turbine stops, and during initial cooling, impurity gas can be condensed or adsorbed and removed using the liquid nitrogen heat exchanger and adsorber, improving the reliability of the helium liquefaction refrigerator. It has the effect of enabling high, stable, and efficient driving.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液体窒素温度レベルより高温側の寒冷
発生方法が液体窒素によるものと高温鳳張タービンによ
るものとの2種類であるので、運転モードによる寒冷発
生量の!I!!が容易になり、高温膨張タービンが停止
した場合のバ、クア、ブができ、さらに初期冷却時にお
いて、液体窒素熱交換器および吸着器により不純ガスを
凝着あるL+は吸着除去することができるので、ヘリウ
ム液化冷凍機の信頼性を高め、安定で、効率的な運転か
できるという効果がある。
According to the present invention, since there are two methods of generating cold on the side higher than the liquid nitrogen temperature level: using liquid nitrogen and using a high-temperature turbine, the amount of cold generated depends on the operation mode. I! ! When the high temperature expansion turbine stops, it becomes easy to do so, and when the high-temperature expansion turbine stops, it is possible to remove condensed impurity gas by adsorption and removal using the liquid nitrogen heat exchanger and adsorber. Therefore, it has the effect of increasing the reliability of the helium liquefaction refrigerator and enabling stable and efficient operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のヘリウム液化冷凍機のフ
ロー図、第2図は、従来例のヘリウム液化冷凍機のフロ
ー図である。 1・・・・・・低段圧縮機、2・・・・・・高段圧縮機
、3・・・・・・油分離ユニット、5・・・−・・コー
ルドボックス、6゜7・・・・・・熱交換器、8・・・
・・・液体窒素熱交換器、9・・・吸ll器、1(1,
11・・・・・・低段移送配管、14・・・・・・液体
ヘリウム槽、16・・・・・・高温膨張タービン、17
・・・・・・膨張タービン、25・・・・・・真空引装
置、51・・・・・・ガスバッグ52・・・・・・回収
圧縮機、 S・・・・・・ 精製器、 61・・・・・・制御装 置、 C・・・・・・ 液位検出器、 簡・・・・・・ 温度検出器 【
FIG. 1 is a flow diagram of a helium liquefaction refrigerator according to an embodiment of the present invention, and FIG. 2 is a flow diagram of a conventional helium liquefaction refrigerator. 1...Low stage compressor, 2...High stage compressor, 3...Oil separation unit, 5...Cold box, 6゜7... ...Heat exchanger, 8...
...Liquid nitrogen heat exchanger, 9...Suction device, 1 (1,
11...Low stage transfer piping, 14...Liquid helium tank, 16...High temperature expansion turbine, 17
...... Expansion turbine, 25 ... Vacuum suction device, 51 ... Gas bag 52 ... Recovery compressor, S ... Purifier, 61...Control device, C...Liquid level detector, Simple...Temperature detector [

Claims (1)

【特許請求の範囲】 1、常温レベルと液体窒素温度レベルとの間で液体窒素
とヘリウムガスとを熱交換させる液体窒素熱交換器と、
出口温度が液体窒素温度レベルである高温膨張タービン
を有し常温レベルと液体窒素温度レベルとの間でヘリウ
ムガスとヘリウムガスとを熱交換させるヘリウムガス熱
交換器とを、同一のコールドボックス内に有し、圧縮機
吐出ガスである中圧ガスを前記液体窒素熱交換器または
高温膨張タービンまたはその両方に導き、中圧ラインの
液体窒素温度レベルのヘリウムガスを生成できることを
特徴とするヘリウム液化冷凍機。2、前記液体窒素熱交
換器のヘリウムラインに液体窒素との熱交換器運転時に
、ヘリウムラインに凝着した不純ガスを加温ガスを流す
ことにより加温し、かつ、当該ヘリウムラインを真空引
することにより不純ガスを系外に排出除去可能な第1請
求項に記載のヘリウム液化冷凍機。 3、前記液体窒素熱交換器のヘリウムラインの低温側に
吸着器を有し、低温時の不純ガスの吸着能力を付加した
第1請求項若しくは第2請求項に記載のヘリウム液化冷
凍機。 4、液体窒素温度レベルのヘリウムガス温度を検出し、
前記液体窒素熱交換器を流れる液体窒素およびヘリウム
ガスの流量を調整することにより、前記液体窒素熱交換
器の単独あるいは前記高温膨張タービンと液体窒素熱交
換器の並列運転の最適化が可能となるような制御装置を
有する第1請求項に記載のヘリウム液化冷凍機。
[Claims] 1. A liquid nitrogen heat exchanger that exchanges heat between liquid nitrogen and helium gas between a room temperature level and a liquid nitrogen temperature level;
A helium gas heat exchanger that has a high temperature expansion turbine whose outlet temperature is at the liquid nitrogen temperature level and exchanges heat between helium gas and helium gas between the room temperature level and the liquid nitrogen temperature level is installed in the same cold box. Helium liquefaction refrigeration, characterized in that the medium-pressure gas that is the compressor discharge gas is guided to the liquid nitrogen heat exchanger or the high-temperature expansion turbine, or both, to generate helium gas at a temperature level of the liquid nitrogen in the medium-pressure line. Machine. 2. When operating the helium line of the liquid nitrogen heat exchanger with liquid nitrogen, the impure gas that has condensed in the helium line is heated by flowing heating gas, and the helium line is evacuated. The helium liquefaction refrigerator according to claim 1, wherein impurity gas can be discharged and removed from the system by doing so. 3. The helium liquefaction refrigerator according to claim 1 or 2, which has an adsorber on the low temperature side of the helium line of the liquid nitrogen heat exchanger, and has an added ability to adsorb impurity gas at low temperatures. 4. Detect the helium gas temperature at the liquid nitrogen temperature level,
By adjusting the flow rates of liquid nitrogen and helium gas flowing through the liquid nitrogen heat exchanger, it is possible to optimize the operation of the liquid nitrogen heat exchanger alone or in parallel with the high temperature expansion turbine and the liquid nitrogen heat exchanger. A helium liquefaction refrigerator according to claim 1, having a control device as described above.
JP2193002A 1990-07-23 1990-07-23 Helium liquefier Expired - Lifetime JPH0784961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193002A JPH0784961B2 (en) 1990-07-23 1990-07-23 Helium liquefier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193002A JPH0784961B2 (en) 1990-07-23 1990-07-23 Helium liquefier

Publications (2)

Publication Number Publication Date
JPH0480558A true JPH0480558A (en) 1992-03-13
JPH0784961B2 JPH0784961B2 (en) 1995-09-13

Family

ID=16300577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193002A Expired - Lifetime JPH0784961B2 (en) 1990-07-23 1990-07-23 Helium liquefier

Country Status (1)

Country Link
JP (1) JPH0784961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219125A (en) * 2013-05-02 2014-11-20 株式会社前川製作所 Refrigeration system
CN106949655A (en) * 2017-03-16 2017-07-14 中国科学院理化技术研究所 A kind of cryogenic system
CN107830651A (en) * 2017-10-20 2018-03-23 中国科学院理化技术研究所 A kind of cryogenic refrigerating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102812A (en) * 1985-10-30 1987-05-13 Hitachi Ltd Changing-over method for adsorber
JPS6332258A (en) * 1986-07-25 1988-02-10 株式会社日立製作所 Cryogenic refrigerator
JPS6375759U (en) * 1986-11-05 1988-05-20
JPS63194163A (en) * 1987-02-06 1988-08-11 株式会社日立製作所 Cryogenic refrigerator
JPH01244254A (en) * 1988-03-25 1989-09-28 Japan Atom Energy Res Inst Method of controlling auxiliary cold source for cryogenic refrigerating plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102812A (en) * 1985-10-30 1987-05-13 Hitachi Ltd Changing-over method for adsorber
JPS6332258A (en) * 1986-07-25 1988-02-10 株式会社日立製作所 Cryogenic refrigerator
JPS6375759U (en) * 1986-11-05 1988-05-20
JPS63194163A (en) * 1987-02-06 1988-08-11 株式会社日立製作所 Cryogenic refrigerator
JPH01244254A (en) * 1988-03-25 1989-09-28 Japan Atom Energy Res Inst Method of controlling auxiliary cold source for cryogenic refrigerating plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219125A (en) * 2013-05-02 2014-11-20 株式会社前川製作所 Refrigeration system
US10168078B2 (en) 2013-05-02 2019-01-01 Mayekawa Mfg. Co., Ltd. Refrigeration system
CN106949655A (en) * 2017-03-16 2017-07-14 中国科学院理化技术研究所 A kind of cryogenic system
CN106949655B (en) * 2017-03-16 2019-03-05 中国科学院理化技术研究所 A kind of cryogenic system
CN107830651A (en) * 2017-10-20 2018-03-23 中国科学院理化技术研究所 A kind of cryogenic refrigerating system
CN107830651B (en) * 2017-10-20 2020-04-10 中国科学院理化技术研究所 Low-temperature refrigerating system

Also Published As

Publication number Publication date
JPH0784961B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
US20160003527A1 (en) System and method for liquefying natural gas employing turbo expander
US4582519A (en) Gas-liquefying system including control means responsive to the temperature at the low-pressure expansion turbine
KR100935419B1 (en) Apparatus for collecting and injecting refrigerants and method for the same
JPH0480558A (en) Helium liquefying refrigerator
RU2702680C1 (en) Unit for reduction of natural gas with generation of lng
JP2002277101A (en) Air conditioner
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JPH0579717A (en) Helium refrigerator
JP2574815B2 (en) Cryogenic refrigeration equipment
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JP2585704B2 (en) Cryogenic refrigeration equipment
RU2720506C1 (en) Plant for production of liquefied natural gas
JP2510769B2 (en) Cryogenic refrigerator
JPH0689956B2 (en) Small He liquefaction refrigeration system
JP3871206B2 (en) Refrigeration system combining absorption and compression
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPH04251181A (en) Cooling water cooling method and device for air liquefying and separating device utilizing cold heat of liquefied natural gas
JPH02622Y2 (en)
JPH0468265A (en) Cold recovery method of helium refrigerating machine
JPS6332258A (en) Cryogenic refrigerator
JPH0794928B2 (en) Cryogenic refrigerator and operation control method thereof
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JP3616761B2 (en) Refrigerator operation method
JPH01150755A (en) Method of controlling operation of cryogenic refrigerator
JPH02143057A (en) Cryogenic generator